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A Generalized Poisson Transform of an
LP-Function over the Shilov Boundary of
the n-Dimensional Lie Ball

Fouzia El Wassouli

Abstract. Let D be the n-dimensional Lie ball and let B(S) be the space of hyperfunctions on the
Shilov boundary S of D. The aim of this paper is to give a necessary and sufficient condition on the
generalized Poisson transform P , f of an element f in the space B(S) for f to be in LP(S), 1 < p <
0o. Namely, if F is the Poisson transform of some f € B(S) (i.e, F = P;,f), then forany l € Z

and A € Csuch that Re[iA] > § — 1, we show that f € LP(S) if and only if f satisfies the growth

condition !
IF|[xp = sup (1 — rz)yem]*%”[ /|F(ru)|Pdu] P < too.
0<r<1 S

1 Introduction and Notations

Let X = G/K be a Hermitian symmetric space of non-compact type. Let (x;, K;) be
a holomorphic character of the complexification K, of K and E; = G X, C the asso-
ciated homogenous line bundle over X. Shimeno [7] proved that each eigenfunction
of all invariant differential operators on E; is the Poisson transform of an element f
in the space B(G/Pyyin; L1 1) of hyperfunction sections of the line bundle L; , over the
Furstenberg boundary G/P,,;, of X under certain condition on the parameter \.

Recently, Ben Said proved a Fatou-type theorem for line bundles [1], and he char-
acterized the range of the Poisson transform of L?-functions on the maximal bound-
ary of X as a Hardy-type space.

Since the space B(G/P=;s) (s € C) of hyperfunction valued sections of degenerate
principal series representations attached to the Shilov boundary S ~ G/Pz of X is a
G-submodule of B(G/Pyin; L1 »,) for some A; € C, it is natural to investigate under
what conditions on the generalized Poisson transform F of f will f be in L?(S).

To state the main result of this paper, let us introduce some notations. For [ € 7
and A € C, we define the generalized Poisson transform P; ) acting on hyperfunctions
f € B(S) by

ek ! 1 —2'zz + |'zz|? e
(PZ’Af)(Z):/S(f(uz)(uz)) (|f(uz)(uz)|2) fundu, - z€D.

The main result can be stated as follows.
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Theorem 1.1 Letl € Z,\ € C such that Re[i\] > 5 — 1. Then, we have the
following.
(i) LetF=Pf, f € LP(S),1 < p < oo. Then

1
[Flly = sup (1= 2% [ R ed) < o
0<r<1 S

(i) Let f € B(S).
For1 < p < oo, if F = Py f satisfies | Py f||xp < 00, then f isin LF(S).
Moreover, there exists a positive constant y(\) such that for every function
f € LP(S), we have

ICIII e < PASfllxp < m -

(iii) Let F = Pi\f, f € L*(S). Then its L*-boundary value f is given by the following
inversion formula:

flw) =CN)|~? lin;(l—rZ)Z"”““”*? / F(rv)Px(ru,v)dv, inL*(S),
r— S

where Ci(\) is given by (B (see Section 3).

The main tool to obtain our results is the asymptotic behavior of the generalized
spherical functions, which is a consequence of the following Fatou-type theorem.

Theorem 1.2 Letl € Z, A € Csuch that Re[i\] > 5 — 1. Then, we have

lim (1 —r)~C77Np f(ru) = () f(uw),

r—1-

(i)  uniformly for f in the space C(S) of all continuous functions on S,
(ii) uniformly in LP(S), if f € LP(S), 1 < p < oo.

We now describe the organization of this paper. In Section 2, we define a general-
ized Poisson transform. In Section 3, we establish a Fatou-type theorem. In Section
4, we give the precise action of the Poisson transform on L*(S) (Proposition &1). In
the last section, we prove Theorem [L.1]

Notice that the case I = 0 corresponds to our main theorem in [2], which is
governed by a Hua system.

This leads to the conjecture that a Hua system depending on / might exist that
could characterize the range of the Poisson transform P; .

2 Poisson Transform

In this section, we consider a Poisson transform for the line bundle E;.
Let
G=S80(n,2)={ge SLn+2,R), ‘glg =12},
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1278 F. El Wassouli
where I, , = ( _01” g) .

The group K = S(O(n) x O(2)) is a maximal compact subgroup of G.

Let g and f be the Lie algebras of G and K respectively. Let 6 denote the corre-
sponding Cartan involution of G and g. We have a Cartan decomposition g =& p,
where p is the —1-eigenspace of f in g.

