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Abstract
The logarithmic derivative of the marginal distributions of randomly fluctuating interfaces in one dimension on
a large scale evolve according to the Kadomtsev–Petviashvili (KP) equation. This is derived algebraically from
a Fredholm determinant obtained in [MQR17] for the Kardar–Parisi–Zhang (KPZ) fixed point as the limit of
the transition probabilities of TASEP, a special solvable model in the KPZ universality class. The Tracy–Widom
distributions appear as special self-similar solutions of the KP and Korteweg–de Vries equations. In addition, it is
noted that several known exact solutions of the KPZ equation also solve the KP equation.
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1. Matrix Kadomtsev–Petviashvili equation for multidimensional distributions

The 1-dimensional Kardar–Parisi–Zhang (KPZ) universality class consists of random growth models,
last-passage percolation and directed polymers and random stirred fluids. All models in the class have
an analogue of the height function ℎ(𝑡, 𝑥) (free energy, integrated velocity), whose long-time large-scale
evolution is the principal object of study. The name of the class comes from the KPZ equation,

𝜕𝑡ℎ = 𝜆(𝜕𝑥ℎ)2 + 𝜈𝜕2
𝑥ℎ + 𝜎𝜉 (1.1)

(with 𝜉 a space-time white noise), a canonical continuum equation for random growth introduced in
[KPZ86]. However, the main interest is in the universal features which are found only at large space-time
scales, under the 1:2:3 scaling corresponding to 𝜀 → 0 in

𝜀1/2ℎ
(
𝜀−3/2𝑡, 𝜀−1𝑥

)
− 𝐶𝜀𝑡. (1.2)

The KPZ equation is not invariant under this scaling, which sends (𝜆, 𝜈, 𝜎) to
(
𝜆, 𝜀1/2𝜈, 𝜀1/4𝜎

)
. A key

problem is to find the true, scaling-invariant equation for random interface growth.
Since the early 2000s [Joh03; Sas05; Bor+07] it has been known, for a number of models in the class

and special scaling-invariant initial data narrow wedge and flat, that the distributional limits of formula
(1.2) are the Tracy–Widom distributions of random matrix theory. In an earlier article [MQR17] it was
shown that, at least for one model in the class, TASEP, (1.2) converges to a Markov process 𝔥(𝑡, 𝑥)
which is invariant under 1:2:3 scaling:

𝛼𝔥
(
𝛼−3𝑡, 𝛼−2𝑥;𝛼−1𝔥0

(
𝛼2𝑥

))
dist
= 𝔥(𝑡, 𝑥; 𝔥0), (1.3)

where 𝔥0 after the semicolon denotes the initial data. It is widely believed that this KPZ fixed point
governs the limiting fluctuation for all models in the class.

The KPZ fixed point does not satisfy a stochastic differential equation. In place of that, it inherits a
variational formulation from TASEP, a Hopf–Lax-type formula involving a nontrivial input noise called
the Airy sheet A(𝑥, 𝑦): for the KPZ fixed point starting from 𝔥(0, 𝑥) = 𝔥0 (𝑥),

𝔥(𝑡, 𝑥) dist
= sup

𝑦∈R

{
𝑡1/3A

(
𝑡−2/3𝑥, 𝑡−2/3𝑦

)
− 1

𝑡 (𝑥 − 𝑦)2 + 𝔥0 (𝑦)
}
. (1.4)

The Airy sheet A(𝑥, 𝑦) can be thought of as the height function at x at time 1, starting from a narrow
wedge at y at time 0, and therefore involves coupling different initial conditions. As far as we know
at the present time, the problem of the coupled initial conditions is not integrable, and therefore the
distribution of the Airy sheet is unknown. This led to a problem, that it was unclear that equation (1.4)
even involved a unique object on the right-hand side. An important advance is in [DOV19], where it is
shown that the Airy sheet is a functional of the Airy line ensemble. This puts the variational formula
(1.4) on solid footing, as it obviates the need for uniqueness of the Airy sheet. However, the functional
is nonexplicit. In this sense, equation (1.4) is not satisfying as a universal scaling-invariant equation.

Instead of a universal stochastic equation, one can study the n-space point distribution functions

𝐹 (𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛) = P𝔥0 (𝔥(𝑡, 𝑥1) ≤ 𝑟1, . . . , 𝔥(𝑡, 𝑥𝑛) ≤ 𝑟𝑛) , (1.5)

https://doi.org/10.1017/fmp.2021.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.9


Forum of Mathematics, Pi 3

where the subscript inP𝔥0 denotes the initial data of the KPZ fixed point. In the cases of narrow wedge and
flat initial data, it is known [Joh00; Sas05; Bor+07] that the 1-dimensional distributions 𝐹 (1, 𝑥, 𝑟) are,
respectively, the Tracy–Widom Gaussian unitary ensemble (GUE) and Gaussian orthogonal ensemble
(GOE) random matrix distributions (but except in the particular case of narrow wedge initial data, the
connection between random growth and random matrices has remained tangential and murky). The
multidimensional distributions in these cases are given by Fredholm determinants and define the Airy2
and Airy1 processes. The 1-dimensional distributions can be written in terms of the Hastings–McLeod
solution of Painlevé II; a longstanding open question is whether the distributions satisfy an equation in
the more general setting.

1.1. Main results

In [MQR17], it is shown that for initial data 𝔥0 in UC, a space of upper semicontinuous functions with
a linear growth condition (see equation (1.24)), the n-space point distribution functions from equation
(1.5) are given by Fredholm determinants

𝐹 (𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛) = det(I − K), (1.6)

where K = K(𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛, 𝔥0) is an operator on the n-fold direct sum of 𝐿2 (R+), which is
given by an explicit 𝑛 × 𝑛 matrix kernel K𝑖 𝑗 (𝑢1, 𝑢2) = K𝑖 𝑗 (𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛, 𝔥0, 𝑢1, 𝑢2), 𝑖, 𝑗 =
1, . . . , 𝑛. The determinant is nonzero, so we can define R = (I−K)−1. Furthermore, KR = RK = I−R,
and we can let

𝑄 = RK(0, 0),

which is an 𝑛 × 𝑛 matrix-valued function of 𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛 and the initial height profile 𝔥0.
Let

D𝑟 = 𝜕𝑟1 + · · · + 𝜕𝑟𝑛 , D𝑥 = 𝜕𝑥1 + · · · + 𝜕𝑥𝑛 .

In Section 4.1 we will show that

D𝑟 log 𝐹 = tr𝑄. (1.7)

Our main result is the following:

Theorem 1.1. For any 𝔥0 ∈ UC, Q and its derivative 𝑞 = D𝑟𝑄 solve the matrix Kadomtsev–Petviashvili
(KP) equation

𝜕𝑡𝑞 + 1
2D𝑟𝑞

2 + 1
12D

3
𝑟𝑞 + 1

4D
2
𝑥𝑄 + 1

2 [𝑞,D𝑥𝑄] = 0, (1.8)

where [𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴. In particular, for the one-point marginals of the KPZ fixed point (i.e., equation
(1.5) in the case 𝑛 = 1), 𝜙 = 𝜕2

𝑟 log 𝐹 satisfies the scalar KP-II equation

𝜕𝑡𝜙 + 1
2𝜕𝑟𝜙

2 + 1
12𝜕

3
𝑟 𝜙 + 1

4𝜕
−1
𝑟 𝜕2

𝑥𝜙 = 0. (1.9)

The KP equation (1.9) was originally derived from studies of long waves in shallow water [AS79].
It has come to be accepted as the natural 2-dimensional extension of the Korteweg–de Vries (KdV)
equation; when 𝜙 is independent of x, corresponding in our case to flat initial data, it reduces to the
KdV equation,

𝜕𝑡𝜙 + 1
2𝜕𝑟𝜙

2 + 1
12𝜕

3
𝑟 𝜙 = 0. (1.10)
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The KP equation is completely integrable and plays an important role in the Sato theory as the first
equation in the KP hierarchy [MJD00]. The matrix KP equation (1.8) exists in the literature (see, e.g.,
[Kon82; Sak03]). None of the previous physical derivations of the KP equation seem to be related
to the problem at hand, and it could well be that our evolution is through a class of functions where
the equation is formally the same, because of similarities in the weakly nonlinear asymptotics, but the
physics is completely different. Note that the equations are usually written with with coefficients 3, 1
and 3 replacing our 1

2 , 1
12 and 1

4 , which is achieved by 𝑡 ↦→ 12𝑡 and 𝜙 ↦→ 1
2𝜙.

Remark 1.2.

1. The fact that random interface growth is governed by the KP equation was not anticipated.1 We do not
have a physical intuition why it is true; it follows by, essentially, algebra from the form of the kernel
in the Fredholm determinant for equation (1.5), and we believe it is the first example of a physical law
having been obtained in such a fashion. In retrospect, in the scalar case it was known that the evolution
equations for the kernel (Theorem 1.3(1)–(3)) lead to equation (1.9), a fact that seems to have been
rediscovered many times, particularly by Pöppe [Po89] (see also [ZS74; Po84; PS88; McK11]), before
we rediscovered it. The fact that the kernel evolves by Theorem 1.3(1)–(3), and the importance of
this fact, was not recognised earlier and is one of the key contributions of this article.

2. There are not so many natural partial differential equations with the necessary (in view of equation
(1.3)) invariance under

𝜙(𝑡, 𝑥, 𝑟) ↦→ 𝛼−2𝜙
(
𝛼−3𝑡, 𝛼−2𝑥, 𝛼−1𝑟

)
, 𝔥0(𝑥) ↦→ 𝛼−1𝔥0

(
𝛼2𝑥

)
.

So in retrospect, once one knows that the finite-dimensional marginals come from a closed equation
and that special examples are connected to Painlevé transcendents, one might expect to look for
integrable equations such as the KP equation. The question is why the finite-dimensional marginals
should come from a closed equation at all.

3. The Lax pair formulation of equation (1.9) (and also equation (1.8), with the matrix q replacing 𝜙) is

𝜕𝑡𝐿 = [𝐿, 𝐴], 𝐿 = 𝜕𝑥 + 𝜕2
𝑟 + 2𝜙. (1.11)

Here 𝐴 = 1
3𝜕

3
𝑟 + 2

3𝜙𝜕𝑟 +
1
2𝜕𝑟𝜙−

1
2𝜕

−1
𝑟 𝜕𝑥𝜙, which tells us that the ‘spectrum’ of L is conserved. A very

interesting question (a version of which A. Borodin asked us) is to make this precise and understand
its physical meaning.

4. The 1-dimensional distribution functions themselves therefore satisfy the equivalent Hirota bilinear
equation,

𝐹𝜕2
𝑡𝑟𝐹 − 𝜕𝑡𝐹𝜕𝑟𝐹 + 1

12𝐹𝜕
4
𝑟 𝐹 − 1

3𝜕𝑟𝐹𝜕
3
𝑟 𝐹 + 1

4

(
𝜕2
𝑟 𝐹

)2
+ 1

4𝐹𝜕
2
𝑥𝐹 − 1

4 (𝜕𝑥𝐹)
2 = 0,

which again has the necessary 1:2:3 invariance, now under

𝐹 (𝑡, 𝑥, 𝑟) ↦→ 𝐹
(
𝛼−3𝑡, 𝛼−2𝑥, 𝛼−1𝑟

)
, 𝔥0 (𝑥) ↦→ 𝛼−1𝔥0

(
𝛼2𝑥

)
.

5. Unlike other limit points for fluctuation universality classes in probability, the Tracy–Widom dis-
tributions themselves lack any invariance. Theorem 1.1 recovers the invariance of the scaling limit
under the 1:2:3 scaling, and the Tracy–Widom distributions then appear in the context of the KPZ
universality class as special self-similar solutions of the KP equation (see Section 2.1).

Theorem 1.1 follows from the form of the kernel in the determinantal formula (1.6) and the following
result. In the scalar case this appeared earlier in [Po89].

1However, see [Pro20], which appeared on arXiv two days before this article was first posted, where it is shown that particular
finite-volume solutions [BL19] can be written as superpositions of solitons. [BLS20] treats other finite-volume initial conditions.
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Theorem 1.3. Let K = K(𝑡, 𝑥, 𝑟) be an operator on the n-fold direct sum of 𝐿2 (R≥0) which is trace
class uniformly in compact sets of 𝑡 > 0, 𝑥, 𝑟 ∈ R, with matrix kernel K(𝑢, 𝑣) = K(𝑡, 𝑥, 𝑟, 𝑢, 𝑣)) which
satisfies the following:

(1) 𝜕𝑟K(𝑢, 𝑣) = (𝜕𝑢 + 𝜕𝑣 )K(𝑢, 𝑣),
(2) 𝜕𝑡K(𝑢, 𝑣) = − 1

3
(
𝜕3
𝑢 + 𝜕3

𝑣

)
K(𝑢, 𝑣),

(3) 𝜕𝑥K(𝑢, 𝑣) =
(
𝜕2
𝑣 − 𝜕2

𝑢

)
K(𝑢, 𝑣).

