Canad. Math. Bull. Vol. 53 (3), 2010 pp. 571-576
doi:10.4153/CMB-2010-047-0 GQ%
(© Canadian Mathematical Society 2010

Periods of Modular Forms and Imaginary
Quadratic Base Change

Mak Tritkovié

Abstract. Let f be a classical newform of weight 2 on the upper half-plane J('?), E the corresponding
strong Weil curve, K a class number one imaginary quadratic field, and F the base change of f to K.
Under a mild hypothesis on the pair ( f, K), we prove that the period ratio Qg /( \/ﬁ QF) isin Q). Here
QF is the unique minimal positive period of F, and Qg the area of E(C). The claim is a specialization
to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.

1 Introduction

Let E be an elliptic curve over an imaginary quadratic field K. For simplicity, we
assume K to have class number one, and denote by D, w, and i its discriminant,
number of units and the associated quadratic character, respectively. By analogy with
the Shimura—Taniyama conjecture over ), we expect the isogeny class of E to deter-
mine, in most cases, a weight 2 cusp form on GL,;(Ak). Such a form has a unique
minimal positive period (g, which the Birch and Swinnerton-Dyer conjecture sug-
gests should be related to (2, the area of E(C). Indeed, in the articles of Cremona [2]
and Cremona-Whitley [4] it was conjectured that

(1.1) #& € Q.

VD] 2

In this note, we prove (LI)) in the special case when E is the base change of an elliptic
curve over (), under a mild assumption on E and K (see Theorem . I]below).

In our paper [12], we proposed a conjectural p-adic construction of global points
on the elliptic curve E/x. The main ingredient in this construction is the modular
symbol associated with E, obtained by dividing path integrals of the corresponding
modular form F by its period §2r. Relating this period to {2 for a base change curve
is the first step in relating our Stark—Heegner points to the classical Heegner points.

2 Modular Forms over Imaginary Quadratic Fields

In the relatively simple setting of an imaginary quadratic field of class number one,
the adelic object conjecturally corresponding to an elliptic curve E/x without com-
plex multiplication by K can be identified with a harmonic 1-form on the upper
half-space H® = C x R.. We briefly review the setup from [7].
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Gramm-Schmidt orthogonalization identifies H{® with the PGL,(C)-homogen-
eous space PGL,(C)/ PSU, via

(z,t) « <(t) i) mod PSU,, ze€ C,t € Rog.

A basis of 1-differentials on H® is given by the column vector 3 = t(—%, %, %).

For an ideal n of the ring of integers Ox C K, we consider the congruence subgroup

T¢(n) = { (‘z Z) € PGLy(0x) | c € n}.

The automorphic objects with which we are concerned are defined as follows.

Definition 2.1 A plus-cusp form of weight 2 and level n (“plusform” for short) is a
function F = (Fy, F;, F,): H® — C? with values in row vectors, satisfying

(i) T§(n)-invariance: The dot product F - (3 is a harmonic 1-form on H®) invariant
under I'j (n);

(ii) Cuspidality: By property (i) and an explicit computation of the action of
PGL,(C) on H®), we have F(z,t) = F(z + w,t) for w € Ok (see [4]). It then
makes sense to require that f(C/OK(v*)(F - B) = 0 forall vy € PGL,(0Og), i.e.,
the constant term in the Fourier—Bessel expansion of F at the cusp v~ !oo (see
below) is zero.

This definition is simplified by the assumption that h(K) = 1, as that requires us
to consider only one copy of 5 and makes the action of PGL,(Ok) on the cusps
P!(K) transitive. The space of all plus-cusp forms of weight 2 and level 11 is denoted
S5 ().

As in the classical case, conditions (i) and (ii) mean that an element of SI(n)
can be identified with a harmonic differential without poles on the compact three-
dimensional manifold Xy,(n) = I‘O*(n)\f}fe)*. Here the extended upper half-space
H®* = H® U P'(K) depends on K. Note that X,(11) does not have the structure of
an algebraic variety (its complex dimension would be 1.5), which makes the modu-
larity theory almost entirely conjectural.

The invariance condition (i) applied to matrices v = ( 5 i) ,t € Ogandy =
( g (1)) ,n € O implies that the cusp form F has a “Fourier—Bessel” series expansion
at the cusp oo (see [7]):

4 t . oz
(2.1) Fen= Y CmtzK( 4rlaft ) 3 2ritega(25)
0A(a)C Ok VIDI peos

The sum is over proper ideals of Ok, and K(¢) = %(—Kl(t), —2iKy(t),K;(¢)). The
function K, (), = 0 or 1, is the (R-valued) hyperbolic Bessel function that satisfies
the differential equation

AK, 14K, B (1 1

it dr )Kr:o

o
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and decreases rapidly at infinity.

