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Abstract

The dispersion of a passive solute in three-dimensional flow is examined for
short times after the injection of solute. If the diffusivity is constant, the
solute at first diffuses isotropically about the fluid particle originally
coincident with the injection point whilst, at longer times, the effect of
diffusion across a velocity shear becomes more important. An asymptotic
expansion is derived for the concentration of solute at small times after its
injection into the fluid flow and the use of the theory is illustrated for three
representative flows. Some critical remarks onthe applicability and limitations
of the results conclude the note.

1. Introduction

The first analytic description of the dispersion of soluble material in fluid flow
was given by Taylor [14, 15] who pointed out that the dispersion relies on diffusion
(and convection for three-dimensional flows) across a velocity shear. Taylor
examined the dispersion of solute in laminar and turbulent flow in circular pipes
and presented a theory which was applicable at asymptotically large times. Most
subsequent theoretical investigations into the dispersion mechanism have been
concerned principally with asymptotic large-time behaviour. Thus Aris [2] extended
Taylor’s theory to include longitudinal diffusion, Elder [9] looked at the dispersion
of solute in turbulent channel flow, Erdogan and Chatwin [10] examined the
influence of small curvature and weak buoyancy forces, and Chatwin [5] and
Barton [3, 4] described the approach to the asymptotic state for passive and
weakly buoyant markers.
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Recently, a few papers have appeared which examine dispersion of solutes at
less than asymptotically large times—for example, Sullivan [13] and Chatwin [6]
have looked at dispersing solutes in turbulent flow at moderate to large times.
There remain comparatively few results for asymptotically short times, however,
and those that exist appear to be only for uni-directional flow. Thus Lighthill [11]
examined the onset of dispersion in Poiseuille flow and his results were extended
by Chatwin [7, 8] using an earlier suggestion by Saffman [12].

It seems worth while, therefore, to present a theory for the dispersion of solutes
in general three-dimensional flows at asymptotically short times. The analysis in
this paper will be restricted to considering passive solutes (that is, solutes which
do not give rise to dynamical forces) which have a constant diffusivity . The
theory would be expected to have most application to biological or chemical
processes in which solutes might be dispersed in laminar flows; it would not,
however, have much relevance to oceanographical or meteorological problems in
which the concept of an eddy diffusivity would have to apply. Eddy diffusivities
represent effects observed after averaging the characteristics of the flow and
it seems unreasonable to apply an asymptotic short-time limit to such an
averaged representation. The theory would, in any case, require substantial
modification for such problems as eddy diffusivities are generally not modelled
as constants.

The bulk of this paper considers the dispersal of solutes for times less than that
required for solute particles to diffuse across the domain, that is, t < O(L?/«) where
L is a typical length scale and « is the diffusivity. This means that solutes injected
into fluid flow away from boundaries will not have time to “feel” the presence of
boundaries and it enables a simplified boundary condition to be taken, namely
C - 0 far from the injection point instead of dC/dn = 0 at the boundary. Chatwin [8]
has presented some results for the initial dispersion of solute close to the boundary
in Poiseuille flow and the present paper does, in one case, consider the effect of
a nearby plane boundary (Section 4). However, a general theory in which the
boundary condition @C/dn =0 at given boundaries is satisfied requires numerical
rather than analytic methods.

At short times # < O(L?/«), diffusion will spread injected solute through a distance
of O((x1)?) whilst diffusion across a velocity shear (that s, the dispersion mechanism)
spreads solute over a distance of order (x#)* x velocity gradient x ¢. It is clear that
diffusion, acting like ¢?, will dominate the dispersion mechanism for very short
times whilst the two effects would balance for times nominally of order (velocity
gradient)~. Here “velocity gradient” implies the maximum velocity gradient, for
example, across the cross-section in Poiseuille flow. Thus solute injected into
fluid flow will initially diffuse isotropically about the moving fluid particle which
originally coincided with the point of injection of the solute. This fluid particle
will have moved only a small distance during the isotropic diffusion stage. The
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dispersion mechanism will come into play at slightly larger times and the aim of
this note is to describe the consequent development of anisotropy in the cloud of
solute.

In Section 2, the isotropic diffusion about the moving point will be described
and the development of anisotropy will be investigated using an asymptotic
expansion for the concentration. In Section 3, equations for the coefficients in the
asymptotic series will be solved to obtain the leading four terms. Higher terms
could be obtained but it is argued that four terms are sufficient in the expansion.
In Section 4, the initial dispersion of solute in three representative flows (one of
which includes the presence of a plane boundary) will be considered and some
critical remarks on the results will conclude the note.