Suppose in addition that det(I − K) > 0 for all finite 𝑡, 𝑥, 𝑟; that K is real analytic in t and in each
𝑥𝑖 and 𝑟𝑖; and that the trace norm ‖K‖1 < 1 for r in some open real interval. Then the 𝑛 × 𝑛 matrix
𝑄 = (I − K)−1K(0, 0) and its derivative 𝑞 = 𝜕𝑟𝑄 satisfy the matrix KP equation

𝜕𝑡𝑞 + 1
2 𝜕𝑟𝑞

2 + 1
12𝜕

3
𝑟 𝑞 + 1

4𝜕
2
𝑥𝑄 + 1

2 [𝑞, 𝜕𝑥𝑄] = 0. (1.12)

The kernel in equation (1.6) is given explicitly (see [MQR17, Eqn. (4.2)]) as

K𝑖 𝑗 (𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛, 𝔥0, 𝑢, 𝑣) = −𝑒(𝑥 𝑗−𝑥𝑖)𝜕2 (
𝑢 + 𝑟𝑖 , 𝑣 + 𝑟 𝑗

)
1𝑥𝑖<𝑥 𝑗

+
∫

𝑠∈R+
𝑧,𝑏∈R

𝑝−(𝑧, 𝑑𝑠, 𝑑𝑏)S𝑡 ,−𝑥𝑖−𝑠 (𝑏, 𝑢 + 𝑟𝑖)S𝑡 ,𝑥 𝑗

(
𝑧, 𝑣 + 𝑟 𝑗

)
+

∫
𝑠∈R+
𝑧,𝑏∈R

𝑝+(𝑧, 𝑑𝑠, 𝑑𝑏)S𝑡 ,−𝑥𝑖 (𝑧, 𝑢 + 𝑟𝑖)S𝑡 ,𝑥 𝑗−𝑠
(
𝑏, 𝑣 + 𝑟 𝑗

)
−

∫
𝑠− ,𝑠+∈R+
𝑧,𝑏− ,𝑏+∈R

𝑝−(𝑧, 𝑑𝑠−, 𝑑𝑏−)𝑝+(𝑧, 𝑑𝑠+, 𝑑𝑏+)S𝑡 ,−𝑥𝑖−𝑠− (𝑏−, 𝑢 + 𝑟𝑖)S𝑡 ,𝑥 𝑗−𝑠+
(
𝑏+, 𝑣 + 𝑟 𝑗

)
, (1.13)

where 𝑝±(𝑧, 𝑑𝑠, 𝑑𝑏) = 𝑝𝑧

(
𝜏𝔥±0 ∈ 𝑑𝑠, 𝐵

(
𝜏𝔥±0

)
∈ 𝑑𝑏

)
are hitting measures of the hypographs of 𝔥−0 (𝑥) :=

𝔥0 (−𝑥) and 𝔥+0 (𝑥) := 𝔥0 (𝑥), 𝑥 ≥ 0, by a Brownian motion B with diffusion coefficient 2, and where
S𝑡 ,𝑥 (𝑧1, 𝑧2) = S𝑡 ,𝑥 (𝑧1 − 𝑧2) with

S𝑡 ,𝑥 (𝑧) = 𝑡−1/3𝑒
2𝑥3
3𝑡2 − 𝑧𝑥

𝑡 Ai
(
−𝑡−1/3𝑧 + 𝑡−4/3𝑥2

)
. (1.14)

This is real analytic, and one checks directly (using Ai′′(𝑧) = 𝑧Ai(𝑧)) that

𝜕𝑡S𝑡 ,𝑥 (𝑧) = 1
3𝜕

3
𝑧S𝑡 ,𝑥 (𝑧), 𝜕𝑥S𝑡 ,𝑥 (𝑧) = 𝜕2

𝑧S𝑡 ,𝑥 (𝑧). (1.15)

Now fix (𝑥1, . . . 𝑐, 𝑥𝑛), (𝑟1, . . . 𝑐, 𝑟𝑛) ∈ R𝑛, introduce auxiliary variables 𝑥, 𝑟 ∈ R and let

K̂(𝑡, 𝑥, 𝑟) = K(𝑡, 𝑥1 + 𝑥, . . . 𝑐, 𝑥𝑛 + 𝑥, 𝑟1 + 𝑟, . . . 𝑐, 𝑟𝑛 + 𝑟, 𝔥0, ·, ·). (1.16)

The differential relations in equation (1.15) together with the fact that r enters the kernel just as a shift
give Theorem 1.3(1)–(3) for K̂. On the other hand, it is shown in [MQR17, Appx. A.1] that ‖K̂‖1 −→ 0
as 𝑟 → ∞ and that the integrals converge absolutely and uniformly in compact balls around 𝑡 > 0,
𝑥 ∈ R𝑛 and 𝑟 ∈ R𝑛, and thus K̂ is real analytic in those variables as well. Thus we have the following:

Theorem 1.4. The kernel K̂ in equation (1.16) satisfies the conditions of Theorem 1.3.

Translating the partial derivatives in r and x in equation (1.12) back to the 𝑟𝑖s and 𝑥𝑖s gives equation
(1.8) for the kernel K.

There is an informal way [MQR17] to write the kernel of the KPZ fixed point which makes Theorem
1.3(2) and (3) completely apparent (equation (1) comes simply again from the way the 𝑟𝑖s come in the
formula). For 𝔥 ∈ UC and ℓ1 < ℓ2, let

PNo hit 𝔥
ℓ1 ,ℓ2

(𝑢1, 𝑢2)d𝑢2 = PB(ℓ1)=𝑢1 (B(𝑦) > 𝔥(𝑦) on [ℓ1, ℓ2], B(ℓ2) ∈ d𝑢2) ,

PHit 𝔥
ℓ1 ,ℓ2

= 𝑒 (ℓ2−ℓ1)𝜕2 − PNo hit 𝔥
ℓ1 ,ℓ2

,
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where B is again a Brownian motion with diffusion coefficient 2 and 𝜕 denotes the derivative operator.
The Brownian scattering transform of 𝔥 is the formal object

Khypo(𝔥) = lim
ℓ1→−∞
ℓ2→∞

𝑒ℓ1𝜕
2 PHit 𝔥

ℓ1 ,ℓ2
𝑒−ℓ2𝜕

2
= I − lim

ℓ1→−∞
ℓ2→∞

𝑒ℓ1𝜕
2 PNo hit 𝔥

ℓ1 ,ℓ2
𝑒−ℓ2𝜕

2
, (1.17)

where PHit/No hit 𝔥
ℓ1 ,ℓ2

are thought of as operators with the given integral kernels. This doesn’t make sense,
since the backward heat operator is asked to act on nonanalytic functions. However, in the formula for
the KPZ fixed point, Khypo(𝔥) is never actually used by itself, but only after conjugation by the Airy
unitary group

U𝑡 = 𝑒−
1
3 𝑡𝜕

3
, (1.18)

with 𝑡 ≠ 0; and as we explain next, in our setting the conjugated kernel is in fact well defined.
For 𝑎 ∈ R, define

𝜒𝑎 (𝑥) = 1𝑥>𝑎 and 𝜒̄𝑎 (𝑥) = 1𝑥≤𝑎, (1.19)

which we also regard as multiplication operators acting on 𝐿2 (R). For 𝑡 > 0 the Airy semigroup acts
by convolution with Airy functions – that is, U𝑡 has integral kernel U𝑡 (𝑥, 𝑦) = 𝑡−1/3 Ai

(
𝑡−1/3(𝑥 − 𝑦)

)
;

its inverse U−1
𝑡 = U−𝑡 equals U∗

𝑡 . The Airy functions are not themselves in 𝐿2 (R); however, for 𝑡 > 0
and 𝑟 > −∞, U−1

𝑡 𝜒𝑟 maps 𝐿2 (R) into the domain of 𝑒𝑥𝜕2 for any 𝑥 ∈ R. So for 𝑡 > 0 and 𝑟 > −∞, we
define on 𝐿2 ([𝑟,∞))

Khypo(𝔥)
𝑡 = lim

ℓ1→−∞
ℓ2→∞

U𝑡𝑒
ℓ1𝜕

2 PHit 𝔥
ℓ1 ,ℓ2

𝑒−ℓ2𝜕
2 U−1

𝑡 . (1.20)

For any 𝑡 > 0 and 𝑟 > −∞, the limit on the right-hand side of equation (1.20) exists in trace class on
𝐿2 ([𝑟,∞)) [QR19; MQR17] and defines the left-hand side as a trace class operator in this space. The
limit is given by the right-hand side of equation (1.13) with 𝑥𝑖 = 𝑥 𝑗 = 𝑥 and 𝑟𝑖 = 𝑟 𝑗 = 0; the convergence
was proved first in [QR19]. It satisfies the semigroup property

U𝑠Khypo(𝔥)
𝑡 U−1

𝑠 = Khypo(𝔥)
t+s ,

so we can write (at least informally)

Khypo(𝔥)
𝑡 = U𝑡Khypo(𝔥)U−1

𝑡 . (1.21)

Note that we avoid the problem of domains by defining the left-hand side of equation (1.20) not as
a product of three operators but just as one operator with the semigroup property. In this sense the
Brownian scattering operator is the germ of the semigroup. Alternatively, one can think of the Brownian
scattering operator as the entire semigroup

(
Khypo(𝔥)

𝑡

)
𝑡>0

from equation (1.21). The fact that equation
(1.17) is formal is important, though. We will see in formula (5) that the limit of equation (1.21) as
𝑡 ↘ 0 is not Khypo(𝔥) .

From Khypo(𝔥) we build an extended Brownian scattering operator acting on 𝐿2 ({𝑥1, . . . , 𝑥𝑚} ×R),

Khypo(𝔥)
ext

(
𝑥𝑖 , ·; 𝑥 𝑗 , ·

)
= −𝑒(𝑥 𝑗−𝑥𝑖)𝜕2 1𝑥𝑖<𝑥 𝑗 + 𝑒−𝑥𝑖𝜕

2 Khypo(𝔥)𝑒𝑥 𝑗𝜕
2
, (1.22)
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with the analogous caveat that in order to make sense of it, each of the
(
𝑥𝑖 , 𝑥 𝑗

)
entries should be

conjugated by U𝑡 and surrounded by 𝜒𝑟𝑖 on the left and 𝜒𝑟 𝑗 on the right. Then the kernel of the KPZ fixed
point appearing on the right-hand side of equation (1.6) and given in equation (1.13) can be written as

K𝑖 𝑗 (𝑢1, 𝑢2) = Khypo(𝔥)
𝑡 ,ext

(
𝑥𝑖 , 𝑢1 + 𝑟𝑖; 𝑥 𝑗 , 𝑢2 + 𝑟 𝑗

)
with Khypo(𝔥0)

𝑡 ,ext = U𝑡Khypo(𝔥0)
ext U−1

𝑡 , (1.23)

where the Airy operators act on the left and right of each entry of Khypo(𝔥0)
ext . From this expression

one sees that 𝜕𝑡K𝑖 𝑗 = − 1
3
(
𝜕3K𝑖 𝑗 − K𝑖 𝑗𝜕

3) and 𝜕𝑥ℓ K𝑖 𝑗 = − 1
2

(
𝜕2K𝑖 𝑗1𝑖=ℓ − K2

𝑖 𝑗𝜕
21 𝑗=ℓ

)
, which, after

integration by parts and summing over the 𝑥ℓs as before, become Theorem 1.3(2) and (3).

Remark 1.5. For compactly supported initial data, which in our context means that 𝔥(𝑦) = −∞
for y outside some compact interval, the definition of the Brownian scattering operator in equation
(1.20) becomes explicit, without any limits. In fact, consider 𝔥 with support on some interval [−𝑎, 𝑎]
and let ℓ1 < −𝑎 and ℓ2 > 𝑎. Clearly PHit 𝔥

ℓ1 ,ℓ2
= 𝑒−(𝑎+ℓ1)𝜕2 PHit 𝔥

−𝑎,𝑎𝑒
(ℓ2−𝑎)𝜕2 , so U𝑡𝑒

ℓ1𝜕
2 PHit 𝔥

ℓ1 ,ℓ2
𝑒−ℓ2𝜕

2 U−1
𝑡 =

U𝑡𝑒
−𝑎𝜕2 PHit 𝔥

−𝑎,𝑎𝑒
−𝑎𝜕2 U−1

𝑡 . Since U𝑡𝑒
𝑥𝜕2

= S𝑡 ,𝑥 and U−1
𝑡 𝑒𝑥𝜕

2
= S−𝑡 ,𝑥 (see equation (1.15)), this shows that

Khypo(𝔥)
𝑡 = S𝑡 ,−𝑎PHit 𝔥

−𝑎,𝑎S−𝑡 ,−𝑎 .

The right-hand side coincides with the right-hand side of equation (1.13) with 𝑖 = 𝑗 and 𝑥𝑖 = 𝑟𝑖 = 0 (see
[MQR17, Sec. 4.1]).

1.2. Initial data

The natural class of initial data for our problem (the ‘1-dimensional substrate’) corresponds to functions
in the space2

UC =
{
𝔥 : R −→ [−∞,∞) : 𝔥 is upper semicontinuous,

𝔥(𝑥) ≤ 𝐴 + 𝐵 |𝑥 | for some 𝐴, 𝐵 > 0 and 𝔥 � −∞
}
. (1.24)

A function is upper semicontinuous if and only if its hypograph hypo(𝔥) = {(x, 𝑦) : 𝑦 ≤ 𝔥(x)} is
closed in [−∞,∞) × R. We endow [−∞,∞) with the distance 𝑑 [−∞,∞) (𝑦1, 𝑦2) = |𝑒𝑦1 − 𝑒𝑦2 |, and use
the topology of local Hausdorff convergence, which means Hausdorff convergence of the restrictions to
−𝐿 ≤ 𝑥 ≤ 𝐿 of hypo(𝔥𝑛) to hypo(𝔥) for each 𝐿 > 0.

Example 1.6 (Finite collection of narrow wedges). Set 𝑎1 < 𝑎2 < · · · < 𝑎𝑘 , 𝑏1, 𝑏2, . . . , 𝑏𝑘 ∈ R. Then
𝔥 = 𝔡 �𝑏

�𝑎 is in UC, with 𝔡 �𝑏
�𝑎 defined by

𝔡
�𝑏
�𝑎 (𝑥) = 𝑏𝑖 if 𝑥 = 𝑎𝑖 for some 𝑖, 𝔡

�𝑏
�𝑎 (𝑥) = −∞ otherwise.

The initial data for the one-point case (equation (1.9)) is the escarpment

𝜙(0, 𝑥, 𝑟) = 0 for 𝑟 ≥ 𝔥0 (𝑥), 𝜙(0, 𝑥, 𝑟) = −∞ for 𝑟 < 𝔥0 (𝑥). (1.25)

These are unusual and do not fit into any well-posedness schemes known for the KP equation.3 Although
the infinity looks formal, we believe the solutions to the equations with such initial data are well posed,
but we leave the proofs for future work. They also appear not to develop solitons. Since F is given by a
Fredholm determinant, these initial conditions represent an entirely new class of integrable initial data
for the KP equation.

2With some work, the growth condition on the initial data can be relaxed to 𝔥(𝑥) ≤ 𝐴𝑥2 +𝐵 for the problem up to a finite time
𝑡 = 𝑡 (𝐴) .

