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ON BODIES ASSOCIATED WITH A GIVEN CONVEX BODY 

ENDRE MAKAI, JR. AND HORST MARTINI 

ABSTRACT. Let d > 2, and K c Rd be a convex body with 0 € int K. We consider 
the intersection body IK, the cross-section body CK and the projection body IlK of 
K, which satisfy IK C CK C FLAT. We prove that [bd(IIQ] n [bd(CAT)] ^ 0 (a joint 
observation with R. J. Gardner), while for d > 3 the relation [CAT] C int(nAT) holds 
for A" in a dense open set of convex bodies, in the Hausdorff metric. If IK = c • CK 
for some constant c > 0, then K is centred, and if both IK and CK are centred balls, 
then AT is a centred ball. If the chordal symmetral and the difference body of K are 
constant multiples of each other, then K is centred; if both are centred balls, then K is 
a centred ball. For d > 3 we determine the minimal number of facets, and estimate 
the minimal number of vertices, of a convex ûf-polytope P having no plane shadow 
boundary with respect to parallel illumination (this property is related to the inclusion 
[CP] C int(rLP)). 

1. Introduction. For d > 2, let K C Rd be a convex body. We recall the definition 
of the intersection body IK of AT, of the cross-section body CK ofK, and of the projection 
body UK of K. 

The body IK, for K a convex body with the origin 0 as an interior point (introduced 
by Lutwak [Lu], cf. also [Ga], Definition 8.1.1), is the star body with (necessarily contin
uous) radial function Vd-xiKHu1-) for u G AS^_1, where uL is the linear (d— l)-subspace 
orthogonal to the unit vector u, and Vd-\ means (d — l)-dimensional Lebesgue mea
sure. In a sense, the history of intersection bodies started with the paper [Bu], where it 
is proved that, if AT is a convex body in Rd centred at the origin, then IK also is a convex 
body with centre 0. The term intersection body appears later, namely in [Lu]. Intersection 
bodies are important for considering dual mixed volumes and questions like the famous 
Busemann-Petty problem (see [Lu] and [Ga], chapter 8). For example, any sufficiently 
smooth and strictly convex body in R3 with centre 0 is the intersection body of a star 
body, where the convex body K in the definition of IK above is replaced by a star-shaped 
body. 

The body CK (introduced by [Ma 92], cf. also [Ga], Definition 8.3.1) is the star body 
with (necessarily continuous) radial function maxAeR V^-x {Kn{uL + Aw)) for u G Sd"{. 
It was shown in [MM], Part II, that the cross-section body CT of a regular tetrahedron 
T C R3 is a cube, and an interesting open problem is the question whether cross-section 
bodies are convex, posed in [Ma 94], p. 279. 
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The body UK, going back to Minkowski, is the convex body with support function 
Vd-\(K | u1), where K \ u1 is the orthogonal projection of K to u1 (cf. [BF], Section 30, 
p. 50, where it is also shown that Vd_\(K \ u1) is in fact the support function of a centred 
convex body; see also [Ga], Definition 4.1.1). The set of projection bodies is equal to the 
set of d-dimcnsional zonoids centred at the origin, i.e., every such zonoid is the projection 
body of a certain class of convex bodies, and each projection body is such a zonoid. 
Zonoids are limits of zonotopes with respect to the Hausdorff metric, and zonotopes are 
vector sums of finitely many line segments. The literature on zonoids is widely covered 
by the surveys [SW], [GW], and [Ma 94]. For example, one sees easily that for Ta regular 
tetrahedron in 3-space, n r is a rhombic dodecahedron, and for special convex double 
cones C C R3 with axial symmetry, UC is a spindle-shaped body formed by revolving a 
cosine curve around the corresponding coordinate axis. 

We have evidently IK C CK for 0 G intK, and CK C UK by [Pe 52], p. 60, and [Ma 
89], the latter stating, equivalently, that the radial function of CK is at most the reciprocal 
of the distance function of UK, i.e., is at most the radial function of JTAT; cf. also [Ga], 
Theorem 8.3.3. For d = 2, one easily sees CK = UK = the convex body obtained 
from K + (-K) by rotating it through f about the origin, see [MM], Section 1, and [Ga], 
Theorems 4.1.4 and 8.3.5. 