2. An asymptotic expansion for the concentration at short times

Suppose that a solute with constant diffusivity « is injected into a three-
dimensional flow at 1, at time #,, so that the concentration C of the solute satisfies

0
—ég+u~VC=KV2C .1)
with

C=308r—-rx) att=t, 2.2)
For very small times, the cloud of solute spreads isotropically about the fluid
particle initially coincident with the injection point (Saffman [12], Chatwin [7]) so
that the concentration is approximately

C, )= exp{—R-R}, 2.3)

4
8[mr(t— 1) It

where A is a constant which fixes the total amount of solute and R is a non-
dimensional similarity variable,

R = {r—ry—(t—to) u(ro)}/2[x(t — 1) I*. 249

For slightly larger times when the dispersion mechanism begins to operate, a
formal solution to (2.1,2.2) will be given by a series expansion which has (2.3) as
its leading term. The most concise series (found by Chatwin [7]) takes the form

A ©
¢= Bmw(t—1g)t exp{-R-R} 3, G.(R)T", Gy(R) =1, (2.5)
where T is the non-dimensional variable

T = (u(t—1o)/L?)} 26
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in which L is a characteristic length of the phenomenon being investigated.
Equations for the coefficient functions G,(R), n> 1, in (2.5) follow by substituting
(2.5) in (2.1) and equating the coefficients of powers of T to zero. Naturally the
solutions G, (R) must be finite as | R|~>0 and, recalling the assumption in Section 1,
they also should have the property

G,(R)exp{—R-R}>0 as|R|->o 27

if the effects of boundaries are to be ignored.

The coefficient functions Gy(R) to G,(R) have been found by Chatwin [7] for
Poiseuille flow and will now be obtained for general three-dimensional flow away
from boundaries.

For very small times, it is useful to group the dominant terms of equation (2.1)
as

aa—(t:+ u(ry)- VC—«V2C = —{u(r) —u(ry)}- VC 2.8)

in which the right-hand side is presumed to be small near the injection point.
Using Taylor’s series for a vector valued function of three variables it is possible
and convenient to write

u(E) () = (5= 3D 050+ 5705y — D) G XD )

1
gy o= D = D tgu@+ e @)
in which the summation convention is used, the e; are an orthonormal triad,
r =x;e;, I, = xYe; and the comma denotes partial differentiation, for example,

02 u;

Us 1) = ————
1,,7k( 0) ax,- 3xk o

Now using equations (2.4, 2.6) it follows that

R=Xe;= 2LT(r To)— u(ro) (2.10)

or

r—ry=(x;,—xPe; = 2LTR+

u(ro) (2.11)

Finally, equations (2.6, 2.10) give the transformations

2 (a 3dXi)dT p {a 1

, L /
a \ortex, ar) @ T ImT T TR Y R V: @122)
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and

1
—V 2.12b
Vosiz¥o ( )
where V' = ¢,(9/0X,), whence an equation that enables the determination of the
G,(R) is obtained by substituting the series (2.5) in (2.8). After some simplification
the result is

2L2 T Z Gn(R) (n 3) - 2L2 T2 ) I:'ngo( - 2RGn(R) + VIGn) Tn—S]

o]
—Zz:——Tznéo{(4|R|2—6)Gn—4R-V'Gn+V’2Gn}T"—3

= ZLLT:(ZLTX + uj(ro)) Ui (fo) + 35 21 (ZLTX = ’(rO))
x (ZLTX & -I—szT2 uk(l'o)) Ui 51dTo) + 35 ( £l ’(rO))
x (ZLTXIc +L—2K—T2 uk(ro)) (2LTXz “'('0)) agu(fo) + - }

{n—o(ZXi L(R)— ) T"—3: (2.13)

in which the right-hand side follows from equations (2.9,2.10,2.11).
The following equations for the coefficient functions G,(R)(n=1,...,4) are
obtained by equating the coefficients of T™ to zero (m = —4, —3, =2, —1)in (2.13):

7GR +IR-V/ G, -1V G} =0, (2.142)
l%{Gz(R) +3R-V' G,—}V2G,) = 4,2X,, (2.14b)

Lz{%Ga(R)+éR V' Gy—}V'2Gy} = B2 X, + 4, (2X G,(R)— 3G1) (2.14c)

T RGR IRV G~ }V2G)} = C,2X,+ B, (2X G,(R)— 361)

‘L

+A¢(2X G,(R)— an) (2.144)
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The terms 4;, B;, C; on the right-hand side are found to be
A; = Xju(xo), (2.15a)

I .