3In [KPV97], an odd polynomial with positive leading coefficient is considered as initial data for the KdV equation, which is
somewhat in the same spirit.
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The initial data for the matrix KP equation (1.8) are formally

𝑄𝑖, 𝑗 (0, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−P≥𝔥0 ,≤−𝔡−�𝑟�𝑥

𝑥𝑖 ,𝑥 𝑗

(
𝑟𝑖 , 𝑟 𝑗

)
if 𝑖 < 𝑗 ,

∞ if 𝑖 = 𝑗 and 𝑟𝑖 < 𝔥0 (𝑥𝑖),
0 otherwise,

(1.26)

where

P≥𝔥0 ,≤−𝔡−�𝑟�𝑥
𝑥𝑖 ,𝑥 𝑗

(
𝑟𝑖 , 𝑟 𝑗

)
𝑑𝑟 𝑗 = PB(𝑥𝑖 )=𝑟𝑖

(
B(𝑦) ≥ 𝔥0 (𝑦) ∀ 𝑦 ∈

[
𝑥𝑖 , 𝑥 𝑗

]
,

B(𝑥𝑛) ≤ 𝑟𝑛 for each 𝑥𝑛 ∈
(
𝑥𝑖 , 𝑥 𝑗

)
,B

(
𝑥 𝑗

)
∈ 𝑑𝑟 𝑗

)
. (1.27)

The probability is with respect to a Brownian motion B with diffusivity 2 starting at 𝑟𝑖 at time 𝑥𝑖 . This
is derived in Appendix A for finite collections of narrow wedges. Unlike the scalar case, one can see
immediately that the initial data as written are insufficient, because in the matrix product the 0 and
∞ interact. Wrongly interpreted, it appears to produce anomalous solutions, so the initial data written
would have to be augmented by at least some description of the rate of convergence to 0 and ∞ in the
𝑡 ↓ 0 limit. We leave this also for future work.

Remark 1.7. When 𝑡 = 0, the escarpment initial data equation (1.25) just mean (sending x to −𝑥) that
L from equation (1.11) is the heat operator with Dirichlet boundary data on the hypograph of 𝔥0. This
corresponds to the Brownian scattering transform which computes transition probabilities of Brownian
motions killed when passing through that hypograph.

Outline

In Section 2 we show how the famous Painlevé expressions for the Tracy–Widom distributions just
arise as special examples of the KP equation, and write equations for a few other special initial data,
in particular the Airy processes. In Section 3 we show that some of the explicit formulas for the
1-dimensional distributions of the KPZ equation (as opposed to the KPZ fixed point) also satisfy the
KP equation. Section 4 contains the proof of Theorem 1.3.

2. Examples

2.1. Tracy–Widom distributions

A key observation is that the GUE and GOE Tracy–Widom distributions are now seen to arise simply
as special similarity solutions of the KP equation (1.9):

Example 2.1 (Tracy–Widom GUE distribution). Consider 𝔥0 = 𝔡0, the narrow wedge initial condition
defined as 𝔡0 (0) = 0 and 𝔡0 (𝑥) = −∞, 𝑥 ≠ 0. With this choice of initial data one has 𝔥(𝑡, 𝑥) + 𝑥2/𝑡 dist

=
𝑡1/3A

(
𝑡−2/3𝑥

)
, where A is the Airy 2 process (see Section 2.3), which is stationary (in x). From this and

the 1:2:3 scaling invariance of equation (1.9), it is natural to look for a self-similar solution of the form

𝜙nw(𝑡, 𝑥, 𝑟) = 𝑡−2/3𝜓nw
(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
.

This turns equation (1.9) into

(𝜓nw)′′′ + 12𝜓nw (𝜓nw)′ − 4𝑟 (𝜓nw)′ − 2𝜓nw = 0. (2.1)

The transformation 𝜓nw = −𝔮2 takes equation (2.1) into Painlevé II:

𝔮′′ = 𝑟𝔮 + 2𝔮3. (2.2)
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As 𝑟 → −∞, the solution is approximately 𝜙nw (𝑡, 𝑥, 𝑟) ∼ −
(
𝑟
2𝑡 +

𝑥2

2𝑡2

)
, picking out the Hastings–McLeod

solution 𝔮(𝑟) ∼ −Ai(𝑟) as 𝑟 → ∞. Thus we recover

𝐹 (𝑡, 𝑥, 𝑟) = 𝐹GUE

(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
,

where 𝐹GUE is the GUE Tracy–Widom distribution [TW94], usually written in the equivalent form

𝐹GUE (𝑠) = exp
{
−

∫ ∞

𝑠
d𝑢 (𝑢 − 𝑠)𝔮2(𝑢)

}
.

Example 2.2 (Tracy–Widom GOE distribution). If 𝔥0 (𝑥) ≡ 0, the flat initial condition, there is no x
dependence and equation (1.9) reduces to the KdV equation. Now we look for a self-similar solution of
equation (1.10) in the form

𝜙fl(𝑡, 𝑟) = (𝑡/4)−2/3𝜓fl
(
(𝑡/4)−1/3𝑟

)
(the extra factor of 1/4 is just to coordinate conventions with random matrix theory), obtaining the
ordinary differential equation

(
𝜓fl

) ′′′
+ 12

(
𝜓fl

) ′
𝜓fl − 𝑟

(
𝜓fl

) ′
− 2𝜓fl = 0.

Miura’s transform

𝜓fl = 1
2

(
𝔮′ − 𝔮2

)
brings this to Painlevé II (equation (2.2)), with the same behaviour as 𝑟 → −∞. So we recover

𝐹 (𝑡, 𝑥, 𝑟) = 𝐹GOE

(
41/3𝑡−1/3𝑟

)
,

where 𝐹GOE is the GOE Tracy–Widom distribution [TW96], usually written in the equivalent form

𝐹GOE (𝑟) = exp
{
−1

2

∫ ∞

𝑟
d𝑢 𝔮(𝑢)

}
𝐹GUE (𝑟)1/2.

These two examples also have the following interpretation: Let 𝜆max,GUE
𝑁 and 𝜆max,GOE

𝑁 be the largest
eigenvalues of 𝑁 × 𝑁 matrices chosen from the Gaussian unitary and Gaussian orthogonal ensembles
multiplied by

√
𝑁 , so that 𝜆max,GUE

𝑁 ∼ 2𝑁 + 𝑁1/3𝜁GUE and 𝜆max,GOE
𝑁 ∼ 2𝑁 + 𝑁1/3𝜁GOE, with 𝜁GUE and

𝜁GOE the standard Tracy–Widom GUE and GOE random variables. Let

𝐹1 (𝑡, 𝑟) = lim
𝑁→∞

P

(
𝑁−1/3

(
𝜆max,GOE
𝑁𝑡 − 2𝑁𝑡

)
≤ 41/3𝑟

)
= 𝐹GOE

(
41/3𝑡−1/3𝑟

)
,

𝐹2 (𝑡, 𝑥, 𝑟) = lim
𝑁→∞

P

(
𝑁−1/3

(
𝜆max,GUE
𝑁𝑡 − 2𝑁𝑡

)
≤ 𝑟 + 𝑥2/𝑡

)
= 𝐹GUE

(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
.

As we have seen, 𝜕2
𝑟 log 𝐹1 and 𝜕2

𝑟 log 𝐹2 satisfy the KP equation (1.9). In the former case, there is no
dependence on x, and the KP equation reduces to the KdV equation (1.10).
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2.2. Partial differential equations for other initial data

Another question is whether there are analogues of Painlevé II for other self-similar solutions. It is
natural to observe 𝜙 in the frame of the inviscid solution 1

4
(
𝜕𝑥 𝔥̄

)2 − 𝜕𝑡 𝔥̄ = 0 of Burgers’ equation,

𝜙(𝑡, 𝑥, 𝑟) := 𝜙
(
𝑡, 𝑥, 𝑟 − 𝔥̄(𝑡, 𝑥)

)
;

one obtains

𝜕𝑡𝜙 + 𝜙𝜕𝑟𝜙 + 1
12𝜕

3
𝑟 𝜙 + 1

4𝜕
−1
𝑟 𝜕2

𝑥𝜙 − 1
2𝜕𝑥 𝔥̄𝜕𝑥𝜙 +𝑉𝜙 = 0, (2.3)

with 𝑉 = − 1
4𝜕

2
𝑥 𝔥̄ and with initial data 𝜙(0, 𝑥, 𝑟) = 0 for 𝑟 ≥ 0 and −∞ for 𝑟 < 0.

In order to get a solution for the rescaled spatial process, write

𝜙(𝑡, 𝑥, 𝑟) = 𝑡−2/3𝜓
(
𝑡, 𝑡−2/3𝑥, 𝑡−1/3 (

𝑟 − 𝔥̄(𝑡, 𝑥)
) )

.

Then

𝑡 𝜕𝑡𝜓 − 2
3𝜓 − 1

3𝑟𝜕𝑟𝜓 + 1
12𝜕

3
𝑟 𝜓 + 𝜓𝜕𝑟𝜓 + 1

4𝜕
−1
𝑟 𝜕2

𝑥𝜓 − 1
4𝜕

2
𝑥 𝔥̃𝜓 −

(
2
3𝑥 +

1
2𝜕𝑥 𝔥̃

)
𝜕𝑥𝜓 = 0,

with 𝔥̃(𝑡, 𝑥) = 𝑡−1/3𝔥̄
(
𝑡, 𝑡2/3𝑥

)
.

Example 2.3 (Half-flat initial data). Consider 𝔥0 (𝑥) = 0, 𝑥 ≤ 0 and 𝔥0 (𝑥) = −∞, 𝑥 > 0. Now
𝔥̄(𝑡, 𝑥) = −𝑥2/𝑡1𝑥≥0. There is dependence on x, though not on t. This gives rise to a partial differential
equation for 𝜓(𝑥, 𝑟),

− 1
3𝑟𝜕𝑟𝜓 + 1

12𝜕
3
𝑟 𝜓 −

(
1
6 1𝑥≥0 + 2

3 1𝑥<0

)
𝜓 + 𝜓𝜕𝑟𝜓 + 1

4𝜕
−1
𝑟 𝜕2

𝑥𝜓 +
(

1
3 1𝑥≥0 − 2

3 1𝑥<0

)
𝑥𝜕𝑥𝜓 = 0.

Remark 2.4 (Lower-tail heuristics). Typically the equation is controlled on large scales by the equation
with the third derivative dropped, and Burgers’ equation makes sense for such wedge-type initial data.
Let 𝜙 be as in equation (2.3) and

𝜙 = 𝜙 − 𝜂,

where 𝜂 = 𝑐
𝑡 𝑟1𝑟<0. Then 𝜙(0, 𝑥, 𝑟) = 0 and

𝜕𝑡𝜙 + 1
2𝜕𝑟𝜙

2 + 1
12𝜕

3
𝑟 𝜙 + 1

4𝜕
−1
𝑟 𝜕2

𝑥𝜙 + 𝜕𝑟
(
𝜂𝜙

)
− 1

2𝜕𝑥 𝔥̄𝜕𝑥𝜙 − 1
4𝜕

2
𝑥 𝔥̄ 𝜙

+
(
𝑐−1
𝑡 − 1

4𝜕
2
𝑥 𝔥̄

)
𝜂 − 𝑐

12𝑡 𝛿
′
0 (𝑟) = 0.

One hopes to set things up so that 𝜙 has good decay at ±∞. Consider our two basic examples. In the flat
case, 𝔥̄ ≡ 0, and we want to take 𝑐 = 1 to make the second-to-last term drop out, which will lead to the
conclusion that 𝜙(𝑡, 𝑟) ∼ 𝑟/𝑡, or log 𝐹 (𝑡, 𝑟) ∼ − 1

6𝑡 𝑟
3 as 𝑟 → −∞, recovering the Tracy–Widom GOE

lower tail. In the narrow wedge, case 𝔥̄ = − 𝑥2

𝑡 , so 1
4𝜕

2
𝑥 𝔥̄ = − 1

2𝑡 , and we want to take 𝑐 = 1/2 leading to

log 𝐹 (𝑡, 𝑥, 𝑟) ∼ − 1
12𝑡

(
𝑟 + 𝑥2

𝑡

)3
, recovering the Tracy–Widom GUE lower tail.

The conclusion is that the lower tail of the distributions can be seen directly from the ‘Burgers’ part
of the KP equation, which dominates in that region.

Note that this is only intended to be a quick heuristic. If one were to try to make it rigorous, say, for the
flat and narrow wedge case, one would be led through self-similar solutions back to the Painlevé equation
and the standard tools there to get the left tails (see, e.g., [BBD08]). Such Riemann–Hilbert methods
give much finer information, for example, subleading terms. It is an interesting question whether such
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results can be obtained from the partial differential equation (2.3) so as to get finer information on the
left tail for more general initial data.

2.3. Airy process

The Airy process A(𝑥) is defined as

A(𝑥) := 𝔥(1, 𝑥;𝔡0) + 𝑥2,

where 𝔥(𝑡, 𝑥;𝔡0) is the KPZ fixed point starting from a narrow wedge 𝔡0 at the origin. The Airy process
is stationary and the one-point distribution is the Tracy–Widom GUE distribution.

K. Johansson famously asked whether there is an equation for the multipoint distribution. Partial
differential equations (PDEs) were given by [AM05; TW03]. Starting with narrow wedge initial data,
the matrix KP equation (1.8) gives us another PDE. This equation lives at the same level as the system
of PDEs in [TW03]; it could well be that they are equivalent, but we have not succeeded in confirming
that yet, and leave it for future work.

