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In this note, we give an elementary procedure for constructing n-root closed integral
domains. We then use this construction to give two interesting examples. First, we give an
example of a root closed integral domain which is not quasinormal. Secondly, we show
that for any subset 5 of odd positive primes there is a one-dimensional affine domain
which is p-root closed for a prime p if and only if p e S.

For the convenience of the reader, we first recall a few definitions. For a positive
integer n, an integral domain R with quotient field K is said to be n-root closed if
whenever x" e R for some x e K, then x e R. If R is n-root closed for each positive integer
n, then R is root-closed. Note that for relatively prime positive integers m and n, R is
mn-root closed if and only if R is both m- and n-root closed. Hence we often restrict
ourselves to the case in which R is p-root closed for a prime p. The domain R is
seminormal if whenever x2, x3 e R for some x e K, then x eR. Clearly an integrally closed
domain is root closed, and for each n > 2 , an n-root closed domain is seminormal. In
general, though, neither implication is reversible. However, examples of n-root closed
domains which are not integrally closed do not seem to be too common (cf. [2] and [3]).
Here we show how to construct such a family of examples easily. Root closure has also
been investigated in [1], [4], [6], and [11].

For any integral domain R with quotient field K, we let A denote the subring
{f(X)eR[X]:f(0)=f(l)} of R[X]. Also, let <pn:R^R be the mapping defined by
q>n(x) =x" for each x eR. We first record some observations about the domain A.

PROPOSITION 1. (a) A = R[X2 - X, X3 - X2] = R + X(X - 1)R[X].
(b) A has quotient field K(X) and is not integrally closed.
(c) A is seminormal if and only if R is seminormal.
(d) A is n-root closed if and only if R is n-root closed and tpn is injective.

Proof, (a) is easily verified by induction on deg/ for / eA, and (b) is an immediate
consequence of (a).

(c) Certainly R is seminormal if A is seminormal. Conversely, let R be seminormal.
Suppose that f2, f3 eA for some / e K(X). Then / e/?[AT] since R[X] is seminormal [6,
Theorem 2] (cf. [7, Theorem 1.6] and [5, Theorem 1]). Hence [/(0)]2=/2(0) =/2( l ) =
[/(I)]2 and [/(0)]3 = [/(I)]3 yield /(0) = / ( l ) . Thus / e A and hence A is seminormal.

(d) First, suppose that A is n-root closed. Clearly R is then also n-root closed. To
show that cpn is injective, suppose that a" = b" for some a, beR. Define f(X) =
(b - a)X + a. Then / " e A since /(0) = a and / ( I ) = b. Hence / e A; thus a = b and so <pn

is injective. Conversely, suppose that R is n-root closed and q>n is injective. If / " eA for
some f e K(X), then feR[X] since R[X] is n-root closed [6, Theorem 2]. Hence
[/(0)]" = [/(I)]", and thus /(0) = / ( l ) since cpn is injective. Thus fe A and hence A is
n-root closed.
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We remark that a special case of our construction has been used in the proof of [2,
Theorem 2.4]. Parts (c) and (d) of Proposition 1 may also be proved by reducing modulo
the conductor X(X - 1)R[X] (cf. [2, Propositions 2.1 and 2.2]).

We next give some other criteria for (pn to be injective. The elementary proofs will be
omitted.

PROPOSITION 2. The following statements are equivalent for an integral domain R with
quotient field K.

(a) q>n:R^>R is injective.
(b) q>n:K^>K is injective.
(c) Ifx" = l for some x e K, then x = l.

For the remainder of this paper, we will restrict ourselves to the case in which R is
itself a field. In this case, A = K[X2 - X, X3 - X2] is a one-dimensional seminormal affine
domain which is «-root closed if and only if q>n is injective—i.e., if and only if 1 is the
only nth root of unity in K. For example: Z/21[X2 - X, X3 - X2] is root closed,
Q[X2 - X, X3 - X2] and U [X2 - X, X3 - X2] are each n-root closed if and only if n is
odd, and C[X2 - X, X3 - X2] is seminormal but not /i-root closed for any n 3= 2.

We may also localize A. Let M be the maximal ideal (X2 - X, X3 - X2) =
{feK(X):f(0)=f(l) = 0} of A. Then AM is n-root closed if and only if A is n-root
closed. We prove this in our next theorem, which also collects several earlier observations
about the domain A.

THEOREM 3. Let K be a field, A = K[X2 -X,X3- X2], and M = (X2- X, X3 - X2).
(a) A is a one-dimensional seminormal affine domain which is n-root closed if and

only if 1 is the only n-th root of unity in K.
(b) AM is a one-dimensional seminormal local domain which is n-root closed if and

only if I is the only n-th root of unity in K.