In this paper we prove some theorems related to the bodies IK, CK and UK. 
Before Theorem 1, we recall some more definitions, cf. also [Fe], 2.10.1—2. For a 

metric space X and m > 0 the m-dimensional Hausdorff measure IF1 is an outer measure 
defined on all subsets ofXas follows: for A C X, 

IT(A) = s u p f i n f l Ë d i a m ^ r • W 7 ( 2 T ( 1 + %))\AC \JAi ^x> 
<5>0V l i=l 2 ' i = 1 

\/idmm(Ai)<8\\ 

where diam means diameter. All closed subsets ofXare H™-measurable (see [Fe], pp. 54, 
170). If m is a positive integer, one calls A CX, with IF1 (A) < oo, (H™ ,m)-rectifiable, if 

V£>0 3A£CX, ir(A\A£)<£, 

andA£ is the image of a bounded subset of Rm by a Lipschitz map defined on this subset, 
c/[Fe], pp. 251-252. 

If X is a Euclidean space and A is a compact C1 w-submanifold, then A is (H™,™)-
rectifiable, and FT^) coincides with the differential geometric m-volume (Theorems 
3.2.26 and 3.2.39 in [Fe]). 

It should be noticed that a first version of Theorem 1 was jointly observed by 
R. J. Gardner and the second named author. 

THEOREM 1. For d>2,letKc Rd be a convex body with 0 € intK Then we 
have \bd(IK)] Pi bd(CK) ^ 0. More generally, even omitting the hypothesis 0 € intK, 
there is a direction u E. S?'1 such that Vd_x(K D u1) > Vd-{(K D (w1 + Aw)) holds 
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for each À G R. Moreover, for d > 3 the set of these u s is not contained in any H ~2-
measurable, (Hd~2,d — 2)-rectifiable subset A of the unit sphere Sd~l, which satisfies 
Hd~2(A) < / / i i _ 2 (^ - 2 ) (in particular, in any compact Cl(d — T)-submanifold ofS?~x 

with (d — 2)-volume less than that ofS^~2). The estimate is sharp, e.g. for K any non-
centred ball. 

We note that for d = 2 the assertion of Theorem 1 follows from an analogous result 
of Hammer (cf [Ha 51], [Ha 63], and [PC]) on 1-dimensional sections of convex bodies 
in Rd, which will be discussed in Section 3. 

THEOREM 2. For d > 2, let K C Rd be a convex body with 0 G intK. If for 
some constant c > 0 we have IK = c • CK, then K is centred. More generally, even 
omitting the hypothesis 0 G int^, if for every u G iS^"1 we have Vd-\(K H u1) — 
c • maxAçiR Vd-\ (K Pi (u1 + At/)), where c > 0, then the same conclusion holds. 

The following theorem is a characterization of balls. 

THEOREM 3. For d > 2, let K c Rd be a convex body with 0 G intK If both IK 
and CK are centred balls, then K is a centred ball. More generally, even omitting the 
hypothesis 0 G intK, if both V^-iiKOu1) andmax\e$i V^ifKniu^ + Xuf) are constant 
for u G iS^_1, then the same conclusion holds. 

In Section 3, we will prove Proposition 1 that is the analogue of Theorems 2 and 3 for 
1-dimensional sections and also includes a characterization of balls. 

THEOREM 4. For d > 3, let f$d denote the set of convex bodies K C Rd, endowed 
with the Hausdorff metric. Then {K G ®d \ CK C inuTLK)} is a dense open set in ®d. 

Related to the proof of Theorem 4 we will prove Proposition 2 (in Section 3), deter
mining the minimal number of facets (vertices) of a convex polytope P C Rd

9 d > 3 
(P C 1R3) having no plane shadow boundary with respect to parallel illumination. For the 
question about the minimal number of vertices we give an estimate in Rd

9 d > 3. 

2. Proofs of the Theorems. 
PROOF OF THEOREM 1. A. First we will show that, irrespective whether 0 is an 

interior, boundary or exterior point of K, any large 1-sphere Sl ofS**"1 (i.e., the intersec
tion of *S^_1 with any linear 2-subspace) contains a point u satisfying Vd-\(K H u1) = 
maxA6^ Vd^\ {K n (uL + Aw)). Letting^(A) = Vd_\ {K PI (U1 + Aw)), we have to prove 
that, for some u G S1, fu(X) attains its maximum at A = 0. 