The theory of Hecke operators carries over verbatim from classical modular forms
to plusforms. For a prime () of Ok, the Hecke operator T ;) sends F to a form with
coefficients ¢’ (o) = Ng/o(m)c(ar) + c(a/m), the second term being understood to
be 0 if 7 1 . A new plusform of level 11 is an eigenvector for all the Hecke operators
T(=) with prime index (7) 1 1, which is not induced from a lower level.

In this setting we have the following version of the Shimura—Taniyama conjecture.

Conjecture 2.2 Each isogeny class of elliptic curves E x of conductor n, without com-
plex multiplication by K, determines a unique new plusform F € S (1) whose Fourier—
Bessel coefficient with prime index p is given by

¢y =Np+1—#E(F,) € 7.
Equivalently, we have an equality of L-functions L(E k, s) = L(F,s), where

1672

e dt
t272F,(0,1)—.
w|D| Jo t

L(Fs):= Y caNgpoa) ™ = 2m)* ? D' T(s)7
()COk

It should be noted that not all forms in S} (1) correspond to elliptic curves over K:
some are quadratic twists of lifts of forms over ) with real quadratic coefficients,
corresponding to abelian surfaces over () with quaternionic multiplication (see [3]).
A curve E g with CM by K should correspond to an Eisenstein series.

Cremona [2] produced extensive numerical evidence for Conjecture Tay-
lor [11] proved a weak converse to the conjecture: starting with a newform F with
Fourier—Bessel expansion (2.I)), he constructed a system of I-adic Galois representa-
tions of Gal(K /K) whose trace of Frobenius at p is equal to ¢, outside a set of density
zero. These [-adic representations can in turn sometimes be identified as coming
from an elliptic curve by checking the equality of a finite number of traces of Frobe-
nius, according to the method of Faltings—Serre.

We will start with a weight 2 newform fo = .~ a,q" on the upper half-plane
H® of level prime to D and without complex multiplication by K. The correspond-
ing strong Weil curve E/q can be viewed as a curve over K which should, under
Conjecture correspond to the base change Fx of f to K. The existence of the
base-changed modular form Fk is known independently of any Shimura—Taniyama-
type conjecture, either as a consequence of the general work of Jacquet [6], or by
the explicit computations of Asai [1] and Friedberg [5]. From the L-function rela-
tion satisfied by base change (see below), one easily deduces the Fourier—Bessel
coefficients of F: ¢; = a, if p = 77 is split, ¢, = af, — 2pif pisinertin K.

3 Modular Symbols

Fix a newform F € S} (n) with coefficients ¢(,) € Z. For any two cusps a, b € P!(K),
we define the modular symbol

1672 [P

F.B.

(3.1) {a— b} = Dl .

https://doi.org/10.4153/CMB-2010-047-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-047-0

574 M. Trifkovié

This symbol is real-valued, which is readily calculated from the Fourier—Bessel series
(2.1) in the special case b = oo:

1672 [ 4 t iTre o (200 dt
a—oche= i [00F k() 3 el en
0

w | 0#((})COF v ‘D‘ 7]€O;< t

By multiplicity one (see [7]), the values of {a — b}, on closed paths in X, (1) form
a rank one lattice in R, whose positive generator is the period €2 from the Introduc-
tion.

Let x: (Og/(u))*/Og — C* be a primitive Dirichlet character (i.e., a Hecke
character with trivial archimedean component) with conductor ideal (1) C Og
(here we again use h(K) = 1). We define the twisted L-function by L(F, x,s) =
Z(a) coy S X(a)(Ng /o) ~*. Modular symbols allow us to calculate its special val-
ues.

Proposition 3.1 There exists a tg(x) € Q(x) such that

L(Fa X 1) = TK(X)_ltK(X)QF7

271 Trg o

where T (}) = Zaeok/(u) x()e B is the Gauss surm.