Let g, be the complexification of g. For any subset nt of g., we denote by m, the
complex subspace of g, spanned by m.

Since the symmetric space G/K is Hermitian, there exist abelian subalgebras p.
and p_ of g, such that p, = p; @ p_. Let G, be the complexification of G with the
Lie algebra g.. We denote by K, (resp. P,, P_) the complex analytic subgroup of G,
corresponding to f. (resp. P, p—). Then G/K is realized as the G-orbit of the origin
U = K.P_ of the generalized flag manifold G,/U. Thus P,K.P_ is an open subset
of G, and any element w € P,K.P_ is uniquely expressed as w = p,kp_, with
p+ € Pk € K,p_ € P_. This is called the Harish—-Chandra decomposition.
One can prove that GU C P,U and that there exists a unique bounded domain D
in p, such that GU = (exp D)U. Then there are canonical isomorphisms G/K ~
GU/U =~ D givenby gK +— gU — ¢-0 =z. Forg € G,z € D, gz denotes
the unique element of D such that g(expz)U = (expg - z)U. One fixes a point
uU € G./U such that uU belongs to the boundary of GU /U and the G-orbit of
uU is compact. The G-orbit GuU /U is the Shilov boundary of the bounded domain
GU /U 2 G/K, and the isotropic subgroup of the point pU in G./U is a maximal
parabolic subgroup of G, which will be denoted by P=.

In our case p, ~ C",

D= {ze ch lzz< %(1 +['zz)*) < 1}7

and the action of G on D is given, forg = (4 ), by

. . —1
- 51" z2) . 3(1-"22)
g Z_<AZ+B(;(1+tZZ))> (( l’l)<CZ+D(;(1+’zz>>> )

Put
1 1 0 1
Uy = (0) eC" and po=-exp(uo)=10 I, 0]~,
0 0 1
where

I, 0

v = i1
o (5)
Then, clearly, we get uU = uoU = (exp uo)U, which implies that G N pUp~! =
GNuoUpg! = P=.
Put

S={uepisexpul € GuU/U} = {u=¢"%; 0<0<2m, xeS '},
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where
X1 n
S”_lz{x: D eR; Zx?:l}.
X, i=1

Then S is the Shilov boundary of D. let Pz = M=zA=zNZ be a Langlands decomposi-
tion of the maximal parabolic subgroup P= of G:

m,y 0 0
ME:{ 0 m 0 |;m e {11}, mZESO(n—l,l)},
0 0 nmy

cosht 0 sinht
AE:{ o I, 0 |ea; tE]R{}7
sinht 0 cosht
1+3E =" ' & 3(m—&Y)
+ -n I,y 0 n . n—1
= : o K JEER, neER
;@ =t 'p & 1+ 30 =&Y

Let az = RX, be the one dimensional Lie algebra of A=

Xo =

N OO
S O O
S oON

On az, we define the linear form by p,(X,) = 2, and, on Az, we use the coordinate
a, =e%o st eR.

For A € Cand! € Z, let ) denote the C*°-character of Pz given by & \(ma;n) =
mhe? GV g = Xo € Azyn € Nt and

my 0 0
m=10 m 0| €M=
0 0 nmy

PutK, = vK~y~!, P_ =~P_~y .. Then,U =KP_ =~"'K.P_~

[«

a 0 0
KC:{ 0 0 | €SL(n+2,0); o€ SO(n,QC), JE(C*)},

I, w 0
P:{ 0 1 0] ; WG(C”}.

2w —tww 1

[e]
[e]
7
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For A € Cand ! € Z, let x; denote the one-dimensional representation of U given by

xi: U=7"'"KP_y —C,

[0 On,l 0 _
yHo 6 0 | Poyr— (97,
0 o0 ¢!

and we denote the corresponding representation of K by the same notation. Thus,

for any
K — ki 0 e ky = sy sing ’
0 k —sing cosp
we have y;(k) = e~ %,
We denote by E the line bundle over G/K associated with x;. Then the space of
all C*°-sections of E; is identified with

CR(G/Ksx) ={f€C®(G); flgh)=x'(Kf(g); g€G keK}.