By the Brunn-Minkowski theorem/w(A)1//(J_1) is concave for A G [—hK(—u\hK(u)\ 
:= [a, b], where hK is the support function of K. Thus, {A G [a, b] \ fu(\) = max{/i(/i) | 
li G [tf,6]}} is a non-empty closed interval, I(u\ say. Evidently, I(—u) = —I(u). We 
consider the linear hull linS1 of S\ and the orthogonal projection K | linS1 of K to 
linS1. Now we distinguish three cases: 0 is an interior, boundary, or exterior point of 
K\ \inS\ relative to lin S1. 
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First we investigate the case 0 G int(K | lin S1). Let w G S1. For 0 G I(u) we are done. 
Thus, we may suppose that for all w G S1 either I(u) C (0, oo), or I(u) C (—oo, 0). Hence 
Sl = Sl

+USl_9 where Sl
+ = {u G S1 | /(w) C (0, oo)}, Sl_ = {u G S1 \ I(u) C (-oo, 0)}. 

Let wo be a common accumulation point of 5 | and Si . If e.g. I(uo) C (0, oo), then for 
some A0 G (0,/*A:(WO)) we have Vd-\(K n w<j-) < ^ _ I ( Â " PI (wj- + A0w0)). Then, for 
w G Si and sufficiently near to wo we have F̂ _i(AT D w^) < ^_i(AT Pi (wx + Aw)), 
where w1 + Aw is a hyperplane obtained from UQ + Aowo by rotation about some point of 
(mtK) H (WQ- + Aowo). Thus w G S\, a contradiction. 

Secondly we investigate the case 0 ^ (K | linS1). Then the set {w G S1 | K n w1 ^ 
0} is the union of two disjoint closed opposite arcs of S1; one of these we denote by 
w7w2- Then Vd-\{K D w1) depends continuously on w, for w varying in û\U2. We may 
suppose that for all w G w~ïw2 we have Vd-\{K D wx) < maxA(=R F</_i [K D (W-1 + Aw)), 
and therefore either/(w) C (0, oo) or I(u) C (—oo, 0). Using this for w = u\, W2 we easily 
see that 7(wi) C (0, oo) and Ifa) C (—oo, 0), or conversely. Now choosing a common 
accumulation point of {w G iI\U2 \ I(u) C (0, oo)} and {w G w7w2 I I(u) C (—oo, 0)}, we 
obtain a contradiction like in the previous case. 

Third we investigate the case 0 G bd(K | lin S1). Then there is a supporting hyperplane 
WQ- of A' with wo G S1. Consider a fixed closed arc wo(—wo) of Sl. Let the arc w7w2 be the 
closure of {w G wo(—wo) | (int^Hw-1 ^ 0}. Again we may suppose that F^- i^nw 1 ) < 
max^GR Vd-\ (K H (wx + Aw)) holds for all w G wîï/2, in particular for w = wi, W2. Thus 
Vd-\(KC\uj~) < Vd-\ (Kn(uf- +A/W,)), for some hyperplane w/-+Azwz, intersecting int K. 
The function Vd-\{K n w1), w G w7w2, is continuous for w G relint wfw2, and is upper 
semicontinuous at u\ and W2. Now we choose some vi, vi G relint wïw2, close to u\ and W2, 
respectively. Then Vd- \ (KDvj~) < Vd-\ (KD (vf-+/i/v,-)), where vf-+//,-v, is a hyperplane 
obtained from w/- + A/w, by rotation about some point of (int A) D (w/- + A/w,). Then we 
easily see that I(v\) C (0, oo) andI{vi) C (—oo,0), or conversely. Now considering the 
closed subarc v\V2 of uwi and choosing a common accumulation point of {w G v\V2 | 
7(w) C (0, oo)} and {w G v\V2 | AM) C (—oo, 0)}, we obtain a contradiction like above. 

B. Now we show that, for d > 3 and irrespective whether 0 is an interior, boundary 
or exterior point of K, the set 

B\={ue S?-1 I Vd-\{Kn w1) = max Vd-\ (KPI(wx + Aw))} 
AG™ 

is not contained in any set A like in the theorem. Suppose the contrary. By part A of this 
proof and by central symmetry, B intersects each large 1-sphere Sl of-S^-1 in at least two 
points. Hence this holds for A as well. 