Proof Foranya,b € P'(K), there exists an r € () such that {a — b}, = rQp. This
is the Manin—Drinfeld lemma for forms over K, proved as over () by using a suitable
Hecke operator to “close the path”. The normalization constant in (3.I)) was chosen
so that
_ ) K
LEX, D) =% Y, x(k) { — oo} :
RE O/ (1) a K

a version of Birch’s lemma proved analogously to the classical case. Combining these
two facts gives the proposition. For details, see [7, Lemma 6]. [ ]

To fix notation, we recall the analogous proposition over Q. Let f € S:(N) be
a classical newform on H®, and let Q,,Q_ denote the smallest positive real and
imaginary parts of its periods.

Proposition 3.2 Let x: (Z/mZ)* — C* be a primitive Dirichlet character. Set

Q = Q, if x is even, and ) = iQ_ if x is odd. There is a number tQ(X) € Qux) such
that L(fo, X, 1) = 70 (0) ™ 'to (X)), where 7q(%) = Zk”:()l (k)e's is the Gauss sum.

4 Comparison of Periods
Our main result is the following.

Theorem 4.1 Keeping the notations from the introduction, let fo € S,(N) be a new-
form on H® with (N, D) = 1, and Fx on H® its base change to K. Assume that
the strong Weil curve E corresponding to fqo does not have complex multiplication by K.
Then

1 Q
Eca.

N
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Proof Let x: (Z/mZ)* — C* be a primitive Dirichlet character with (m, ND) = 1,
and let x o N/q be its base change to K. By the coprimality assumptions, we can
factor the twisted special L-value of Fi as follows:

(4.1) L(Fk, x © Nx/a, 1) = L(fa, x, DL(fa, Xex, 1)

Expressing the left-hand (resp. right-hand) side in terms of Proposition B.1] (resp.
[3.2), we get two expressions for L(Fx, X © Ng/q, 1) in terms of modular symbols:

(4.2) Tr(X © NK/(OZ)_HK(X)QFK = 10(0) ' (Xex) o ()i,

for some rq (x), 7k (x) € Q(x). Both ©, and €)_ appear since, as K is imaginary,
the characters ¥ and yek have opposite parity. Since (m, D) = 1, the Gauss sums are
related by the identity

.To ()70 (Xex)

(4.3) Tk (X © Nk/q) = —i /DT

(see [9, p. 183]. We have that Q0 = 00, Q_, where § = 2 if E(R) is connected, and 1
otherwise. Substituting this and (4.3)) into (£.2)), we get

(4.4) I/ DI (X)QE, = —ra(X)S2E.
We now need a theorem of Rohrlich [10].

Theorem 4.2 Let g be a newform of level N on H). Let S be a finite set of primes not
dividing N. For all but finitely many primitive Dirichlet characters x whose conductors
are divisible only by primes in S, we have L(g, x, 1) # 0.

This allows us to find a x such that L(fg, x, 1) # 0 # L(fa, x€xk, 1), and hence
ri(x) # 0 # rg(x). We then divide by rq () in (£4) to conclude that

1 QE o _67‘]{()()

VD% el

Finally, we need to show that the ratio (4.5) in fact lies in Q). This is strongly suggested
by the fact that it is independent of x. Indeed, choose two characters x1, x, with non-
zero special values and relatively prime conductors, so that Q(x;) NQ(x,2) = Q. W

(4.5)

€ Q).

Naturally, we would like to understand the period ratio (£.5)). Incidental to the
computations in [12], we calculated it for pairs (E, K), where K is euclidean and Eq
is a strong Weil curve of prime conductor < 53 which remains inert in K. In all
cases, we found that Qg = (w\/|D|/2)Q,. This means that each of those strong
Weil curves over Q) remains a strong Weil curve over K in the sense of [4]. For level
11, the final remark of [4] observes that this is the case precisely for the K where 11
is inert. It would be interesting to explore whether this holds for a general curve of
prime conductor.
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The numbers 7 (x), rk (x) are computed in terms of modular symbols. Our proof
of Theorem ] uses only their rationality properties, treating their actual values as a
black box. In practice, one encodes a modular form in Sj (11) as a finite sequence of
integers by evaluating {a — b} /Qp, on a basis of H;(X,(1),Z). One gets a similar
sequence of integers for a classical modular form on H® by dividing the modular
symbol {a — b}& = Re(—2i fab f(z)dz) by * and evaluating on a homology basis
of the classical modular curve. The following natural question seems of considerable
intrinsic interest.

Question  Is it possible to give a recipe for computing the sequence of integers asso-
ciated with the base-changed form Fx on H{® directly from the one associated with
the original form f, on H®?
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