Note that the KP-II equation is written in variables t, 𝑟 = 𝑟1 + · · · + 𝑟𝑛 and 𝑥 = 𝑥1 + · · · + 𝑥𝑛, the rest of
the variables entering only from the boundary condition. Exploiting skew time-reversal invariance, we
find an extra symmetry in the narrow wedge case. Let 𝔡�𝑟�𝑥 denote a multiple narrow wedge (see Example
1.6). For �𝑥 ∈ R𝑚 and 𝑧 ∈ R, write �𝑥 + 𝑧 = (𝑥1 + 𝑧, . . . , 𝑥𝑚 + 𝑧). By skew time reversibility and translation
and affine invariance of the KPZ fixed point [MQR17, Thm. 4.5],

𝐹 (𝑡, �𝑥 + 𝑧, �𝑟 + 𝑎) = P
(
𝔥(𝑡, 𝑥𝑖 + 𝑧;𝔡0) ≤ 𝑟𝑖 + 𝑎 for all 𝑖

)
= P

(
𝔥(𝑡, ·;𝔡0) ≤ −𝔡−�𝑟−𝑎�𝑥+𝑧

)
= P

(
𝔥
(
𝑡, ·;𝔡−�𝑟−𝑎�𝑥+𝑧

)
≤ −𝔡0

)
= P

(
𝔥
(
𝑡, 0;𝔡−�𝑟�𝑥+𝑧

)
≤ 𝑎

)
= P

(
𝔥
(
𝑡,−𝑧;𝔡−�𝑟�𝑥

)
≤ 𝑎

)
. (2.4)

Now the right-hand side is just the one-point distribution at −𝑧 with a given, fixed initial condition. So if
we let 𝐺 (𝑡, 𝑧, 𝑎) = 𝐹 (𝑡, �𝑥 + 𝑧, �𝑟 + 𝑎), we see that 𝜕2

𝑎 log𝐺 satisfies equation (1.9) in (𝑡, 𝑧, 𝑎) (in terms of
equation (1.25), the initial data are 𝐺 (0, 𝑧, 𝑎) = −∞ if 𝑧 = −𝑥𝑖 for some i and 𝑎 < −𝑟𝑖 and 𝐺 (0, 𝑧, 𝑎) = 0
otherwise). But 𝜕𝑧𝐺 (𝑡, 𝑧, 𝑎) = D𝑥𝐹 (𝑡, �𝑥 + 𝑧, �𝑟 + 𝑎), and similarly, 𝜕𝑎𝐺 (𝑡, 𝑧, 𝑎) = D𝑟𝐹 (𝑡, �𝑥 + 𝑧, �𝑟 + 𝑎).
So now setting 𝑎 = 𝑧 = 0, we deduce that 𝜙 = D2

𝑟 log 𝐹 satisfies

𝜕𝑡𝜙 + 1
2D𝑟𝜙

2 + 1
12D

3
𝑟𝜙 + 1

4D
−1
𝑟 D2

𝑥𝜙 = 0. (2.5)

The initial data are now similarly 𝜙 (0, �𝑥, �𝑟) = −∞ if 𝑥𝑖 = 0 for some i and 𝑟𝑖 < 0 and 𝜙 (0, �𝑥, �𝑟) = 0
otherwise.

Note that from Theorem 1.1, we know that D2
𝑟 log 𝐹 = tr 𝑞 and 𝜕𝑡 tr 𝑞 + tr(𝑞D𝑟𝑞) + 1

12D
3
𝑟 tr 𝑞 +

1
4D

2
𝑥 tr𝑄 = 0 (using tr(𝐴𝐵) = tr(𝐵𝐴)). But the foregoing argument implies then that tr 𝑞 itself solves

the KP equation (2.5), and as a consequence, we deduce in the narrow wedge case that tr(𝑞D𝑟𝑞) =
tr(𝑞) tr(D𝑟𝑞). This can also be proved directly using the fact that, in this case, (𝜕𝑢 + 𝜕𝑣 )Khypo(𝔥0)

𝑡 (𝑢, 𝑣)
is a rank 1 kernel, which implies that q is a rank 1 matrix.

An alternative derivation of equation (2.5) using the path integral formula for the KPZ fixed point
can be found in Appendix B.

Next we use the 1:2:3 scaling invariance of the KPZ fixed point and stationarity of the Airy process,
as in Example 2.1. Let H, Ψ, 𝜓 denote the (𝑚 + 1)-point distribution function of the Airy process and
its logarithmic derivatives,

𝐻 (𝑦1, . . . , 𝑦𝑚, 𝑟0, . . . , 𝑟𝑚) = P(A(0) ≤ 𝑟0,A(𝑦1) ≤ 𝑟1, . . . ,A(𝑦𝑚) ≤ 𝑟𝑚),
Ψ = D𝑟 log 𝐻, 𝜓 = D𝑟Ψ. (2.6)
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Since 𝐹 (𝑡, 𝑥0, . . . , 𝑥𝑚, 𝑟0, . . . , 𝑟𝑚) = 𝐻
(
𝑡−2/3𝑥1, . . . , 𝑡

−2/3𝑥𝑚, 𝑡
−1/3𝑟0, . . . , 𝑡

−1/3𝑟𝑚
)
, with 𝑥𝑖 = 𝑥𝑖 − 𝑥0

and 𝑟𝑖 = 𝑟𝑖 +
𝑥2
𝑖

𝑡 , equation (2.5) leads to the following:

Theorem 2.5 (Airy 2-process multipoint function). The logarithmic derivatives (2.6) of the multipoint
function of the Airy process satisfy the PDE

− 1
6𝜓 + 1

2D𝑟𝜓
2 + 1

12D
3
𝑟𝜓 − 1

3
∑𝑚

𝑎=0 𝑟𝑎𝜕𝑟𝑎𝜓 − 2
3
∑𝑚

𝑎=1 𝑦𝑎𝜕𝑦𝑎𝜓

−
∑𝑚

𝑎=1
∑𝑚

𝑏=0, 𝑏≠𝑎 𝑦
2
𝑎𝜕𝑟𝑎𝜕𝑟𝑏Ψ +

∑𝑚
𝑎,𝑏=1, 𝑎≠𝑏 𝑦𝑎𝑦𝑏𝜕𝑟𝑎𝜕𝑟𝑏Ψ = 0,

with boundary condition 𝜓(0, . . . , 0, 𝑟1, . . . , 𝑟𝑚) = 𝜓nw (min(𝑟1, . . . , 𝑟𝑚)) from equation (2.1).

In particular, for the logarithmic derivative of the Airy-process two-point function Ψ(𝑦, 𝑟1, 𝑟2) =
D𝑟 log P(A(0) ≤ 𝑟1, A(𝑦) ≤ 𝑟2), we get

− 1
6𝜓 + 1

2D𝑟𝜓
2 + 1

12D
3
𝑟𝜓 − 1

3 (𝑟1𝜕𝑟1𝜓 + 𝑟2𝜕𝑟2𝜓) − 2
3 𝑦𝜕𝑦𝜓 − 𝑦2𝜕𝑟1𝜕𝑟2Ψ = 0. (2.7)

In our notation, the equation derived in [AM05] reads

(𝑟2 − 𝑟1)𝜕𝑟1𝜕𝑟2𝜓 + 𝑦𝜕𝑦
(
𝜕𝑟1 − 𝜕𝑟2

)
𝜓 + 𝑦2 (𝜕𝑟1 − 𝜕𝑟2)𝜕𝑟1𝜕𝑟2Ψ + 𝜕𝑟1Ψ𝜕𝑟2D𝑟𝜓 − 𝜕𝑟2Ψ𝜕𝑟1D𝑟𝜓 = 0. (2.8)

Although equations (2.7) and (2.8) have similarities, they do not appear to be equivalent. We have not
succeeded in reconciling them, and we leave this for future work. Of course the Airy process has many
symmetries, and it is plausible that the equations are not equivalent yet both hold.

Example 2.6 (Airy1-process multipoint function). Consider now the KPZ fixed point with flat initial
data, 𝔥0 ≡ 0. The multipoint function satisfies

𝐹 (𝑡, �𝑥, �𝑟) = P
(
A1(0) ≤ 𝑡−1/3𝑟1, A1

(
𝑡−2/3𝑥2

)
≤ 𝑡−1/3𝑟2, . . . ,A1

(
𝑡−2/3𝑥𝑚

)
≤ 𝑡−1/3𝑟𝑚

)
with 𝑥𝑖 = 𝑥𝑖 − 𝑥1, where A1(𝑥) := 𝔥(1, 𝑥; 0) is the Airy1 process and we have used the fact that it is
stationary. We know that the left-hand side equals tr𝑄 where the 𝑚 × 𝑚 matrix Q and its derivative
q solve equation (1.8). But the right-hand side depends only on the differences 𝑥𝑖 − 𝑥1, so Q actually
solves the (integrated) matrix KdV equation

𝜕𝑡𝑄 + 1
2 (D𝑟𝑄)2 + 1

12D
3
𝑟𝑄 = 0.

Take now 𝑚 = 2 for simplicity. The (formal) initial data 𝑄(0, 𝑥1, 𝑥2, 𝑟1, 𝑟2) (equa-
tion (1.26)) are also invariant under 𝑟𝑖 , 𝑥𝑖 ↦→ 𝑡−1/3𝑟𝑖 , 𝑡

−2/3𝑥𝑖 followed by 𝑄 ↦→ 𝑡−1/3𝑄,
and depend only on |𝑥2 − 𝑥1 | (in fact, 𝑄12(0, 𝑟1, 𝑟2, 𝑥1, 𝑥2) =

1𝑟1≥0,𝑟2≥0√
4𝜋 |𝑥2−𝑥1 |

(𝑒−(𝑟1+𝑟2)2/4 |𝑥2−𝑥1 |

− 𝑒−(𝑟1−𝑟2)2/4 |𝑥2−𝑥1 | ) by the reflection principle). In this case we look for a matrix solution of equation
(1.8) with the scaling

𝑄(𝑡, 𝑟1, 𝑟2, 𝑥1, 𝑥2) = 𝑡−1/3𝑄̄
(
𝑡−2/3(𝑥2 − 𝑥1), 𝑡−1/3𝑟1, 𝑡

−1/3𝑟2

)
.

The conclusion is that

D𝑟 logP(A1(0) ≤ 𝑟1, A1 (𝑦) ≤ 𝑟2) = tr
(
𝑄̄(𝑦, 𝑟1, 𝑟2)

)
, (2.9)

with 𝑄̄(𝑦, 𝑟1, 𝑟2) solving the matrix PDE

− 1
3 𝑄̄ + 1

2
(
D𝑟 𝑄̄

)2 + 1
12D

3
𝑟 𝑄̄ − 1

3
(
𝑟1𝜕𝑟1𝑄̄ + 𝑟2𝜕𝑟2𝑄̄

)
− 2

3 𝑦𝜕𝑦𝑄̄ = 0.

It does not seem to be possible to turn this 4 × 4 system into a closed equation for the left-hand side of
equation (2.9); the fact that this works for the Airy 2 process is very particular to narrow wedge initial
data (and follows from skew time reversibility as used in equation (2.4)).
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3. The KP-II equation in special solutions of the KPZ equation

Theorem 1.3 also implies that some of the special explicit solutions for 1-dimensional distributions of
the KPZ equation (1.1) satisfy the (scalar) KP-II equation (1.9) as well. At this point we do not know
whether this is part of a more general fact or whether the KP-II equation only holds in these special
cases because of some symmetry. All we have is examples.

3.1. Narrow wedge solution of the KPZ equation

Let hnw be the narrow wedge solution of equation (1.1) with 𝜆 = 𝜈 = 1
4 and 𝜎 = 1. In other words,

hnw = log 𝑍 , where Z is the fundamental solution of the stochastic heat equation with multiplicative
noise:

𝜕𝑡𝑍 = 1
4𝜕

2
𝑥𝑍 + 𝜉𝑍, 𝑍 (0, 𝑥) = 𝛿0(𝑥). (3.1)

The KPZ generating function is

𝐺nw(𝑡, 𝑥, 𝑟) = E
[
exp

{
−𝑒hnw (𝑡 ,𝑥)+ 𝑡

12−𝑟
}]

. (3.2)

The distribution of hnw(𝑡, 𝑥) was computed in 2010 in [ACQ11; SS10; Dot10; CDR10], with the result4
that 𝐺nw(𝑡, 𝑥, 𝑟) = det(I − K)𝐿2 (R+) with

K(𝑢, 𝑣) =
∫ ∞

−∞
𝑑𝑦 𝑡−2/3 1

1 + 𝑒𝑦
Ai

(
𝑡−1/3(𝑢 + 𝑟 − 𝑦) + 𝑡−4/3𝑥2

)
Ai

(
𝑡−1/3(𝑣 + 𝑟 − 𝑦) + 𝑡−4/3𝑥2

)
.

If we conjugate the operator by multiplying the kernel by 𝑒 (𝑣−𝑢)𝑥/𝑡 , the value of the Fredholm determinant
doesn’t change – that is, we also have

𝐺nw(𝑡, 𝑥, 𝑟) = det
(
I − K̃

)
𝐿2 (R+)

with K̃ (𝑢, 𝑣) = 𝑒 (𝑣−𝑢)𝑥/𝑡K(𝑢, 𝑣).

One checks directly that K̃ satisfies the differential relations Theorem 1.3(1)–(3). This can also be seen
by writing K̃(𝑢, 𝑣) = U𝑡𝑒

−𝑥𝜕2 M𝑒𝑥𝜕
2 U−1

𝑡 (𝑢 + 𝑟, 𝑣 + 𝑟), with M the multiplication operator M 𝑓 (𝑢) =
(1+ 𝑒𝑢)−1 𝑓 (𝑢) and U𝑡 the Airy unitary operator defined in equation (1.18). We then have the following:

Theorem 3.1. 𝜙nw := 𝜕2
𝑟 log𝐺nw satisfies the KP-II equation (1.9).

The initial condition is lim𝑡↘0 𝜙nw

(
𝑡, 𝑥, 𝑟 − 𝑥2

𝑡 − log
√
𝜋𝑡

)
= −𝑒−𝑟 . This suggests defining the x-

independent shifted variable 𝜙nw(𝑡, 𝑟) = 𝜙nw

(
𝑡, 𝑥, 𝑟 − 𝑥2

𝑡 − log
√
𝜋𝑡

)
, which now satisfies the cylindrical

KdV equation

𝜕𝑡𝜙nw + 1
2𝑡 𝜕𝑟𝜙nw + 𝜙nw𝜕𝑟𝜙nw + 1

12𝜕
3
𝑟 𝜙nw + 1

2𝑡 𝜙nw = 0, 𝜙nw(0, 𝑟) = −𝑒−𝑟 .