Now we recall a special case of an integral geometric kinematic formula on Sd~l 

from [Fe], Theorem 3.2.48. Let 0 < k < d - 1 be an integer, and let ,4 C S*"1 be im
measurable with }^{A) < oo, and let A be (//*, &)-rectifiable. Then, letting S*~x~k be a 
fixed large (d - 1 - &)-subsphere of 5^_1, we have 

toon H°(A n ^ " 1 - * ) ) d&n(g) = B S ^ j f f i ) ^ ) . ff<-l-k^-k). 
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Here H°(X) is the O-dimensional Hausdorff measure of X, that equals the cardinality of X 
if it is finite, and equals oo if the cardinality ofXis infinite. Moreover, ®d is the invariant 
(Haar) measure on the orthogonal group 0(d) of Rd

9 with <dd{0(d)) = 1. Letting k = 
d — 2, and using H° (A C\g(S1)) > 2, both sides of the above equality are at least 2, and 
by a small calculation this yields Hd~2(A) > Hd~2(S^~2). This contradicts our indirect 
assumption, and thus shows the statement of the theorem concerning^. 

For K a ball with centre a ^ O w e have B = {w G S?~x \ (u,a) = 0}, thus B is a large 
S^~2 of S^-1, and therefore the estimate of Hd~2(A) is sharp. • 

PROOF OF THEOREM 2. Foreachw G S^-1, let there hold the relation Vd-\(KC\uL) = 
c • maxAGra Vd_x(i^n (w1 + Aw)). Then c < 1, and c > 0. Hence Vd_x(Kn«i)>0 for 
each w G *S^_1, which implies 0 G K. 

For 0 G bd AT, the body K has a supporting hyperplane UQ at 0, and Vd-\(KD u$) > 0 
implies that K Pi u$ is a (d — l)-face of K. Now let us move u on a large 1-sphere 
51 of *S^_1, containing i/o. Then for u —* UQ the sum of the two one-sided limits of 
Vd-\{K n t/-1) is Vd-\(K H WQ"); hence wo is a discontinuity point of Vd_\(K D t/-1). Since 
maxAeiR K _̂i (ATD (W1 + Aw)) is a continuous function of u, this is a contradiction, imply
ing 0 G int^. Therefore from IK = cCK,ce [0,1], we have by Theorem 1 that c = 1 
and IK = CK. In [MMÔ] it was shown that for 0 G int K the coincidence of IK and CK 
implies that K is centred. This implies the result. • 

PROOF OF THEOREM 3. Let both Vd_\(K n u1) and maxAeR Vd_\ {K PI (WX + Aw)) 
be constant for w G *S^_1. Then by Theorem 2 we have that K is centred. Recall now 
the section theorem of Funk: a centred convex body K is uniquely determined by IK, 
cf. [Fu], p. 287, [Pe 52], Corollary 1.31, [LP], p. 1144, [Pe 61], Theorem 4.2, and [Fa], 
Theorem 2; see also [Ga], Corollary 7.2.7. Applying this to K and using that IK is a 
centred ball, we obtain that K is a centred ball. • 

To prove Theorem 4, we need some preparations. First we recall three définitions, for 
which we also refer to [BES], [Sh], [GH], and [Pe 83]. 

DEFINITION 1. Let K C Rd be a convex body, s a direction, and JC G Rd \ K a point. 
The shadow boundary Sb5 K (Sbx K) of K with respect to parallel illumination from the 
direction s (central illumination from the point x) is the intersection of K and the union 
of all its supporting lines parallel to s (passing through JC). • 

DEFINITION 2. A shadow boundary Sb5AT (Sb* K) is said to be a plane shadow 
boundary if it lies in a hyperplane. • 

DEFINITION 3. A shadow boundary §bsK (SbxAT) is called a generalized plane 
shadow boundary provided there exists a hyperplane H not parallel to s (not containing 
x and intersecting each ray xy, y G K, transversally) such that HC\ bd (K + l(s)) C Sb5 K, 
where l(s) is a line of direction s passing through 0 (H n bdC(x, AT) C SbxK, where 
C(x, Â) is the minimal infinite cone with apex x that contains K). • 

One easily sees that plane shadow boundaries can be equivalently defined by replacing 
the inclusion signs in Definition 3 by equalities. 
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Now we recall a result from [Pe 52], p. 60, and [Ma 89], cf. the Theorem in the latter, 
in the equivalent reformulation mentioned in our Section 1, fifth paragraph. For d > 3, 
let K C Rd be a convex body, and let u G S?~l. Then the radial function of CK at u is 
at most that of UK at u, with equality if and only if the following condition is satisfied: 
There is a direction s not orthogonal to u and some À G R such that for the shadow 
boundary Sb̂  KoîK with respect to parallel illumination from the direction s we have 
(u1 + Aw) H bd (K + /(y)) c Sby AT (again, l(s) is a line of direction s passing through 0). 