We denote by L, , the line bundle on G/P= associated with &; 5. Then the space of the
hyperfunction sections on L¢,, is identified with

B(G/P=;61.) = { f € B(G); f(gman) = &, (mayn) f(g)
- ez("’\*%)tfl;l(m)f(g) ;8 € G,me Mz,a; € Az,n € Ng}

For ¢ € B(G/P=;&;5), we define the Poisson integral lgugb by

(Bnd)(g) = / (R (ghydk.
K

Here dk denotes the invariant measure on K with total measure 1.
Forg € G,g =kman(k € K, m € Mz, a € Az, n € NI), we put

k(g) =k, k(g) = km, H=(g) =loga, n(g) = n.

We define w;(km) = x;(k)§\(m) (k€ K,m € Mz).
A straightforward computation shows that (see [6])

@1 (PLae)(g) = / (g k) D ) k)

K

Put

B(GuoU/Usa) = { ¥ € BGuoU) s dlww) = X (),

w e GuoU,u € U}
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and
C=(GU/Usxp) = { K e C®(GU) s hww) = X' (Wh(w), w e GU, ue U}.
Then, we obtain the following four isomorphisms

C*(GU/U;sx1) — C*(G/K;x1), C*(GU/U;x;) — C=(D)
h— f, f(g) =h(g), g€ G, h—— F, F(z) =h(expz), z€ D,

B(GuoU/U;s x1) — B(G/P=3&1),  B(GuoU/Us x1) — B(S)

Y— ¢, &g =v(gu.), g§€G, Yr— &, O(u)=1(expu), uecs.

Since GU = (exp D)U we have forany g € Gand k € K

g = (expg - 0)u(g) = (expz)u(g)
kpo = k(expu,) = (expk - uo)u(k) = (exp u)k.
This implies that

(Piad)(g) = h((exp2)u(g)) = xi(u(g)) " h(expz) = xi(u(g)) " (P11 ®)(2)
p(k) = p(kpo) = Y((exp k) = x; ' (k)p(expu) = x; (k)@ ().

Substituting these functions into (2.1]), we obtain

(L)) = [ Ptz )bl
S
where P; (2, u) is the generalized Poisson kernel of the Lie ball D with respect to its
Shilov boundary S given by

1

Pz, u) = xi(u(@)x;  (Kwi(R(g ™ k))e P Deel= ) 7 — 00y = k- u,.

A straightforward computation shows that (see [2,6])

& _j+in

Q26 Yo1—2zz |zt T
_ lez, MeC.
PiA(z,u) (t(u—z)(u—z)> <|t(u_z)(u_z)2> ) € Z, S

3 Proof of Theorem

We begin by showing that the integral giving the c-function C;()) is absolutely con-
vergent if Re[iA] > 5 — 1.
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Lemma 3.1 Let \ € Csuch that Re[i\] > 5 — 1. Then, the integral

Ci(\) = 220A=1) / wi(R(72))e~ M DPoHz( g

Nz

converges absolutely.
Here NZ = 0(N2), where § is the Cartan involution of SO(n, 2) given by

I, 0 I, 0
H(g)<0 —12)g<0 _12), g € S0(n,2).

43 =) ' =& (& —"m)
- —n I,., O —n
Nz = —£ 0 1 —£
tm=-¢&) ' & 1+3i(m-¢&)

To prove this lemma, we need the following lemma.

;EER, n e R

Lemma 3.2 (see [2,6]) Foranyg™'= (é g) € SO(n, 2), we have

3 t l
oo H=(2) _ ( 1—2'zz + |'zz|? ) i (g)) = ( | (o — 2)(u — 2)A| )

| (o — 2)(1t0 — 2)|° (o — 2)(tho — 2)A

and |A|72 =1 —2'zz + |'zz|?, wherez = g=' - 0and A = 3(—i,1)D( }).
Proof of Lemma[3.1] By using Lemmal[3.2] we get

?{c[iAH%

t 2 - 3
|wi(R(7))e~ AT 2P H=m | — ( | o = Dlto — ) )

1 —2tzz + |'zz]?

Reli)\]Jr%
t 2 I
| 1—2z + ZZ|
1 — 22z + |fzz]? ’
t 1
z="(z1,...,2z,) =7 -0.

Thus we assume that i\ is real and [ = 0.
Now, we consider the following function

fx,y) =16y +4(1+x—y)* —4y — (2 + %(x— )%, xR, yeR'.
Forx > y > 0, we get that
fle,y) =12y +6(x—y)+ 1f(x—y)z >0.