3.2. KPZ equation with spiked/half-Brownian initial data

Consider now the solution h𝑏 of equation (1.1) with 𝜆 = 𝜈 = 1
4 , 𝜎 = 1 and m-spiked initial data, where

𝑏 = (𝑏1, . . . , 𝑏𝑚) ∈ R𝑚 are the spike parameters. When 𝑚 = 1, this corresponds to half-Brownian initial
data (more precisely, at the level of the stochastic heat equation one sets 𝑍 (0, 𝑥) = 𝑒𝐵 (𝑥)+𝑏1𝑥1𝑥≥0, where
𝐵(𝑥) is a Brownian motion with diffusivity 2); for the definition in the general case 𝑚 ≥ 1, we refer to

4See [BCF14, Thm. 1.10], which computes the generating function directly. Compared to that formula, we are changing variables
(𝑡 , 𝑥) ↦−→ (2𝑡 , 2𝑥) to match the two different scaling conventions for equation (3.1), and using the fact that hnw (𝑡 , 𝑥) + 𝑥2/𝑡 is
stationary.
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[BCF14, Defn. 1.9]. Define 𝐺𝑏 as in equation (3.2) (with h𝑏 in place of hnw). Then from [BCF14, Thm.
1.10] we get that 𝐺𝑏 (𝑡, 0, 𝑟) = det(I − K0)𝐿2 [0,∞) (see footnote 4 again), with

K0 (𝑢, 𝑣) =
1

(2𝜋i)2

∫
C𝑡

𝑑𝜂

∫
C′𝑡
𝑑𝜉

𝑡−1/3𝜋

sin
(
𝑡−1/3𝜋(𝜉 − 𝜂)

) 𝑒 𝜉 3/3−(𝑢+𝑡−1/3𝑟) 𝜉

𝑒𝜂
3/3−(𝑣+𝑡−1/3𝑟)𝜂

𝑚∏
𝑘=1

Γ
(
𝑡−1/3𝜂 − 𝑏𝑘

)
Γ

(
𝑡−1/3𝜉 − 𝑏𝑘

) ,
where C𝑡 goes from − 1

4 𝑡
1/3 − i∞ to − 1

4 𝑡
1/3 + i∞ crossing the real axis to the right of 𝑡1/3𝑏1, . . . , 𝑡

1/3𝑏𝑚
and C′𝑡 = C𝑡 + 1

2 𝑡
1/3. We scale (𝜂, 𝜉) ↦→

(
𝑡1/3𝜂, 𝑡1/3𝜉

)
and (𝑢, 𝑣) ↦→

(
𝑡−1/3𝑢, 𝑡−1/3𝑣

)
(in the Fredholm

determinant) so that K0(𝑢, 𝑣) is now given as∫
C1

𝑑𝜂

∫
C′1

𝑑𝜉
𝜋

sin(𝜋(𝜉 − 𝜂))
𝑒𝑡 𝜉

3/3−(𝑢+𝑟 )𝑥𝑖

𝑒𝑡 𝜂
3/3−(𝑣+𝑟 )𝜂

𝑚∏
𝑘=1

Γ(𝜂 − 𝑏𝑘 )
Γ(𝜉 − 𝑏𝑘 )

.

Since h𝑏+𝑥/𝑡 (𝑡, 𝑥) + 𝑥2/𝑡 is stationary in x (see [BCF14, Rem. 1.14]), we may write 𝐺𝑏 (𝑡, 𝑥, 𝑟) =
det(I − K)𝐿2 [0,∞) , with

K(𝑢, 𝑣) = 1
(2𝜋i)2

∫
C̃1

𝑑𝜉

∫
C̃′1

𝑑𝜂
𝜋

sin(𝜋(𝜉 − 𝜂))
𝑒𝑡 𝜉

3/3−(𝑢+𝑟+𝑥2/𝑡) 𝜉

𝑒𝑡 𝜂
3/3−(𝑣+𝑟+𝑥2/𝑡)𝜂

𝑚∏
𝑘=1

Γ(𝜂 − 𝑏𝑘 − 𝑥/𝑡)
Γ(𝜉 − 𝑏𝑘 − 𝑥/𝑡) .

Here the contour C̃1 has to cross the real axis to the right of 𝑏𝑖 + 𝑥/𝑡 for all i. Conjugating the kernel
by 𝑒𝑢𝑥/𝑡 as in the previous case (that is, multiplying the kernel by 𝑒 (𝑢−𝑣)𝑥/𝑡 ) – and changing variables
𝜂 ↦−→ 𝜂 + 𝑥/𝑡, 𝜉 ↦−→ 𝜉 + 𝑥/𝑡, we get

𝐺𝑏 (𝑡, 𝑥, 𝑟) = det
(
I − K̃

)
𝐿2 [0,∞)

,

with

K̃(𝑢, 𝑣) = 1
(2𝜋i)2

∫
C1

𝑑𝜉

∫
C′1

𝑑𝜂
𝜋

sin(𝜋(𝜉 − 𝜂))
𝑒𝑡 𝜉

3/3+𝑥 𝜉 2−(𝑢+𝑟 ) 𝜉

𝑒𝑡 𝜂
3/3+𝑥𝜂2−(𝑣+𝑟 )𝜂

𝑚∏
𝑘=1

Γ(𝜂 − 𝑏𝑘 )
Γ(𝜉 − 𝑏𝑘 )

.

As in the previous case, K̃ satisfies the necessary differential relations, so we have the following:

Theorem 3.2. 𝜙𝑏 := 𝜕2
𝑟 log𝐺𝑏 satisfies the KP-II equation (1.9).

3.3. KPZ equation with two-sided Brownian initial data

In [LD20] (which appeared about a month after the first version of the present article), Le Doussal
suggests that a certain modified generating function for the solution h𝑤± of equation (1.1) with the same
scaling as in the of regoing and initial data of the form h𝑤± (0, 𝑥) = B(𝑥) + 𝑤−𝑥1𝑥<0 + 𝑤+𝑥1𝑥≥0 with B
a double-sided Brownian motion with B(0) = 0 and 𝑤− > 𝑤+ should also satisfy the KP equation. This
is actually true, as we explain next. Define

𝐺𝑤± (𝑡, 𝑥, 𝑟) = Γ(𝑤− − 𝑤+)−1
E

[
2𝑒

1
2 (𝑤−−𝑤+) (h𝑤± (𝑡 ,𝑥)+ 𝑡

12−𝑟)𝐾𝑤+−𝑤−

(
2𝑒

1
2 (h𝑤± (𝑡 ,𝑥)+ 𝑡

12−𝑟)
)]

,

where 𝐾𝜈 is the modified Bessel function of order 𝜈. This modified generating function 𝐺𝑤± can
alternatively be expressed as the analog of equation (3.2) where the KPZ height function h𝑤± is replaced
by a randomly shifted height function h𝑤± (𝑡, 𝑥) + Υ:

𝐺𝑤± (𝑡, 𝑥, 𝑟) = E
[
exp

{
−𝑒h𝑤± (𝑡 ,𝑥)+Υ+ 𝑡

12−𝑟
}]

,
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with Υ an independent log-gamma random variable with parameter 𝑤− − 𝑤+; that is, 𝑒−Υ has density
Γ(𝑤− − 𝑤+)−1𝑥𝑤−−𝑤+−1𝑒−𝑥 . Explicit formulas for the distribution of this shifted height function were
obtained in [IS12; IS13] using the nonrigorous replica method. A similar formula, which is the one we
will use, was obtained rigorously later on [Bor+15]; the equality between the two expressions for 𝐺𝑤±
is essentially [Bor+15, Corollary 2.6] (see also [Bor+15, Remark 2.10]).

From [Bor+15, Thm. 2.9] (and footnote 4 again), we have 𝐺𝑤± (𝑡, 𝑥, 𝑟) = det(I − K)𝐿2 [0,∞) , with

K(𝑢, 𝑣) = 1
(2𝜋i)2

∫
C𝑡

𝑑𝜂

∫
C̃𝑡

𝑑𝜉
𝑡−1/3𝜋

sin
(
𝑡−1/3𝜋(𝜉 − 𝜂)

) 𝑒 𝜉 3/3−
(
𝑢+𝑡−1/3

(
𝑟+ 𝑥2

𝑡

))
𝜉

𝑒
𝜂3/3−

(
𝑣+𝑡−1/3

(
𝑟+ 𝑥2

𝑡

))
𝜂

×
Γ

(
𝑤− + 𝑥

𝑡 − 𝑡−1/3𝜉
)

Γ
(
𝑡−1/3𝜉 − 𝑤+ − 𝑥

𝑡

) Γ (
𝑡−1/3𝜂 − 𝑤+ − 𝑥

𝑡

)
Γ

(
𝑤− + 𝑥

𝑡 − 𝑡−1/3𝜂
) ,

where C𝑡 goes from − 1
4 𝑡

1/3 − i∞ to − 1
4 𝑡

1/3 + i∞ crossing the real axis between 𝑡1/3𝑤+ and 𝑡1/3𝑤−, and
C̃𝑡 goes from 1

4 𝑡
1/3 − i∞ to 1

4 𝑡
1/3 + i∞ staying to the right of C𝑡 and also crossing the real axis between

𝑡1/3𝑤+ and 𝑡1/3𝑤−. Changing variables as in the last example leads to

𝐺𝑤± (𝑡, 𝑥, 𝑟) = det
(
I − K̃

)
𝐿2 [0,∞)

,

with

K̃(𝑢, 𝑣) = 1
(2𝜋i)2

∫
C1

𝑑𝜂

∫
C̃1

𝑑𝜉
𝜋

sin(𝜋(𝜉 − 𝜂))
𝑒𝑡 𝜉

3/3+𝑥 𝜉 2−(𝑢+𝑟 ) 𝜉

𝑒𝑡 𝜂3/3+𝑥𝜂2−(𝑣+𝑟 )𝜂
Γ(𝑤− − 𝜉)
Γ(𝜉 − 𝑤+)

Γ(𝜂 − 𝑤+)
Γ(𝑤− − 𝜂) .

As in the previous examples, K̃ satisfies the hypotheses of Theorem 1.3, so we have the following:

Theorem 3.3. 𝜙𝑤± (𝑡, 𝑥, 𝑟) := 𝜕2
𝑟 log𝐺𝑤± (𝑡, 𝑥, 𝑟) satisfies the KP-II equation (1.9).

Our next two examples are related to the setting of Theorem 3.2. Here we abandon the setting of the
KPZ equation and go back to random matrix distributions and the KPZ fixed point.

3.4. The Baik–Ben Arous–Péché distribution for spiked random matrices

Consider 𝐺𝑏 as in the case of spiked initial data. It is known (see [BCF14, Cor. 1.15] for the case
𝑡 = 1, 𝑥 = 0; the general case follows in the same way or by scaling and shift invariance) that

lim
𝜀→0

𝐺 𝜀1/2𝑏

(
𝜀−3/2𝑡, 𝜀−1𝑥, 𝜀−1/2𝑟

)
= 𝐹BBP,𝑡1/3𝑏−𝑡−2/3𝑥

(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
,

where 𝐹BBP,𝑏 is the Baik–Ben Arous–Péché (BBP) distribution arising from spiked (unitarily invariant)
random matrices [BBP05]. On the other hand, by the scaling invariance of the KP-II equation (see
Remark 1.2), for each fixed 𝜀 > 0, 𝜙𝜀

𝑏 (𝑡, 𝑥, 𝑟) := 𝜕2
𝑟 log𝐺 𝜀1/2𝑏

(
𝜀−3/2𝑡, 𝜀−1𝑥, 𝜀−1/2𝑟

)
satisfies the KP-II

equation as well. As a consequence, one expects the following to hold:

Theorem 3.4. Define

𝐹̃BBP,𝑏 (𝑡, 𝑥, 𝑟) = 𝐹BBP,𝑡1/3𝑏−𝑡−2/3𝑥

(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
.

Then 𝜙BBP,𝑏 := 𝜕2
𝑟 log 𝐹̃BBP,𝑏 satisfies the KP-II equation (1.9).

This is indeed the case, which can be checked in a similar way as before using Theorem 1.3 and the
explicit Fredholm determinant formula for 𝐹BBP,𝑏 (see, e.g., [BCF14, Eqn. (1.4)]).
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3.5. KPZ fixed point with half-Brownian initial data

Consider the KPZ fixed point 𝔥 with half-Brownian initial data 𝔥0 (𝑥) = B(−𝑥) for 𝑥 ≤ 0 and 𝔥0 (𝑥) = −∞
for 𝑥 > 0, where B is a Brownian motion started at 0 with diffusivity 2. In the setting of [MQR17],
this corresponds to starting TASEP with a product measure with density 1

2 on the negative integers and
no particles on the positive integers, and known results [CFP10] in this case give P(𝔥(1, 𝑥) ≤ 𝑟) =
𝐹BBP,𝑥

(
𝑟 + 𝑥2) . By the scaling invariance of the KPZ fixed point, in this case for 𝐹half-BM(𝑡, 𝑥, 𝑟) =

P𝔥0 (𝔥(𝑡, 𝑥) ≤ 𝑟) this gives

𝐹half-BM (𝑡, 𝑟, 𝑥) = 𝐹BBP,𝑡−2/3𝑥

(
𝑡−1/3𝑟 + 𝑡−4/3𝑥2

)
.

Comparing with Theorem 3.4 we deduce the following:

Theorem 3.5. 𝜙half-BM = 𝜕2
𝑟 log 𝐹half-BM satisfies the KP-II equation (1.9).

Similar statements can be written for more general spiked initial conditions in this setting as well as
for multipoint distributions (now in terms of the matrix KP equation as in Theorem 1.1).

4. Derivation of the KP equation

This section contains the proof of Theorem 1.3. After we performed the complicated computation, we
discovered that a very similar argument was actually known in the 1-dimensional case [Po89]. It is
shown there that the Fredholm determinant of a kernel satisfying suitable differential relations solves
the Hirota equations. The differential relations turn out to be equivalent to the way the kernel depends
on t, x and r in Theorem 1.3. It seems to actually go back to [ZS74; ZS79], though it is not explicit there,
and has been rediscovered in the literature multiple times.

4.1. The logarithmic derivative

Let

Φ(𝑡, 𝑟, 𝑥) = 𝜕𝑟 log det(I − K)𝐿2 (R+) ⊕···⊕𝐿2 (R+) ,

where K is a matrix kernel satisfying the assumptions of Theorem 1.3. From now on we omit the
subscript on the Fredholm determinant and traces.

Given an operator A acting on the n-fold direct sum of 𝐿2 (R+) with matrix kernel (A𝑎𝑏 (𝑢, 𝑣))𝑛𝑎,𝑏=1,
we will write d1A and d2A for the operators with kernels, given by

d1A(𝑢, 𝑣) =
(
𝜕𝑢K𝑎𝑏 (𝑢, 𝑣)

)
𝑎,𝑏=1,...,𝑛 and d2A(𝑢, 𝑣) =

(
𝜕𝑣K𝑎𝑏 (𝑢, 𝑣)

)
𝑎,𝑏=1,...,𝑛.