An easy consequence of this result is the following 

LEMMA 1. For d > 3, a convex body K C Rd satisfies CK C int(UK) if and only 
if it does not have a generalized plane shadow boundary Sb5 K with respect to parallel 
illumination from any direction s. 

PROOF. By the above result, the following four statements are equivalent. 
(1) CK <f_ int(m0. 
(2) There is some u G S?~x such that the radial functions of CK and UK are equal at 

u. 
(3) There is some u G «S^-1 and some direction s (where u and s are not orthogonal) 

such that there exists some A € R with (uL + Xu) D bd(K + l(s)) C Sb, K. 
(4) There is some direction s such that SbsK is a generalized plane shadow 

boundary. • 
Now we turn to the space $$d of all convex bodies K C Rd, endowed with the Haus-

dorff metric. This is a locally compact metric space, hence a Baire space, i.e., a countable 
union of nowhere dense sets (otherwise: a set of first category) cannot have an interior 
point. One says that most convex bodies in Rd have some property if the set of convex 
bodies in Rd not having this property is of first category in ftw. For this concept and re
sults concerning it we refer to the surveys of Gruber [Gr 85], [Gr 93] and Zamfirescu [Za 
91a]. 

Now we recall two results on most convex bodies. Namely, most convex bodies K C 
Rd are strictly convex and smooth, by [Kl], Theorems 2.2 and 2.3 (which actually prove 
a version of this for Banach spaces) and [Gr 77], Satz 1; cf. also [Gr 85], pp. 163-164, 
[Za 91a], Theorem 1, and [Gr 93], Theorem 5. Also most convex bodies K C Rd have no 
plane shadow boundaries Sby K or Sbx K, for s any direction and x G Rd \ K any point, 
by [Za 91b], Theorem 1; cf. also [Za 91a], Theorem 12. 

An easy consequence of these results is the following lemma, whose proof is probably 
quite similar to the proof of the case dim L = d—\ of Theorem 31, announced without 
proofin[Gr93]. 

LEMMA 2. Most convex bodies K C Rd do not have any generalized plane shadow 
boundaries Sby K or Sb* K, for any direction s and any point x G Rd \ K. 

PROOF. By the above recalled two results, most convex bodies K C Rd both are 
strictly convex and have no plane shadow boundaries Sb5 K or Sbx K, with s,x as above. 
However, a convex body K c Rd with these two properties cannot have a generalized 
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plane shadow boundary Sb5 K or Sbx K either. This is easily seen by using the equivalent 
definition of plane shadow boundary after Definition 3, and that K contains exactly one 
point of any generator of K + l(s), or of C(x, K), respectively. • 

PROOF OF THEOREM 4. Let ®' = {K G ®d \ CK c mt(UK)}. Both CK and YIK 
are monotonous functions of K with respect to inclusion, of homogeneity d — 1, and are 
translation invariant, that readily implies their continuity. (For UK we use the topology 
of Hausdorff-distance, for CK that of uniform convergence of the radial functions.) Since 
also 

ft' = {Ke ®d | 3e > 0, CK C (1 - e)TlK}, 

we have by the above continuity properties that f&' is open. 
By Lemma 1 we have CK C int(TlK) provided K does not have any generalized plane 

shadow boundary Sb5 K, for any direction s. Hence by Lemma 2 most convex bodies 
K cRd satisfy CK C int(UK). In particular, this is satisfied for K in a dense set of $K 
Hence the open set S ' C ®d also is dense, and the proof is finished. • 

3. Proofs of the propositions. 1. Replacing (d — 1 )-dimensional sections and pro
jections by 1-dimensional sections and projections, one gets the following natural com
parison. Let d > 2 and let K C Rd be a convex body. For 0 G intA^ let ÂK be the 
star-body whose radial function is given by V\(K H lu)/2, where V\ is 1-dimensional 
Lebesgue measure and lu is the linear 1-subspace with u G S?~x as its direction vector. 
The body ÂK is said to be the chordal symmetral of AT, see [Ga], Definition 5.1.3, and 
it is clear that 2AK is the analogue (for 1-dimensional sections) of the intersection body 
IK. On the other hand, the difference bodyDK = K+(—K) (see, e.g., [Ga], Section 3.2) 
is the analogue of the cross-section body CK, and, at the same time, of the projection 
body ILK, depending on the use of the radial function and of the support function of DK, 
respectively. We have evidently 2ÂK C DK for 0 E int K. 