For 0 < x < y, to study the sign of f(x, y), we evaluate the sign of g—ﬁ(x7 ¥)

%(x,y):6+%(y—x)>07
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which implies that f(x, -) is increasing. Then f(x, y) > f(x,x) = 12x > 0.
Henceforth,

fqm, &) = 16§2+4(1+’nn762)2f4§2f(2+%(f7m*§2))2 >0,neREER.

Thus for any
L+35E =) ' =& 5(E ="
__1 -n In—l 0 —-n —
n = ¢ 0 1 ¢ € Nz,
stmm—=¢) = & 1+5(m—¢)
we have

’2 1687+ 41+ g — €2)?

= >1, z=a'-0.
4€ + 2+ 50— )2

| (116 — 2)(u5 — 2)

This assures that the following integral

I= / | wo(F())e™ 2P| gp

5 Reli]+2
t -——
B | (1o — 2)(us — 2)| i

- 1 — 22z + |'zz|? ’

‘ : 2 fRe[i/\H% 1
< (1=22z+|'2zz|)— 2z dn, z=na " -0.
No
Thus
fRs[i)\]‘r% fRe[i/\H%

dg:/ (172t22+|tzz|2) Y odzz=g"0.
D

Ig/ (172t22+\tzz|2)
SO(n,2)

It is known that (see [5, p. 12])

/ (1—2'2z+'2z]) 7 dz= ; ( : 2 )ye[i/\Hﬂ < oo0.
D 2”*1(7”+fRe[1)\])F(n+ 3 2)
This concludes the proof of Lemma[3.1] [ |

Proof of Theorem[1.2] (i) For ¢ € C(G/P=,¢; ), the map h — x;(h)¢(kash) is a
K U M¢-invariant function on K. Put g = k(g)m(g)e™=®n(g), then by [4, Chpt. I,
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Thm. 5.20], we have

Piag(kay) :/Xl(h)(b(kath)dh
K

/ Xl(/i(ﬁ))gb(katn(ﬁ))e*ﬂpo(Hz(ﬁ)dﬁ
Nz

=/ Xi(K(7)) &\ (m(72) e~ WA 2P =) (kg 1) d i
NT

= /A3 / wi(F(A))e™ N 20FEN g (ka,fa_,)di.
N,

Next, since a;7ia_; goes to the identity element e of G, as t — 00, we deduce that

(3.1) lim e3P g(kay) = 223 VC (M) (k).

t—0o0

To justify the reversal order of the limit and integration, we use the dominated con-
vergence theorem. For this, let

V(1) = wi(R(a))e” TP H=) gk g ).

Since |wi(K(71))| = 1 and £\ (m)| = 1 for all m € Mz, we have

()] = | BT ED g kayia )

— e*(§+iA)po(Hz(ﬂ))§L—A1 (m(atﬁa_t))ePgﬂ)‘)p(’(HE(“’ﬁ“"))(b(kﬁ(atﬁa_t))

—(+iN) po (Hz (7)+(— 2+iX)po (Hz(a,ia—,))

IN

e

sup |p(kr(a;a_,))|

< e—(’z’m)po(Hg(ﬁ>+(f§+mpo<Hs(a,ﬁa7,>)’ sup [¢(K)|.
kexk

In order to complete the proof, we apply the following lemma.

Lemma 3.3 Lett > 0and# € Nz . Then, we have
i) ePo (Hz(7)) > 1.

(ii) el (Hz(7)) > ePo(Hz(afia_))

(iii) ePo(Hz(aiia_;)) > 1.

The proof will be given at the end of this section.

For the case —1 < Re[iA] — 5 < 0, we use (iii) of the above lemma to see that

[0 (/)] < sup | (k)¢ (RelATF et
kek

which is an integrable function on NZ .
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In the case Re[iA] — 5 > 0, we use (ii) of the above lemma to see that

o~ (ReliAl+3)po Hz (M +(Re[iA] = 3)po (@iia—;) - p—(ReliA]+3)po Hz (M) +(ReliA] = 5)po ()
— e_npoHE(ﬁ).
Thus,

|1/}t(f_1)| S Sup |¢(k)|einpoHE(ﬁ).
kek

Hence, the result follows, since f N e~ =M gy < o,
For any ¢ € C(G/P=,¢;,) and ® € C(S), we have

o(h) = xa() ™' d(u), wu=h-u,, heKk,

(Pix¢) (kay) =/wz(E((ka;)_lh))e_("”g’“(HE((k“‘)flh)”ﬂb(h)dh,

K
(PLA®)(z) / Pi(z (@), z = ka, -0,
S

where
Pia(z, 1) = xi(u(ka)x; (R)wi(F((kay) ™ h))e =M )po t(ka) ™ h)

z=ka; -0, =h- u,.
For ® € C(S), consider the function ¢ € C(G/Pz, & 5) such that

d(h) = xi(k) "' ®(w), u=h-u,, h € K.