Note that this is just a notational device; d𝑖 is not meant to denote an operator. By Theorem 1.3(1),

Φ(𝑡, 𝑟, 𝑥) = 𝜕𝑟 log(det(I − K)) = − tr
(
(I − K)−1𝜕𝑟K

)
= − tr

(
(I − K)−1(d1 + d2)K

)
= − tr

(
(I − K)−1d1K + d2

(
(I − K)−1K

))
= − tr

(
d1K(I − K)−1 + d2

(
(I − K)−1K

))
= − tr

(
(d1 + d2)

(
(I − K)−1K

))
= −

∑
𝑎

∫ ∞

0
𝑑𝜉 𝜕𝜉

(
(I − K)−1K

)
𝑎𝑎

(𝜉, 𝜉) =
∑
𝑎

(
(I − K)−1K

)
𝑎𝑎

(0, 0),

where we used the cyclicity of the trace. Introducing the notation

[A] =
(
A𝑎,𝑏 (0, 0)

)
𝑎,𝑏=1,...,𝑛,
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this tells us that Φ can be expressed as an n-dimensional trace,

Φ(𝑡, 𝑟, 𝑥) = tr[RK] with R = (I − K)−1.

Note here that I − K is invertible because the determinant is nonzero. This proves equation (1.7) (after
identifying 𝜕𝑟 with D𝑟 as in Section 1.1) with, in the present notation,

𝑄 = [RK] .

4.2. Formulas for the partial derivatives

The goal is now is to use Theorem 1.3(1)–(3) to show that algebraically, Q satisfies the matrix KP
equation (1.8).

Write K′ = 𝜕𝑟K. Using the general formula 𝜕𝑎 (I − A(𝑎))−1 = (I − A(𝑎))−1𝜕𝑎A(𝑎) (I − A(𝑎))−1 for
an operator A(𝑎) depending smoothly on a parameter a, together with the identity

KR = RK = R − I,

which we will use repeatedly, we have

𝜕𝑟𝑄 = [𝜕𝑟 (RK)] = [RK′RK + RK′] = [RK′R]
and similarly

𝜕2
𝑟𝑄 = 2[RK′RK′R] + [RK′′R],
𝜕3
𝑟𝑄 = 6[RK′RK′RK′R] + 3[RK′′RK′R] + 3[RK′RK′′R] + [RK′′′R],
𝜕𝑡𝑄 = [R𝜕𝑡KR] .

Next we want to compute (𝜕𝑟𝑄)2. Note that, in general,

([A] [B])𝑎,𝑏 = −
∑
𝑐

∫ ∞

0
𝑑𝜂 𝜕𝜂 (A𝑎𝑐 (0, 𝜂)B𝑐𝑏 (𝜂, 0))

= −
∑
𝑐

∫ ∞

0
𝑑𝜂

(
𝜕𝜂A𝑎𝑐 (0, 𝜂)B𝑐𝑏 (𝜂, 0) + A𝑎𝑐 (0, 𝜂)𝜕𝜂B𝑐𝑏 (𝜂, 0)

)
= −(d2AB)𝑎𝑏 (0, 0) − (Ad1B)𝑎𝑏 (0, 0),

so that the following integration-by-parts formula holds:

[A] [B] = −[Ad1B + d2AB] . (4.1)

We will use this in the formula

(𝜕𝑟𝑄)2 = ([RK′RK] + [RK′])2

= [RK′RK]2 + [RK′RK] [RK′] + [RK′] [RK′RK] + [RK′]2.

Using d2 (K𝑎K𝑏) = K𝑎d2K𝑏 , the first term equals

−[RK′R(d2KR + Kd1R)K′RK]
= −[RK′RK′RK′RK] + [RK′R(d1KR − Kd1R)K′RK] .

Similarly, the fourth term equals

−[RK′′RK′] + [R(d1K′R − K′d1R)K′]
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and the two middle ones equal

− [RK′RK′RK′] − [RK′′RK′RK]
+ [RK′R(d1KR − Kd1R)K′] + [R(d1K′R − K′d1R)K′RK] .

Using this together with Theorem 1.3(1) and (2), which in the current notation read 𝜕𝑟K = (d1 + d2)K
and 𝜕𝑡K = − 1

3
(
d3

1 + d3
2
)

K, we get

12𝜕𝑡𝑄(𝑡, 𝑟, 𝑥) + 𝜕3
𝑟𝑄(𝑡, 𝑟, 𝑥) + 6(𝜕𝑟𝑄(𝑡, 𝑟, 𝑥))2

= − 4
[
R

(
d3

1 + d3
2
)

KR
]
+ 6[RK′RK′RK′R] + 3[RK′′RK′R] −(1) + (2) + (3)

+ 3[RK′RK′′R] +
[
R

(
d3

1 + d3
2 + 3d2

1d2 + 3d1d2
2
)

KR
]

+(4) + (5)
− 6[RK′′RK′] + 6[R(d1K′R − K′d1R)K′] −(6) + (7)
− 6[RK′RK′RK′] − 6[RK′′RK′RK] −(8) − (9)
+ 6[RK′R(d1KR − Kd1R)K′] +(10)
+ 6[R(d1K′R − K′d1R)K′RK] +(11)
− 6[RK′RK′RK′RK] + 6[RK′R(d1KR − Kd1R)K′RK] . −(12) + (13)

The element we have marked (12) equals 6[RK′RK′RK′R] − 6[RK′RK′RK′], so

𝑆I := −(1) + (2) + (5) − (8) − (12) = −3
[
R

(
d3

1 + d3
2 − d2

1d2 − d1d2
2

)
KR

]
= −3

[
R(d1 − d2)2(d1 + d2)KR

]
= −3

[
R(d1 − d2)2K′R

]
.

Similarly,

𝑆II := +(3) + (4) − (6) − (9) = −3[RK′′RK′R] + 3[RK′RK′′R]

and

𝑆III := +(7) + (10) + (11) + (13)
= +6[R(d1K′R − K′d1R)K′R] + 6[RK′R(d1KR − Kd1R)K′R] .

So

4𝜕𝑡𝑄(𝑡, 𝑟, 𝑥) + 1
3𝜕

3
𝑟𝑄(𝑡, 𝑟, 𝑥) + 2(𝜕𝑟𝑄(𝑡, 𝑟, 𝑥))2 = 1

3 (𝑆I + 𝑆II + 𝑆III)

= −[RK′′RK′R] + [RK′RK′′R] −
[
R

(
d3

1 + d3
2 − d2

1d2 − d1d2
2

)
KR

]
+ 2[R(d1K′R − K′d1R)K′R] + 2[RK′R(d1KR − Kd1R)K′R]

= −[R(d2 − d1)K′RK′R] + [RK′RK′′R] −
[
R

(
d3

1 + d3
2 − d2

1d2 − d1d2
2

)
KR

]
− 2[RK′Rd1RK′R] + 2[RK′Rd1KRK′R] .

Now using −[RK′Rd1RK′R] + [RK′Rd1KRK′R] = −[RK′Rd1 (I − K)RK′R], which equals
−[RK′Rd1K′R], yields

4𝜕𝑡𝑄(𝑡, 𝑟, 𝑥) + 1
3𝜕

3
𝑟𝑄(𝑡, 𝑟, 𝑥) + 2(𝜕𝑟𝑄(𝑡, 𝑟, 𝑥))2

= −[R(d2 − d1)K′RK′R] − [RK′R(d1 − d2)K′R] −
[
R(d1 − d2)2K′R

]
. (4.2)

Remark 4.1. At this stage we can already see that the one-point distribution in the flat case 𝔥0 ≡ 0
satisfies the (integrated) KdV equation. In fact, the arguments in [MQR17, Sec. 4.4] lead in this case
(in the language of the Brownian scattering operator (1.21)) to Khypo(𝔥)

𝑡 = I−U𝑡 (I− 𝜚) 𝜒̄0(I− 𝜚)U−1
𝑡 =
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U𝑡 𝜚U−1
𝑡 , with 𝜚 𝑓 (𝑥) = 𝑓 (−𝑥), which yields K(𝑢, 𝑣) = (2𝑡)−1/3 Ai

(
(2𝑡)−1/3(𝑢 + 𝑣 + 2𝑟)

)
. Hence K is a

Hankel kernel, and thus the right-hand side in equation (4.2) vanishes.

Next we add the derivatives in the 𝑥𝑖 variables. As for 𝜕2
𝑟𝑄, we have

𝜕2
𝑥𝑄 = 2[R𝜕𝑥KR𝜕𝑥KR] +

[
R𝜕2

𝑥KR
]
. (4.3)

On the other hand, if we apply 𝜕𝑟 to equation (4.2) and use Theorem 1.3(3) to write (d2 − d1)K′ = 𝜕𝑥K,
we get

− [RK′R𝜕𝑥KRK′R] − [R𝜕𝑥K′RK′R] − 2[R𝜕𝑥KRK′RK′R] − [R𝜕𝑥KRK′′R]
+ 2[RK′RK′R𝜕𝑥KR] + [RK′′R𝜕𝑥KR] + [RK′R𝜕𝑥K′R] + [RK′R𝜕𝑥KRK′R]
+ [RK′R(d1 − d2)𝜕𝑥KR] + [R(d1 − d2)𝜕𝑥K′R] + [R(d1 − d2)𝜕𝑥KRK′R] .

Note that the first and eighth terms cancel. We want to add 𝜕2
𝑥𝑄(𝑡, 𝑟, 𝑥). Since (d1 − d2)𝜕𝑥K′ =

𝜕𝑥
(
d2

1 − d2
2
)

K = −𝜕2
𝑥K, the next-to-last term in the last expression cancels the second bracket on the

right-hand side of equation (4.3). Using additionally 𝜕𝑥K′ + (d1 −d2)𝜕𝑥K = 2d1𝜕𝑥K and −𝜕𝑥K′ + (d1 −
d2)𝜕𝑥K = −2d2𝜕𝑥K and writing

𝑞 = 𝜕𝑟𝑄,

we deduce that

4𝜕𝑡𝑞 + 1
3𝜕

3
𝑟 𝑞 + 2(𝑞𝜕𝑟𝑞 + 𝜕𝑟𝑞 𝑞) + 𝜕2

𝑥𝑄(𝑡, 𝑟, 𝑥)

= 2
(
− [Rd2𝜕𝑥KRK′R] − [R𝜕𝑥KRK′RK′R] − 1

2 [R𝜕𝑥KRK′′R]

+ [RK′RK′R𝜕𝑥KR] + 1
2 [RK′′R𝜕𝑥KR] + [RK′Rd1𝜕𝑥KR]

+ [R𝜕𝑥KR𝜕𝑥KR]
)
. (4.4)

We claim that the right-hand side equals two times

−
(
[R𝜕𝑥KRd1KRK′R] + [R𝜕𝑥d2KRK′R]

)
+

(
[RK′Rd2KR𝜕𝑥KR] + [RK′Rd1𝜕𝑥KR]

)
−

(
[R𝜕𝑥KRd2KRK′R] + [R𝜕𝑥KRd1K′R]

)
+

(
[RK′Rd1KR𝜕𝑥KR] + [Rd2K′R𝜕𝑥KR]

)
. (4.5)

To see this, express the right-hand side of equation (4.4) as 2(𝑟1 + 𝑟2 + · · · + 𝑟7), express formula (4.5)
as 𝑞1 + 𝑞2 + · · · + 𝑞8 and note first that 𝑟1 = 𝑞2, 𝑟6 = 𝑞4, 𝑟2 = 𝑞1 + 𝑞5 and 𝑟4 = 𝑞3 + 𝑞7. On the
other hand, we have 𝑟3 = − 1

2 [R𝜕𝑥KR(d1 + d2)K′R] = 𝑞6 + 1
2 [R𝜕𝑥KR(d1 − d2)K′R] = 𝑞6 − 1

2𝑟7
and similarly 𝑟5 = 1

2 [R(d1 + d2)K′R𝜕𝑥KR] = 𝑞8 + 1
2 [R(d1 − d2)K′R𝜕𝑥KR] = 𝑞8 − 1

2𝑟7. This gives
𝑟3 + 𝑟5 + 𝑟7 = 𝑞6 + 𝑞8, and finishes proving the claim.

Integrating by parts (i.e., using equation (4.1)) within each parenthesis in formula (4.5), we get

2𝜕𝑡𝑞 + 1
6𝜕

3
𝑟 𝑞 + (𝑞𝜕𝑟𝑞 + 𝜕𝑟𝑞 𝑞) + 1

2𝜕
2
𝑥𝑄(𝑡, 𝑟, 𝑥)

= − [R𝜕𝑥K(Rd1KR − d1R)K′R] + [R𝜕𝑥K] [RK′R]
+ [RK′(Rd2KR − d2R)𝜕𝑥KR] − [RK′R] [𝜕𝑥KR]
− [R𝜕𝑥K(Rd2KR − d2R)K′R] + [R𝜕𝑥KR] [K′R]
+ [RK′(Rd1KR − d1R)𝜕𝑥KR] − [RK′] [R𝜕𝑥KR] .

Write this as 𝑠1 + · · · + 𝑠8. Notice that 𝑠1 + 𝑠5 yields a term involving

(Rd1KR − d1R) + (Rd2KR − d2R) = R(Kd1K + d2KK)R − (d1 + d2)I,
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where we have used RK = KR = R − I again, and thus integrating by parts one more time we get

𝑠1+𝑠5 = −[R𝜕𝑥K(R(Kd1K + d2KK)R − (d1 + d2)I)K′R]
= [R𝜕𝑥KRK] [KRK′R] + [R𝜕𝑥K((d1 + d2)I)K′R]
= ([R𝜕𝑥KR] − [R𝜕𝑥K]) ([RK′R] − [K′R]) + [R𝜕𝑥K((d1 + d2)I)K′R]
= [R𝜕𝑥KR] [RK′R] − 𝑠2 − 𝑠6 + [R𝜕𝑥K] [K′R] + [R𝜕𝑥K((d1 + d2)I)K′R] .

In a similar fashion, we get

𝑠3 + 𝑠7 = −[RK′R] [R𝜕𝑥KR] − 𝑠4 − 𝑠8 − [RK′] [𝜕𝑥KR] − [RK′((d1 + d2)I)𝜕𝑥KR] .