It turns out that the statements analogous to our first three theorems hold true, except 
the statement about A in Theorem 1 (here, for any non-centred ball, u is unique up to 
sign). Namely, Hammer (see [Ha 63], Theorem 3.1, and [Ha 51], Theorem 1, and also 
[PC], proof of Theorem 4) has proved that eachx G Rd belongs to a diametrical chord of 
K, which is an analogue of our Theorem 1, without the statement abouti . (A chord of 
K is said to be diametrical if it has maximal length among all chords of K parallel to it.) 
This shows [bd(2AK)] H bd(DK) ^ 0, and therefore we obtain the following analogue 
of Theorems 2 and 3, also containing a characterization of balls. 

PROPOSITION 1. For d>2,letKc Rd be a convex body with 0 G ititK. If for some 
constant c > 0 we have 2AK = c • DK, then K is centred. In particular, if2AK andDK 
are centred balls, then K is a centred ball. More generally, even omitting the hypothesis 
0 G int J^ ifVi(Knlu) is proportional to the radial function ofDK, then K is centred. In 
particular, if these two functions are constant, then K is a centred ball. 

PROOF. We proceed analogously as with respect to Theorems 2 and 3. So we only 
indicate the differences in the proof. If V\(KC\lu) is positive and continuous for u G S^-1, 
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then 0 G intK. Namely, if 0 G bdK, UQ is an outer normal of K at 0, and u\ G UQ D S**'l, 
then for u —» u\ (u varying in the large 1-sphere Sl of S?-1 containing w0 and u\) the sum 
ofthe two one-sided limits of Vi(KDlu) is V{(KnlUl). Then by [bd(2Â/Q] nbd(DK) ^ 
0 the proportionality of V\(K (1 lu) and the radial function of DK implies centredness 
of AT, cf. [Ha 54], Theorem 1, and also [PC], Theorem 4. The particular cases follow 
immediately. • 

It is obvious that, regarding 1-dimensional sections and projections, there is no ana
logue of Theorem 4. 

2. Let d > 3. By Theorem 4 and denseness of convex polytopes in Sîd we see that 
there are convex polytopes P C Rd such that CP C int(nP). (We always will consider 
non-degenerate convex polytopes, i.e., intP ^ 0.) Thus, by Lemma 1 there are convex 
polytopes P C Rd that do not have a generalized plane shadow boundary Sb^ P with 
respect to parallel illumination from any direction s. We ask for the minimal complexity 
(for example, number of vertices, or facets) of a convex polytope P C Rd having no 
generalized plane shadow boundary, or no plane shadow boundary Sb5 P, with respect to 
parallel illumination from any direction s. 

Some of these questions for plane shadow boundaries are answered by 

PROPOSITION 2. Let d>3 bean integer. The minimal number of facets (vertices) of 
a non-degenerate convex polytope P C Rd, having no plane shadow boundary SbsP with 
respect to parallel illumination from any direction s, is d + 2 (at most 2d, with equality 
ford = 3). 

PROOF. A. First we deal with the number of facets. Since a simplex has plane 
shadow boundaries Sby P, it suffices to give an example of a (non-degenerate) convex 
polytope P with d + 2 facets having no plane shadow boundary Sb5 P with respect to 
parallel illumination. Such a polytope will be a prism P over a (d — l)-simplex, whose 
bases and lateral facets will be denoted by B\,B2 and L\9... ,Z,</, respectively. Namely, 
if the direction s is parallel to the generator or to a basis of P, then Sb* P contains 
some facets of P9 and hence Sby P is not planar. Otherwise, a unit vector of direction 
s is of the form x + y, x ^ 0 parallel to a base, y ^ 0 parallel to the generator 
of P. Like above, we may suppose that Sb? P does not contain any facet of P. Then 
the illuminated facets are one ofthe bases (B\, say) and a non-empty proper subset 
({Zi,... ,Lk}, say) ofthe lateral facets, where Lt is a prism over a facet /, oïB\. Then 
Sb, P D (Bi nZ*H) U • • • U (Bi DLd) U (B2 (M\) U • • • U (B2 HLk)9 that is the union of 
d — k facets of B\ and k facets of B2. Since max{d — k, k} > 2 and min{d — k,k} > 1, 
the shadow boundary Sby P contains all vertices of B\ and all but one vertices of B2, or 
conversely. Hence Sby P is not planar. 

B. Secondly we deal with the number of vertices and begin by giving an example of 
a convex polytope P C Rd

9 d > 3, with 2d vertices having no plane shadow boundary 
Sb5 P with respect to parallel illumination. 