Then, _
Ppg)(ka,) = xi(u(ka,)) ' (PA®)(2)).
+r)?

Letr € [0, 1[ such that z = ka; - 0 = ru = rk - u,, which implies that ¢’ = (1 T
Then, by using formula (3.1]), we obtain

((1+r)2

r2

lim

r—1-

(Y .
) xi(u(ka,)) T (P®) (ru) = 2227 VC Ny (k)@ (u)

Thus, since Xz(k)xl_l(u(kat)) =(1—1r*)! (see[5]), we have

lim (1= )" a0y (uka)) (P®@)(rw) = Tim (1= )5 (P@)(ru)

r—1-
=Ci(N)P(u).

Before giving the proof of Theorem[I.2(ii), we recall a result about representations of
compact groups.

Let K be the set of equivalence classes of finite-dimensional irreducible represen-
tations of K. For § € K, let C(S)(6) be the linear span of all K-finite functions on S of
type 4. Then, by the Stone—Weierstrass theorem, the algebraic sum €p ser C(8)(9) is
dense in C(S) under the topology of uniform convergence. Since S is compact, C(S)
is dense in L?(S) for 1 < p < o0, thus P ;. C(S)(9) is dense in LF(S).

For the proof of Theorem[L.2)ii), we need the following lemma.
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Lemma 3.4 Let \ € Csuch that Re[i\] > 5 — 1. Then, there exists a positive
constant ;(X) such that for p €]1,00[ and f € LP(S), we have:

( / [P frlPdu) © < ()1 = ) N5 g
S
Proof For everyr € [0, 1], we introduce the function PjyonKas follows
Piy(k) = Pa(rue, k' us).

Then, the above integral can be written as a convolution over the compact group K,

Piyf(ru) = f P ,(k), u = ku,.
By the Young-Hausdorff inequality, we have

([ tewsemirau)” < 71,020

s

Next, using the fact that

125 = / (P (rito, )]
S

. ) 1 14 RefiN]
p—— o,
s \f(rue — u)(rue — u)|

we obtain from the Forelli-Rudin inequality (see [3]) that there exists a positive con-
stant y;(\) such that

1Pyl < %) (1 — )~ el =3+D,
This completes the proof of Lemma[3.4 [ |

Now, let us prove Theorem [[2(ii). Let f € LP(S). Then, for any € > 0, there
exists & € P;.p C(5)(9) such that || f — @[], < ¢, and one gets

ICN) T A=)~ ETVPL ()= £l < GV A=) "GP (f- D),
HICN) A =) TETTVPL O — B, + ([ — ],
where PZAf(u) = P, f(ru). By Lemma[3.4]
ICNTH A =) GV = @), < ISV H|@ =
and Theorem[L.2)i), we get
Jdim |G =) 75TV — @, = 0.
Therefore,
Jim )T = ) TETTVRL f— flp < elu(V) + 1),

which implies (ii) and the proof of Theorem [[.2lis finished. ]
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Proof of Lemma[3.3] For any

1287

L+ 3 =" ' =& (& =)
1 -n Infl 0 -n _
o= —¢ 0 1 - €Nz
(=€) = & 1+30m—&)
and
cosht 0 0 sinht
|l 0o L. o o0
“= o o 1 o |E4
sinht 0 O cosht
we have
L+ 3 =fmme™ tme™ —Le™t (& =)™
o —ne~* L 0 —ne”!
@ 8y = —Le! 0 1 —&et
SO —&)e™  —fpemt Lemt 1+ 5 — e
Thus
sl 0— 1 —i§ — 3('mm — &)
2+2i€ + 5 (' — €2) -1
and
a0 1 e = 3 =€,
2+2ifet + %(tm] —&2)e —ne
By using Lemma[3.2] we have
t 2 E
Uo — 2)(Uo — z 1—2z1+ zz
200 (H=() _ ( A )‘ _ ’ !
1—2tzz + |'zz|? 1—2tzz + |fzz|?
=1+2(m+E+ (- >1, 'z=(z1,...,2,)

and

t
Uo — zZ)(Uo — 2
eZpo(Hz(utﬁLx)) (1o ) (o )