Therefore,

2𝜕𝑡𝑞 + 1
6𝜕

3
𝑟 𝑞 + (𝑞𝜕𝑟𝑞 + 𝜕𝑟𝑞 𝑞) + 1

2𝜕
2
𝑥𝑄(𝑡, 𝑟, 𝑥)

= [R𝜕𝑥K] [K′R] + [R𝜕𝑥K((d1 + d2)I)K′R] − [RK′] [𝜕𝑥KR]
− [RK′((d1 + d2)I)𝜕𝑥KR] + [R𝜕𝑥KR] [RK′R] − [RK′R] [R𝜕𝑥KR] .

In order to complete the proof we note that if A and B are nice kernels, then integrating by parts we get

[A((d1 + d2)I)B] = [Ad1B] + [Ad2IB] = −[A] [B],

which immediately yields

2𝜕𝑡𝑞 + 1
6𝜕

3
𝑟 𝑞 + (𝑞𝜕𝑟𝑞 + 𝜕𝑟𝑞 𝑞) + 1

2𝜕
2
𝑥𝑄(𝑡, 𝑟, 𝑥) = [R𝜕𝑥KR] [RK′R] − [RK′R] [R𝜕𝑥KR] .

The right-hand side equals 𝜕𝑥𝑄𝑞 − 𝑞𝜕𝑥𝑄, so the equation becomes equation (1.8), as needed.

4.3. Proof of Theorem 1.3

For r inside the interval where the trace norm of K is strictly less than 1, everything in the previous
section is well defined, because that condition ensures that (I−K)−1 − I is trace class, and therefore the
series for the brackets are convergent. So the algebraic computations hold pointwise for such r.

Since the kernel K(𝑢, 𝑣) is real analytic in 𝑡 > 0, x and r, the Fredholm determinant det(I−K(𝑡, 𝑥, 𝑟))
is as well, since it is given by its Fredholm series, each of whose terms is real analytic and which
converges uniformly because K is trace class uniformly in compact sets of 𝑡, 𝑥, 𝑟 . Since the determinant
never vanishes, 𝜕2

𝑟 log det(I − K) is also real analytic, as are all the terms in the KP equation (either the
scalar or matrix version). Therefore the left-hand side of the KP equation (1.8) (or equation (1.9)) is a
real analytic function. We have proved that this function vanishes for r in an open interval, and therefore
it vanishes everywhere.

Appendix A. Multipoint initial data

A.1. 𝑡 → 0 limit of the Brownian scattering operator

Let the initial data for the KPZ fixed point be a finite collection of narrow wedges 𝔡 �𝑏
�𝑎 as in Example 1.6.

Fix 𝑥1 < · · · < 𝑥𝑚. Our goal is to compute the limit

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 K

hypo
(
𝔡 �𝑏
�𝑎

)
𝑡 𝑒𝑥 𝑗𝜕

2

in operator norm in 𝐿2 ([𝑟,∞)) for any fixed r, with Khypo(𝔥)
𝑡 defined in equation (1.21). The convergence

could be upgraded to trace norm in most cases, but it does not hold, for example, in the important case
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𝑚 = 1, 𝑥1 = 𝑎1, where it is easy to see that the limit itself is not trace class (see equation (A.2)). Nor
should it be; one should not expect convergence to the initial data in such a strong sense. What we are
aiming for here is just to understand the 𝑡 → 0 behaviour of the matrix kernel.

Recall the operators S𝑡 ,𝑥 introduced in equation (1.14), which satisfy the differential relations (1.15).
They can be expressed as S𝑡 ,𝑥 = 𝑒−

1
3 𝑡𝜕

3+𝑥𝜕2
= 𝑒𝑥𝜕

2 U𝑡 , which means that

Khypo(𝔥)
𝑡 = lim

ℓ→∞
S−𝑡 ,−ℓPHit 𝔥

−ℓ,ℓS𝑡 ,−ℓ .

We begin by studying the single narrow wedge case, 𝑘 = 1, writing 𝑎 = 𝑎1, 𝑏 = 𝑏1. In this case
we have, for ℓ > 𝑎, PHit𝔡𝑏𝑎

−ℓ,ℓ = 𝑒 (𝑎+ℓ)𝜕
2
𝜒̄𝑏𝑒

(ℓ−𝑎)𝜕2 by definition of the left-hand side and where 𝜒̄𝑏 was
defined in equation (1.19). Then

Khypo(𝔡𝑏𝑎)
𝑡 = lim

ℓ→∞
S−𝑡 ,−ℓ𝑒

(𝑎+ℓ)𝜕2
𝜒̄𝑏𝑒

(ℓ−𝑎)𝜕2 S𝑡 ,−ℓ = S−𝑡 ,𝑎 𝜒̄𝑏S𝑡 ,−𝑎 . (A.1)

Consider first the case 𝑥𝑖 ≤ 𝑎 ≤ 𝑥 𝑗 . Since S±𝑡 ,𝑥 −→ 𝑒𝑥𝜕
2 as 𝑡 → 0 for all 𝑥 ≥ 0 in operator norm, by

equation (A.1) we get

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 Khypo(𝔡𝑏𝑎)

𝑡 𝑒𝑥 𝑗𝜕
2
= lim

𝑡→0
S−𝑡 ,𝑎−𝑥𝑖 𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎 = 𝑒 (𝑎−𝑥𝑖 )𝜕

2
𝜒̄𝑏𝑒(𝑥 𝑗−𝑎)𝜕2

= PHit 𝔡𝑏𝑎
𝑥𝑖 ,𝑥 𝑗

(A.2)

in operator norm and in all of 𝐿2 (R).
Next consider the case 𝑥𝑖 ≤ 𝑥 𝑗 and 𝑎 ∉

[
𝑥𝑖 , 𝑥 𝑗

]
. We will show that in this case our operator goes to

0 as 𝑡 → 0. We will assume for simplicity that 𝑎 > 𝑥 𝑗 ; the case 𝑎 < 𝑥𝑖 works in the same way. We have
𝜒𝑟 𝑒

−𝑥𝑖𝜕2 Khypo(𝔡𝑏𝑎)
𝑡 𝑒𝑥 𝑗𝜕

2
𝜒𝑟 =

(
𝜒𝑟S−𝑡 ,𝑎−𝑥𝑖 𝜒̄𝑏

) (
𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎𝜒𝑟

)
, and the first factor goes to 𝜒𝑟 𝑒

(𝑎−𝑥𝑖 )𝜕2
𝜒̄𝑏

as 𝑡 → 0 in operator norm, so it is enough to show that 𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎𝜒𝑟 goes to 0. We estimate its Hilbert–
Schmidt norm,

��𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎𝜒𝑟
��2

2 =
∫ ∞

𝑟
𝑑𝑣

∫ 𝑏

−∞
𝑑𝜂 𝑡−2/3𝑒4𝑥̄3

𝑗/3𝑡2−2(𝜂−𝑣) 𝑥̄ 𝑗/𝑡Ai
(
𝑡−1/3(𝑣 − 𝜂) + 𝑡−4/3𝑥2

𝑗

)2
, (A.3)

where 𝑥 𝑗 = 𝑥 𝑗 −𝑎. Split the 𝜂 integral according to whether 𝜂 ≤ 𝑣∧𝑏 or 𝑣∧𝑏 < 𝜂 ≤ 𝑏. On the first piece
we may use the classical bound on the Airy function, |𝐴𝑖(𝑠) | ≤ 𝐶𝑒−

2
3 (𝑠∨0)3/2 , to see that the integral

is bounded by 𝐶𝑡−2/3𝑒
4
3 𝑥̄

3
𝑗/𝑡

2 ∫ ∞
𝑟

𝑑𝑣
∫ 𝑣∧𝑏
−∞ 𝑑𝜂 𝑒−

4
3 (𝑣−𝜂)

3/2/𝑡1/2− 4
3 | 𝑥̄ 𝑗 |3/𝑡2−2(𝜂−𝑣) 𝑥̄ 𝑗/𝑡 . The exponent in the 𝜂

integral is maximised at the edge of the integration, 𝜂 = 𝑣 ∧ 𝑏, so applying Laplace’s method we deduce
that the same integral is bounded by 𝐶𝑡−𝑐 𝑒−

8
3 | 𝑥̄ 𝑗 |3/𝑡2

[
|𝑟 − 𝑏 | +

∫ ∞
𝑏

𝑑𝑣 𝑒−
4
3 (𝑣−𝑏)

3/2/𝑡1/2−2(𝑏−𝑣) 𝑥̄ 𝑗/𝑡
]
, for

some 𝑐, 𝐶 > 0, which clearly goes to 0 as 𝑡 → 0. On the second piece the integration region is bounded,
so we get directly (since 𝑥 𝑗 < 0) that the integral goes to 0. This shows that the left-hand side of equation
(A.3) goes to 0 as 𝑡 → 0, as desired.

The last possibility is that 𝑥𝑖 > 𝑥 𝑗 . In this case the operator goes to 0 again as 𝑡 → 0. Now one has
to estimate the Hilbert–Schmidt norm of the whole operator 𝑒−𝑥𝑖𝜕2 Khypo(𝔡𝑏𝑎)

𝑡 𝑒𝑥 𝑗𝜕
2
= S−𝑡 ,𝑎−𝑥𝑖 𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎

on 𝐿2 ([𝑟,∞)); the estimates are a bit more tedious but very similar to the ones we used in the previous
case, so we skip the details.

The conclusion of all this is that, in the case of narrow wedge initial data 𝔡𝑏𝑎 ,

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 Khypo(𝔡𝑏𝑎)

𝑡 𝑒𝑥 𝑗𝜕
2
= lim

𝑡→0
S−𝑡 ,𝑎−𝑥𝑖 𝜒̄𝑏S𝑡 ,𝑥 𝑗−𝑎

= 𝑒 (𝑎−𝑥𝑖 )𝜕
2
𝜒̄𝑏𝑒(𝑥 𝑗−𝑎)𝜕2 1𝑥𝑖≤𝑎≤𝑥 𝑗 = PHit 𝔡𝑏𝑎

𝑥𝑖 ,𝑥 𝑗
1𝑥𝑖≤𝑥 𝑗 (A.4)

in operator norm in 𝐿2 ([𝑟,∞)).
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Now we turn to the general case 𝔥 = 𝔡 �𝑏
�𝑎 . For ℓ > |𝑎1 | ∨ |𝑎𝑘 | we have, by inclusion-exclusion, that

PHit𝔡 �𝑏
�𝑎

−ℓ,ℓ equals

𝑘∑
𝑛=1

(−1)𝑛+1
∑

1≤𝑝1< · · ·<𝑝𝑛≤𝑘
𝑒(𝑎𝑝1−ℓ)𝜕2

𝜒̄𝑏𝑝1
𝑒(𝑎𝑝2−𝑎𝑝1)𝜕2

𝜒̄𝑏𝑝2
· · · 𝑒(𝑎𝑝𝑛−𝑎𝑝𝑛−1 )𝜕2

𝜒̄𝑏𝑝𝑛
𝑒(ℓ−𝑎𝑝𝑛 )𝜕2

,

so proceeding as in equation (A.1) we get that 𝑒−𝑥𝑖𝜕2 K
hypo

(
𝔡 �𝑏
�𝑎

)
𝑡 𝑒𝑥 𝑗𝜕

2 equals

𝑘∑
𝑛=1

(−1)𝑛+1
∑

1≤𝑝1< · · ·<𝑝𝑛≤𝑘
S−𝑡 ,𝑎𝑝1−𝑥𝑖 𝜒̄𝑏𝑝1

𝑒(𝑎𝑝2−𝑎𝑝1)𝜕2
𝜒̄𝑏𝑝2

· · · 𝑒(𝑎𝑝𝑛−𝑎𝑝𝑛−1 )𝜕2
𝜒̄𝑏𝑝𝑛

S𝑡 ,𝑥 𝑗−𝑎𝑝𝑛
.

Each summand can be factored as(
S−𝑡 ,𝑎𝑝1−𝑥𝑖 𝜒̄𝑏𝑝1

S𝑡 ,0

) (
S−𝑡 ,𝑎𝑝2−𝑎𝑝1

𝜒̄𝑏𝑝2
S𝑡 ,0

)
· · ·

(
S−𝑡 ,𝑎𝑝𝑛−𝑎𝑝𝑛−1

𝜒̄𝑏𝑝𝑛
S𝑡 ,𝑥 𝑗−𝑎𝑝𝑛

)
.

By equation (A.4), as 𝑡 → 0 the first factor goes to P
Hit 𝔡

𝑏𝑝1
𝑎𝑝1

𝑥𝑖 ,𝑎𝑝1
1𝑥𝑖≤𝑎𝑝1

, the last factor goes to

P
Hit 𝔡𝑏𝑝𝑛

𝑎𝑝𝑛
𝑎𝑝𝑛−1 ,𝑥 𝑗

1𝑎𝑝𝑛 ≤𝑥 𝑗 and each of the inner factors goes to P
Hit 𝔡𝑏𝑝𝑠

𝑎𝑝𝑠
𝑎𝑝𝑠−1 ,𝑎𝑝𝑠

, 2 ≤ 𝑠 ≤ 𝑛 − 1. Therefore

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 K

hypo
(
𝔡 �𝑏
�𝑎

)
𝑡 𝑒𝑥 𝑗𝜕

2

=
𝑘∑

𝑛=1
(−1)𝑛+1

∑
1≤𝑝1< · · ·<𝑝𝑛≤𝑘

P
Hit 𝔡

𝑏𝑝1
𝑎𝑝1

𝑥𝑖 ,𝑎𝑝1
P

Hit 𝔡
𝑏𝑝2
𝑎𝑝2

𝑎𝑝1 ,𝑎𝑝2
· · ·PHit 𝔡𝑏𝑝𝑛

𝑎𝑝𝑛
𝑎𝑝𝑛−1 ,𝑥 𝑗

1𝑥𝑖≤𝑎𝑝1 , 𝑥 𝑗 ≥𝑎𝑝𝑛
,

and then, using inclusion-exclusion again, we deduce finally that

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 K

hypo
(
𝔡 �𝑏
�𝑎

)
𝑡 𝑒𝑥 𝑗𝜕

2
= PHit 𝔡 �𝑏

�𝑎
𝑥𝑖 ,𝑥 𝑗

1𝑥𝑖≤𝑥 𝑗

in operator norm in 𝐿2 ([𝑟,∞)).