Proof. We have already observed that (a) holds. It is well known that a localization
of a seminormal (resp. «-root closed) integral domain is also seminormal (resp. n-root
closed). Hence we need only show that A is w-root closed whenever AM is /i-root closed.
Suppose that a" eA for some a e K(X). Then a is in both K[X] and AM. Write a =flg
with /, g e A and g <£ At. Then f = ag and g(0) = g(l) # 0 yield a(0) = a(l). Hence a e A,
so A is n-root closed.

Next we give a few specific cases in which we can determine whether A is n-root
closed (cf. [3, Theorems 1, 2, and 3]). The proofs, which involve only elementary field
theory, will be omitted.

PROPOSITION 4. Let K be a field and A = K[X2 - X, X3 - X2].
(a) A is 2-root closed if and only if char K = 2.
(b) / / char K=p>2, then A is n-root closed if and only if (\F\-\,n) = \ for each

finite subfield F of K. In particular, A is p-root closed if char K = p.
(c) A is root closed if and only if char K = 2 and each element of K - Z/2Z is

transcendental over Z/2Z.
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(d) If K is algebraically closed, then A is p-root closed for a prime p if and only char
K = p. In particular, if char K = 0, then A is not n-root closed for any n > 2; J/ char K = p,
then A is n-root closed if and only if n is a p-power.

We end this paper with two specific applications of the earlier theory. Our first
example is a root closed integral domain which is not quasinormai. We recall that a
domain R is seminormal if and only if Pic(/?) = Pic(/?LY]) and that R is said to be
quasinormai if Pic(ft) = P\c(R[X, X ]). It is well known that an integrally closed domain
is quasinormai, a quasinormai domain is seminormal, and that in general neither
implication is reversible. We show that root closure neither implies nor is implied by
quasinormality. This is particularly interesting because in [9, Theorem 2.15] it was shown
that an n-root closed noetherian domain R is quasinormai if R contains a field which has a
nontrivial nth root of unity. Our example shows that this last hypothesis is essential.
Finally, recall that an integral domain R is said to be u-closed if whenever x2 — x,
x3 — x2 e R for some x e K, then x e R. A one-dimensional domain R is quasinormai if and
only if R is seminormal and u-closed [9, Corollary 1.14].

EXAMPLE 5. Let A = Z/21[X2 -X,X3- X2]. We have already observed that A is a
one-dimensional root closed affine domain. However, A is not quasinormai since it is not
u-closed. We may also localize A at its maximal ideal M = (X2 — X, X3 — X2) to obtain a
one-dimensional root closed local domain which is not u-closed and hence not
quasinormai.

Thus a root closed integral domain need not be quasinormai. For the other direction,
R = U + A'C[[Ar]] is a one-dimensional quasinormai local domain which is not n-root
closed for any n > 2 [8, Example (a)].

Since an integral domain R is mn -root closed for relatively prime positive integers m
and n if and only if R is both m- and n-root closed, ^(R) = {n e N: R is n-root closed} is a
(multiplicative) submonoid of N generated by positive primes. Moreover, in [1, Theorem
2.7] we showed that any (multiplicative) submonoid of N generated by primes can be
realized as *<£(/?) for some integral domain R. That construction used monoid domains
over an arbitrary field and R was usually quite large (dim R = 2 \{p :p is prime and R is
not p-root closed}| and R was noetherian if and only if dim/? was finite). The
construction here allows R to be a one-dimensional noetherian domain (as long as p # 2).
We state this as a theorem.

THEOREM 6. Let S be a set of odd positive primes. Then there is a one-dimensional
seminormal affine domain A such that ^(A) is generated by S. The integral domain A may
also be chosen to be a one-dimensional seminormal local domain.

Proof. By Theorem 3(a), we need only construct a field K such that for each prime
p, K contains a primitive pth root of unity if and only if p $ S. Let T = {p :p is prime and
p $S} and K = €>({£p :p e T}), where t,p is a primitive pth root of unity. We need only
show that for a prime q, £, e Kimplies q e T. Note that always t,2= -\eK and 2e T. For
q >2, if £, e K, then £, e Q(£Pl, . . . £„.) = Q(£Pl.. J for distinct Pl,...,pneT. Then
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(q, Pi. • • pn) # 1 by [10, Corollary, page 204], and hence q e T. The last statement in the
theorem now follows from Theorem 3(b).

The above construction does not extend to the case in which 2 e 5. In this case, K
would necessarily have char 2 by Proposition 4(a). For example, /C = Z/2Z(£5) has 16
elements and hence also £3eK. Thus for our construction, if A is both 2- and 3-root
closed, then A is also 5-root closed. It would be interesting to know if Theorem 6 is true
for any subset 5 of positive primes.
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