1 — 2125 + |'22)2

Thus,

=142 +&)e™ + (g — €)% > 1.

eZﬂo(Hz(ﬁ)) o elpo(HE(arﬁaft)) _ 2(t7777+£2)(1 o e*Zt) + (tnn 7 52)2(1 o 6741‘) > 0. m
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4 The Precise Action of the Generalized Poisson Transform P; ,
on L(S)

In this section, we have to study the action of the generalized Poisson transform P;
on L*(S).
First, recall that the Peter—Weyl decomposition can be stated as

L*(S) = @ Vi,

meA

where A is the set of all two-tuple, m = (m;, m,) € 7Z* with m; > m,. The K-irre-
ducible component V,, is the finite linear span {¢,, o k,k € K}. Here the function
®m € V,, is the zonal spherical function.

Proposition 4.1 Let A € C,l € Zandlet f € V,,. Then, we have
(Prrf)(ru) = @3, (1) f(w),

where @ (1) = (Pra¢m)(ruio).

Proof We introduce the operator P;, : L*(S) — L*(S) :

(P f)(w) = / Pya(ru, ) ().
s
Since the operator P;, commutes with the K-action, and this action is multiplicity

free, it is Scalar on each component V,,. Hence there exists a constant @lA (7)) such
that

(4.1) P, =@\ . (r) - TonV,,

where [ is identity operator on V,,.

Taking the spherical function ¢,, in ([4.1), we get <I>f\ (1) = (P]\ém)(uo). Thus,
from Theorem we deduce the following asymptotié behavior of the generalized
spherical function @&‘m(r).

Corollary 4.2 Letl € Z, A € Csuch that Re[i\] > 5§ — 1. Then, forr € [0, 1[, we
have
lim (1—7)" GVl (1) = Cy(N)

r—1-

uniformly inm € A.
4.1 Proof of Theorem

(i) LetF = Pi\f, f € LP(S). By Lemma [3.4] we get the right-hand side of the
estimate in Theorem[LIl Thus, [Py f][»,, < oc.
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(ii) Let F = Pi\f, f € A’(S) such that ||[F|[\, < ccand f = > . fu beits
K-type decomposition, then using Proposition 4] we get

F(ru) = Y ®) (1) fu(u) in C>([0,1[xS).

meAn

Since ||F||x2 < o0, we get

(1_1,) (n—I—Re[iN]) {Zlq) (r)|2Hfm||2}i < 00

meAn

for every r € [0, 1[.
Let A, be a finite subset of A, then we have

1

(1= )~ REDL ST 0L 0P fulla} < IFlna < o0

meNo

for every r € [0, 1[.
Next, using the asymptotic behavior of ‘I’f\’m(r) given by Corollary[£2] we obtain

GO D N all3 S NIFIR < oe,

meNo

from which we deduce that the left-hand side of the estimate in Theorem [I.1 holds
for p = 2.

For the case p € [2, 00[, let F be a C-valued function on D such that ||F||, , < oco.
By using the fact that ||F|[y, < ||F||5p, there exist from Theorem [LI[iii) a func-
tion f € L*(S) such that F = P, f and f(u) = lim,__,;- g(u) in L*(S), where

g (1) = |G| (1 — 2 yeRelidi =3 / F(rv) P (ris, V.
S

Let @ be a continuous function in S. Then we have

tim [ g (B = / F () B du.
S S

r

But

/ g (W) (w)du = [Ci(A) (1 — ) PR / ( / F(rv)Poa(rus, v)dv ) D(u)du
N N S

= |Ci(N) 721 — ) RN =) / / PL®(rv)F(rv)dv.
S

Thus by using the Holder inequality, we obtain

‘ / p,,@(rv)F(rv)dv‘ < ( / |F(rv)\PdV % / |(pM<I>)(rv)|qdv) ,
S S
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where q is such that L + 1 = 1.
Since ||F||),, < 00, we obtain

| / g WB()du| < [CIN) (1 — )[R ( / (PLAD)(rv)[dv ) *[Fllp.
S S

Next, Theorem[T.2] shows that, for every g > 1,
O(u) =C(N)7 lim (1 — A)WEREN=D (P @) (ru) in LU(S).
r—1-
Hence,

1fl, = sup | / B0 du < GO Byl p-
[[®]<1 JS

Finally, we deduce that f € L?(S) and that |C;(\)|||f]|, < [|F|[xp-

For the case 1 < p < 2, Let x,, be an approximation of the identity in the space
C(K/K N Mz, x;) of continuous functions ® on K satisfying ®(km) = Xfl (m)®(k),
m € K N Mz. That is, fK Ixi1(k)|x,(k)dk = 1 and lim,,—, o fK\U x,(k)x1(k)dk = 0 for
every neighborhood U of the neutral element of K.