Appendix A.2. Matrix KP initial data

Now we proceed formally. Consider compactly supported initial data 𝔥 ∈ UC, meaning that 𝔥(𝑦) = −∞
for y outside some compact interval. Approximating 𝔥 by initial data of the form 𝔡 �𝑏

�𝑎 , we obtain

lim
𝑡→0

𝑒−𝑥𝑖𝜕
2 Khypo(𝔥)

𝑡 𝑒𝑥 𝑗𝜕
2
= PHit 𝔥

𝑥𝑖 ,𝑥 𝑗
1𝑥𝑖≤𝑥 𝑗 .

In terms of the extended Brownian scattering operator (1.22), this gives

(K0)𝑖 𝑗 := Khypo(𝔥)
0,ext

(
𝑥𝑖 , ·; 𝑥 𝑗 , ·

)
:= lim

𝑡→0
𝑒−𝑥𝑖𝜕

2 Khypo(𝔥)
𝑡 ,ext

(
𝑥𝑖 , ·; 𝑥 𝑗 , ·

)
𝑒𝑥 𝑗𝜕

2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−PNo hit 𝔥

𝑥𝑖 ,𝑥 𝑗
if 𝑖 < 𝑗 ,

𝜒̄𝔥(𝑥𝑖) if 𝑖 = 𝑗 ,
0 if 𝑖 > 𝑗 .

(A.5)
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Remark A.1. This formula formally recovers the correct initial data for the KPZ fixed point: the kernel
K𝑖 𝑗 (𝑢, 𝑣) from equation (1.23) as 𝑡 → 0 becomes (K0)𝑖 𝑗

(
𝑢 + 𝑟𝑖 , 𝑣 + 𝑟 𝑗

)
and, in particular, it is upper

triangular, so det(I − K)𝐿2 (R+) ⊕···⊕𝐿2 (R+) as 𝑡 → 0 becomes

det
(
I − K0

)
𝐿2 ( [𝑟1 ,∞)) ⊕···⊕𝐿2 ( [𝑟𝑛 ,∞)) =

𝑛∏
𝑖=1

det
(
I − 𝜒̄𝔥(𝑥𝑖 )

)
𝐿2 ( [𝑟𝑖 ,∞)) =

𝑛∏
𝑖=1

1𝑟𝑖≥𝔥(𝑥𝑖 ) ,

as desired.

Now we compute [R0K0] with K0 as in formula (A.5). In Section 4 our kernels acted on the n-
fold direct sum of 𝐿2 (R+), but here K0 acts on 𝐿2 ([𝑟1,∞)) ⊕ · · · ⊕ 𝐿2 ([𝑟𝑛,∞)); this corresponds
in the current setting to evaluating the (𝑖, 𝑗) entry of (I − K0)−1K0 at

(
𝑟𝑖 , 𝑟 𝑗

)
. Additionally, it is

on this last space that we need to compute compositions of operators; to make this explicit it is
convenient to replace the kernel entries (K0)𝑖 𝑗 by 𝜒𝑟𝑖 (K0)𝑖 𝑗 𝜒𝑟 𝑗 and simply compute on the n-fold direct
sum of 𝐿2 (R). Doing this, and since K0 is upper triangular, we can expand (formally) the entries of
(I − K0)−1K0 as

(
(I − K0)−1K0

)
𝑖 𝑗
= 1𝑖≤ 𝑗

∑
𝜋:𝑖→ 𝑗
𝜋 incr.

|𝜋 |−1∏
ℓ=1

𝜒𝑟𝜋 (ℓ) (K0)𝜋 (ℓ) , 𝜋 (ℓ+1) 𝜒𝑟𝜋 (ℓ+1) , (A.6)

where the sum is over nondecreasing paths 𝜋 going from i to j along integers and |𝜋 | denotes the length
of the path. Fix 𝑖 ≤ 𝑗 and assume first that 𝑟ℓ ≥ 𝔥(𝑥ℓ ) for each 𝑖 ≤ ℓ ≤ 𝑗 . Consider a fixed path 𝜋 from
i to j. If 𝜋(ℓ) = 𝜋(ℓ + 1) for some ℓ, then the corresponding factor in the product inside the sum will be
𝜒𝑟𝜋 (ℓ) 𝜒̄𝔥(𝑥𝜋 (ℓ) ) 𝜒𝑟𝜋 (ℓ) = 0, so only strictly increasing paths contribute to the sum and we get

(
(I − K0)−1K0

)
𝑖 𝑗
= 1𝑖< 𝑗

∑
𝜋:𝑖→ 𝑗

𝜋 str. incr.

(−1) |𝜋 |−1
|𝜋 |−1∏
ℓ=1

𝜒𝑟𝜋 (ℓ) P
No hit 𝔥
𝑥𝜋 (ℓ) ,𝑥𝜋 (ℓ+1) 𝜒𝑟𝜋 (ℓ+1)

(note that this sum is now finite). Evaluating at
(
𝑟𝑖 , 𝑟 𝑗

)
and applying inclusion-exclusion again, we

deduce that, as desired (compare with equation (1.27)),

[R0K0]𝑖 𝑗 = −1𝑖< 𝑗PB(𝑥𝑖)=𝑟𝑖

(
B(𝑦) ≥ 𝔥(𝑦) ∀ 𝑦 ∈

[
𝑥𝑖 , 𝑥 𝑗

]
,

B(𝑥ℓ ) ≤ 𝑟ℓ for each 𝑥ℓ ∈
(
𝑥𝑖 , 𝑥 𝑗

)
, B

(
𝑥 𝑗

)
∈ 𝑑𝑟 𝑗

)
/𝑑𝑟 𝑗

= −1𝑖< 𝑗P
≥𝔥,≤−𝔡−�𝑟�𝑥
𝑥𝑖 ,𝑥 𝑗

(
𝑟𝑖 , 𝑟 𝑗

)
. (A.7)

Suppose next that 𝑟𝑚 < 𝔥(𝑥𝑚) for some 𝑖 ≤ 𝑚 ≤ 𝑗 , and for simplicity assume that this is the
only such index satisfying the condition (the argument can be generalised easily). Assume also that
𝑖 < 𝑗 . From the argument in the previous case, we know that if 𝜋 : 𝑖 → 𝑗 has a constant piece
which stays at any index other than m, then 𝜋 does not contribute to the sum in equation (A.6). Hence
any path 𝜋 from i to j which does contribute to the sum can be decomposed as 𝜋1 ◦ 𝜐 ◦ 𝜋2, with
𝜋1 : 𝑖 → 𝑚 and 𝜋2 : 𝑚 → 𝑗 strictly increasing (we allow for 𝜋1 or 𝜋2 to be empty if 𝑚 = 𝑖 or
𝑚 = 𝑗), and 𝜐 staying at m for a given number of steps (which could be 0). The product inside the
sum in equation (A.6) splits between factors coming from the three pieces of the path, and from the
middle part we get a factor

(
𝜒𝑟ℓ 𝜒̄𝔥(𝑥𝑚) 𝜒𝑟𝑚

) |𝜐 | = I · 1 |𝜐 |=0 + 𝜒𝑟𝑚 𝜒̄𝔥(𝑥𝑚)1 |𝜐 |>0. In other words, and
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repeating the previous argument,

(
(I − K0)−1K0

)
𝑖 𝑗
= −

∑
𝜋1:𝑖→𝑚
𝜋1 str. incr.

∑
𝜋2:𝑚→ 𝑗
𝜋2 str. incr.

∑
𝜈≥0

(
(−1) |𝜋1 |−1

|𝜋1 |−1∏
ℓ=1

𝜒𝑟𝜋1 (ℓ)
PNo hit 𝔥
𝑥𝜋1 (ℓ) ,𝑥𝜋1 (ℓ+1) 𝜒𝑟𝜋1 (ℓ+1)

)

×
(
I · 1𝜈=0 + 𝜒𝑟𝑚 𝜒̄𝔥(𝑥𝑚)1𝜈>0

) (
(−1) |𝜋2 |−1

|𝜋2 |−1∏
ℓ=1

𝜒𝑟𝜋2 (ℓ)
PNo hit 𝔥
𝑥𝜋2 (ℓ) ,𝑥𝜋2 (ℓ+1) 𝜒𝑟𝜋2 (ℓ+1)

)

= −
∑
𝜈≥0

𝜒𝑟𝑖P
≥𝔥,≤𝔡�𝑟

�𝑥
𝑥𝑖 ,𝑥𝑚

(
I · 1𝜈=0 + 𝜒𝑟𝑚 𝜒̄𝔥(𝑥𝑚)1𝜈>0

)
P≥𝔥,≤𝔡�𝑟

�𝑥
𝑥𝑚 ,𝑥 𝑗

𝜒𝑟 𝑗 .

But P≥𝔥,≤𝔡�𝑟
�𝑥

𝑥𝑖 ,𝑥𝑚 (𝑢, 𝑣) = 0, because at the endpoint v it requires 𝔥(𝑥𝑚) ≤ 𝑣 ≤ 𝑟𝑚 (the analogous statement
holds for the other factor). Hence we conclude that, in this case, [R0K0]𝑖, 𝑗 = 0, which for the same
reason means that equation (A.7) still holds.

Suppose finally that 𝑖 = 𝑗 and 𝑟𝑖 < 𝔥(𝑥𝑖). Now the only possible paths in equation (A.6) are constant
paths 𝜋 of arbitrary length |𝜋 | ≥ 1. Each such |𝜋 | contributes a term of the form 𝜒𝑟𝑖 𝜒̄𝔥(𝑥𝑖) , which
evaluated at (𝑟𝑖 , 𝑟𝑖) is taken to be 1, and hence [R0K0]𝑖,𝑖 diverges to ∞ in this case (which coincides
with the physical meaning of this quantity, namely 𝜕𝑟𝑖 log 𝐹 (𝑡, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛)).

The conclusion is then that 𝑄(0, 𝑥1, . . . , 𝑥𝑛, 𝑟1, . . . , 𝑟𝑛) = [R0K0] satisfies equation (1.26).

Appendix B. Alternative derivation of the KP-II equation for narrow wedge multipoint
distributions

In this section we will derive the KP-II equation (2.5) for the Airy 2 process directly using the path-
integral formula for the KPZ fixed point [MQR17, Prop. 4.3]. Define 𝐹 (𝑡, �𝑥 + 𝑦, �𝑟 + 𝑎) as in the first
equality of equation (2.4). Then letting K𝑡 ,𝑥 = Khypo(𝔥0)

𝑡 (𝑥, ·; 𝑥, ·), we have

𝐹 (𝑡, �𝑥 + 𝑦, �𝑟 + 𝑎) = det
(
I − K𝑡 ,𝑥1+𝑦 + 𝜒̄𝑟1+𝑎𝑒

(𝑥2−𝑥1)𝜕2
𝜒̄𝑟2+𝑎 · · · 𝜒̄𝑟𝑚+𝑎𝑒

(𝑥1−𝑥𝑚)𝜕2 K𝑡 ,𝑥1+𝑦
)

= det
(
I − K + 𝜒̄𝑟1𝑒

(𝑥2−𝑥1)𝜕2
𝜒̄𝑟2 · · · 𝜒̄𝑟𝑚𝑒 (𝑥1−𝑥𝑚)𝜕2 K

)
,

with K = K𝑡 ,𝑥1+𝑦 (𝑎 + ·, 𝑎 + ·) = 𝑒𝑎𝜕K𝑡 ,𝑥1+𝑦𝑒
−𝑎𝜕. Note that the product of operators preceding K in

the last term does not depend on t, y or a; call it I − P, so that 𝐹 = det(I − PK). Up to here this is
general, but now we specialise to the narrow wedge case, for which K = 𝑒𝑎𝜕

(
S𝑡 ,−𝑥1−𝑦

)∗
𝜒̄0S𝑡 ,𝑥1+𝑦𝑒

−𝑎𝜕

(see equation (A.1)). Using the cyclic property of the determinant, we get

𝐹 = det
(
I − 𝜒̄0S𝑡 ,𝑥1+𝑦𝑒

−𝑎𝜕P𝑒𝑎𝜕
(
S𝑡 ,−𝑥1−𝑦

)∗
𝜒̄0

)
= det

(
I − 𝜒̄0𝑒

−𝑎𝜕S𝑡 ,𝑥1+𝑦P
(
S𝑡 ,−𝑥1−𝑦

)∗
𝑒𝑎𝜕 𝜒̄0

)
= det

(
I − 𝜒0𝜚𝑒

−𝑎𝜕S𝑡 ,𝑥1+𝑦P
(
S𝑡 ,−𝑥1−𝑦

)∗
𝑒𝑎𝜕𝜚𝜒0

)
,

with 𝜚 the reflection operator 𝜚 𝑓 (𝑥) = 𝑓 (−𝑥). So letting

L = 𝜚𝑒−𝑎𝜕S𝑡 ,𝑥1+𝑦P
(
S𝑡 ,−𝑥1−𝑦

)∗
𝑒𝑎𝜕𝜚 = 𝑒𝑎𝜕

(
S𝑡 ,𝑥1+𝑦

)∗ (𝜚P𝜚)S𝑡 ,−𝑥1−𝑦𝑒
−𝑎𝜕

(the second equality is a simple computation), we get that 𝐹 = det(I − L). Now 𝜕𝑎L(𝑢, 𝑣) = (𝜕𝑢 +
𝜕𝑣 )L(𝑢, 𝑣), 𝜕𝑡L(𝑢, 𝑣) = − 1

3
(
𝜕3
𝑢 + 𝜕3

𝑣

)
L(𝑢, 𝑣) and 𝜕𝑦L(𝑢, 𝑣) =

(
𝜕2
𝑢 − 𝜕2

𝑣

)
L(𝑢, 𝑣), which correspond to

Theorem 1.3(1), (2) and (3) (except for the change 𝑦 ↦→ −𝑦, which as in Section 2.3 is irrelevant), so
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the theorem implies that 𝜙 = 𝜕2
𝑎 log(𝐹) solves the KP-II equation in (𝑡, 𝑦, 𝑎), and translating back to the

D𝑟 , D𝑥 derivatives yields equation (2.5).
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