First, let Po denote the cross-polytope with vertices ±e, (et is the z-th basic unit vector). 
We claim that its only plane shadow boundaries Sb^Po with respect to parallel illumi
nation are the intersections of bdPo with the d coordinate hyperplanes. Let SbsPo be 
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a plane shadow boundary of Po with respect to parallel illumination from some direc
tion s. (The following considerations in this paragraph will be valid for any convex d-
polytope rather than Po.) Choose a new orthogonal coordinate sys tem^, . . . , ^ , where 
yd has direction s. Let ?r denote the projection of Rd to the (y\,... ,jv_i)-hyperplane, 
and let P'0 = 7r(Po). Then P'0 is a convex (d — l)-polytope, and SbsPo is the graph 
of the restriction of an affine function/:^"1 —> R to relbdPo (Rd~l denoting the 
(yi, . . . ,^_i)-hyperplane, and R denoting the j/^-axis). Let us denote the facets of Pf

0 

by F-. Then F, = Po H 7r_1(F-) C Sb5Po are non-degenerate affine images of F-, and 
by F\ — P'0 H affF- also the sets F; = Po H 7r-1(afYF.) are faces of Po, of dimension 
d — 2. Conversely, each (d — 2)-face F of Po, contained in Sb5 Po, also is a (d — 2)-face 
of conv(Sbç(Po)), which is affinely equivalent under the map IT to P'0. Thus, each such F 
is of the above form F/. Each (d — 3)-face of Pf

0 is a common face of exactly two facets 
F- of PQ. Therefore, for each (d — 2)-face of Po, of the form F/, and each (d — 3)-face G 
of F/ there is another (d — 2)-face of Po, of the form Fi{, also having G as a (d — 3)-face. 

From now on we will exploit the combinatorial and affine structure of Po. The (d—2)-
faces ((d — 3)-faces) of Po are given by equations T,#k £txi = 1, x* = 0 (Eiy*,/ £/X/ = 
1,X£ = xi = 0, where k ^ /, here and later) with £,- E {—1,1}. (Writing such sums 
we always will assume that the summands are non-negative, but will not repeat it in the 
following.) If two different (d — 2)-faces Ff_2,F2~2 have a common (d — 3)-face F*"3, 
and if F*~3 is given by £,y*,/ £zx/ = 1, xk = JC/ = 0, then each of the faces Ff~2,p|~2 

is of the form 

(1) ( X] £,*«) ±xk = 1, x/ = 0, or 
vy*,/ y 

(2) ( J2 £iXi) ±x/ = 1, ** = 0. 

Thus, the sets Ff_2,Ff~2 are two of four (d — 2)-faces. They lie in the same facet 
of Po if and only if one of them is of the form (1) and the other is of the form (2). 
In this case, if moreover Ff~2,F(_2 are (d — 2)-faces of Po contained in Sb5P0, then, 
by planarity of Sb5P0, we see that Sb5Po is a subset of this facet of P0 , Fd~x, say. Since 
Sb5 Po also is a union of (d—2)-faces of Po, of the above form F;, and is affinely equivalent 
to relbdPQ, thus is homeomorphic to S?~2, then Sb5P0 = relbdF*-1. Therefore PQ = 
convrelbdPQ) = conv(7r(Sb5. Po)) = 7r(conv(Sb5Po)) = ^(F*-1) is a (d — l)-simplex. 
For the opposite parallel facet — F*_1 of Po we have PQ D ir(—Fd~l), and therefore 
^(F*-1) D 7r(—Fd~l\ a contradiction. 

Thus, if a (d—2)-face F\~2 of PO is contained in Sb5 Po, then at any of its (d—3)-faces 
F* - 3 it is neighbourly to a (d - 2)-face Ff~2 of P0, contained in Sb5 P0, both F{ "2 , Ff~2 

being of the form (1), or both being of the form (2) above. If Ff-2 is given by E ^ epc/ = 
1, Xk = 0, then, for fixed F* - 3 , the face F%~2 is unique and has the form 

J2 £iXi) - £fli = 1, xk = 0, 
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where / G { 1 , . . . , d} \ {k} can be arbitrary, for arbitrary P^ - 3 . Repeating this consider
ation at most d — 1 times, we see that each (d — 2)-face of Po of the form "Ei^k(±xi) = 
1, Xk = 0, is contained in Sb5 Po- Hence Sb5 Po contains, and therefore is equal to, the 
intersection of bdPo with the &-th coordinate hyperplane. 