For each n, define the function F, on G/K by

Ey(gK) = / (K (k™ gK) k.
K

Then, lim, .. F, = F pointwise in G. Since F = P;,f, f € A’(S), there exist
fu € A'(S) such that F,, = Py, f;..
For each r € [0, 1], define a function F}, in S by F},(1#) = F(ru). Then,
Xi(ko)Fu(rks - ) = x1(ko)Fyy (ko - €) = (x1%n * XiF") (ko).

Therefore,
IXiFall2 < [Dxaxall2 | lln < a2l

which implies that ||F,||»» < oo. Thus f, € L*(S).
Let g such that % + é = 1 and let L, be the linear form defined in LI(S) by

L@ = [ a0k
K
Since p < 2, we have f, € L?(S) and

ILa®| < [Ixatfull p 12l < lIxatll | fullp | @lg-

By Theorem[L.2)ii), we known that

fulw) = lim_ ICOV| 7T = AP =3p fo(ru) in LP(S).
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Hence, there exists a sequence (r;) with r; — 17 as j — oo such that
folw) = lim [CON[TH(1 = r) 5 0P fo(rju)

almost everywhere in S.
By the classical Fatou lemma, we have

15l < 1COV] sup 1= =40 (1)
j S

which gives
1 fullp < ICONTH IPLA fullnp-

Hence,
ILa(®)] < [COO[HEallap @]l

Now, from [[xiFy[|p < [Ixieal[1[xaE" [l = [X:F" [l we deduce that [[F,[x,p < [|F[[x,
and [L,®| < [CON)[7Y[F]|x,p[|@]lg-

Therefore the linear functionals L, are uniformly bounded. By the Banach—
Alaoglu theorem, there exists a subsequence {L,; } that converges under the weak*
topology to a bounded linear functional L on L1(S), with [[L|| < [C(A)|[7||F||»,,- By
the Riesz representation theorem, there exists a unique function f € L?(S) such that

L(®) = / oK) FOD(R)dk.
K

Now, let ¢ (k) = xi(u(2)x; " (K)wi(R (g™ k))e (AmpoHele™h)
Then, F,(gK) = L,(x—2(k)¢g(k)). Since (F,;) converge pointwise to F and (L,,)
converge to L under the weak* topology, we have

FK) = lim F,(eK) = lim L, (x-a6g) = LOX-by).

Therefore, F(gK) = P;, f(gK).

(iii) Let F = Py f, f € L*(S). Expanding f into its K-type series, f = >, fin
and using Proposition A} we get the series expansion of F

F(ru) = Z <I>£\,m(f)fm(u)

meA

in C>([0,1[xS), with . |<I>f\7m(r)|2||fm\|§ < oo, forallr € [0, 1].

Now, for each r € [0, 1[, consider the following C-valued function g, on the Shilov
boundary S given by

g0 = (1= )2 [ E ) B G vy,
S
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Thus,
g (1) = (1 — r?) 72 1= Relir]) / Z @f\’m(r)fm(v)Plﬁ,\(ru,V)dv.
S men

Since, for every fixed r € [0, 1[, the series
on S, we get

men @&7m(r) fm(v) uniformly converges

g () = (1 — A=%D 5™ gl () / FunV)PoxCru, v)d,
S

meA

and by Proposition [T} we have

g(u) = (1 — ) 2GRN (1) £ (w),

meAn

noticing that

.\ ) 2
lE g = £113 = D (IGO0 =) a2 @l () —1] x| £,

meA

and, using the limit of the generalized spherical function @f\’m(r) (which uniformly
inm € A) given by Corollary[4.2] we see that

lim |C:(A) g — fl2 =0,
which gives the desired result. ]

Remark 4.3 Note that, to prove the Theorems[T.Iland Theorem [[2lin the case n
even one can proceed also by computing explicitly @f\’m(r) and its asymptotic behav-
ior [2].
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