Now let us perturb the vertices of Po sufficiently little, so that the combinatorial type of 
their convex hull P remains the same as that of Po, and no d+1 vertices lie in a hyperplane. 
Supposing that P has a plane shadow boundary Sb5 P with respect to parallel illumination, 
we can repeat, for sufficiently small perturbations, the above considerations. In the first 
case observe that Pf

0 contains and is contained in some centred balls of fixed radii, and 
then we obtain a contradiction like above. In the second case the above existing d plane 
shadow boundaries (each containing 2d—2 > d+\ vertices ofP) will become non-planar, 
a contradiction once more. 

Still we have to prove that convex polyhedra P in R3 with at most 5 vertices have 
plane shadow boundaries Sb5 P with respect to parallel illumination. For a tetrahedron 
this is evident. If P has 5 vertices, then it is either a double triangular pyramid, or a 
quadrangular pyramid. Then Sb5 P is planar for s parallel to the diagonal of P, or to the 
segment joining the apex of P with a relative interior point of its base, respectively. • 

4. Concluding Remarks. Remark 1. For d = 2, the convex body K C R2 has a 
cross-section body CK which is the convex body obtained from K + (-K) by rotating 
it through f about the origin, cf. Section 1. Thus, CK is a centred ball if and only if K 
is of constant width. For d > 3, no example of a convex body K C Rd, different from 
a ball and having as CK a centred ball, is known. However, CK does not seem to give 
full information abouti , since the informations obtained by u and — u are the same, like 
also in the case of the difference body K + (—K), or IK (this for 0 £ intK), or UK. 
(Roughly: we have 'half the information that is needed'.) In these latter cases, there is 
given complete information on the even parts of the support function, of the (d — l)-st 
power of the radial function (cf. [Ga], Theorem 8.1.3), and of the surface area measure 
(see [Ga], Theorem 3.3.2), respectively; however, no information is given about the odd 
parts. Therefore we can well imagine that there exists a convex body K C Rd, d > 3, 
with CK a centred ball but not having itself a center of symmetry. For the history of 
this problem (the Bonnesen-Klee problem, also posed in [Ga], Problem 8.12) we refer 
to [Ga], Note 8.6. 

Remark 2. Theorem 4 shows that, for d > 3, there is a number c(d) < 1 such that for 
some convex body K C Rd we have CK C c(d) • UK. What is the minimal number with 
this property? Surely it is positive, since by [MM], Part I, there is a constant c'(d) such 
that for all convex bodies K C Rd we have UK C c'(d) • CK. 

Remark 3. Let 1 < k < d - 1, and let K c Rd be a convex body. We ask if there is a 
linear £-subspace L^ such that 

Vk(KC\Lk) = max{Vk(Kn(Lk +x)) | x G Rd}, 

where Vk denotes A>dimensional Lebesgue measure. Moreover, if we consider the set of 
linear &-subspaces Ljç of Rd with some natural metric, then is the set of Lk's with this 
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maximum property large enough? For example, cannot it be included in a compact C1 

(k — \){d — &)-submanifold, of measure less than in the case of a non-centred ball. (For 
K a non-centred ball, the set of these Lk's is homeomorphic to the set of linear (k — 1)-
subspaces of IR^"1, which is a (k— \){d—&)-manifold.) Probably some algebraic topology 
would be necessary to answer this question. 

REMARK. (Added 11 December 1995): Meanwhile the authors proved the existence 
of Lk in Remark 3, and moreover that the set of all such L/s cannot be included in a 
compact C°° (k — \){d — &)-submanifold, of measure less than some positive constant 
depending on d and k, when the set of linear A>subspaces of Rd is given in a natural 
0(flf)-invariant Riemann-metric, and measure is taken relative to this. Thus we have the 
analogues of Theorems 2 and 3 as well, for 1 < k < d— 1. For Theorem 4 there is a natural 
generalisation of the relation CK c int(IlK) for ^-dimensional sections and projections: 
forain a dense open set oï&d there exists c(K) < 1 such that max { Fjt([^n(Ljt+*)] | Lk') 
Vk(K | Lk') | Lk9Lk' C Rd are linear A>subspaces,jc G Rd} < c(K). (The set^t | Lk

f is the 
orthogonal projection of the set ,4 toL/.) This is connected with problems of illumination 
from a (d — k — l)-dimensional projective subspace of the infinite hyperplane. 
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