B‘i = 2_K u,(l'o) ui’j(ro) +LX1 Xk uuk(l'o), (2. 1 Sb)
L

C; = T (X (xo) +1uy(To) X)) s 53(Xo)

1
+37 L) X; X Xy 53o(Eo). (2.15¢)

There are other possible short time expansions for the concentration (mainly
based on variations in the exponent in (2.5)), but the one above seems to be the
most concise. Equations for the higher coefficient functions G;(R), G,R), ...
could be obtained readily enough but this hardly seems necessary for two reasons.
Firstly, the algebra involved in the derivation and use gets progressively more
cumbersome and, secondly (and more importantly), the series (2.5) is expected
to be asymptotic as #—0 and typically such series diverge as more terms are taken.
That is, for a given small value of ¢, the error in the series (2.5) would ultimately
be increased by including more terms in the series. For both reasons, there seems
no point in extending the series beyond four terms.

3. Solutions for the coefficient functions

The equations (2.14a~d, 2.15a—) derived in the previous section are now solved
for the coefficient functions G, (R). Firstly, it is observed that the equation for each
G,(R) has the confluent hypergeometric functions M(3n,3, R?) and U(3n,%, R?)
as complementary functions, (R = |R]|). Both these solutions must be neglected
since

M(@4n, 3, R exp(- R)~T'(}) R*3T(3n) as R>o0*

and, bearing (2.7) in mind, this would lead to an infinite amount of solute once a
volume integral were to be taken. Also

U(in, $, BB~ J@)/T(3n)R as R—>0*

which would lead to an infinite concentration at R =0 if U(}n, 2, R?) were not
neglected.

* See, for example, Abramowitz and Stegun ([1, p. 508]).
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The particular solutions of equations (2.14a—d, 2.15a—) are polynomials in X;
and have the form

Gy(R) = 0, (3.1a)
Go(R) = a+By; X; X, (3.1b)
G3(R) = y; X;+ Ay X; X; X, (3.1¢)
GyR) = e+ Ly X; X+ 1y Xy Xy Xi Xy .19)
in which the coefficients are found to be
@ =3By (3.22)
L2
By = —uy(x0), (3.2b)
1(L3 1 A
YiT 35\ a8 uy(Xo) Uy (o) + 5( i35+ Dyip+ By s (3.20)
213
Bijie =3 U43{To)s (3.2d)
&=}l (3.2¢)

4
biy= % {% ts(ro) (5, 51(To) + 14y 1(To))

2
+ o oty 0~ B B us ) (3.21)

1(4L4 212
N = g ‘E; U 1a(To) + —’;“lskl ”z,j(l'o)}- (3.2g)

4. Applications

Perhaps the most important application of the analysis is to describe the initial
dispersion of solute prior to using a numerical solution. Dispersion from an
initial point source would pose difficulties for a finite difference scheme because
a very fine mesh of computation points would be required for reasonable numerical
accuracy. The short-time analysis would describe the initial dispersion from a
point source up to a time when relatively coarse meshes could give reasonable
accuracy. The implementation of the short-time analysis would be the analogue
of “‘extracting the singularity” in numerical integration.

The analysis is almost as easy to apply to three-dimensional flows as to two-
dimensional flows. This contrasts with the direct numerical solution of the
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convective-diffusive equation (2.1) in which numerical schemes for three-
dimensional flows are significantly more complicated than those for two-dimensional
flows. The results shown in this section are for two-dimensional flows merely for
ease of presentation.

One instance in which the above theory may be applied has already been
examined by Chatwin [7]. Chatwin’s results were for the initial dispersion of
solute in Poiseuille flow representing a model of dispersion of tracers in blood
flow in the aorta. The theory is applied to another three common cases below,
namely initial dispersal of solutes in flow near a stagnation point, in flow near a
point vortex and in plane Poiseuille flow. The dispersion of solutes in these sorts
of flows is doubtless an everyday experience; for example, the plane Poiseuille
flow case might be used to examine the initial mixing of a contaminant in a rect-
angular air-conditioning duct. Perhaps the best general application of the theory
might be for contaminant gases starting to disperse in gaseous flow as, in such
cases, laminar flows may still be common enough and the diffusivity « is large
enough (typically 0.1 to 1 cm?s™) for diffusion to be observable and important
over reasonably short times.

The third example discussed in this section is a case of initial dispersion near a
plane boundary where the condition éC/on = 0 has to apply. This condition must
be applied whenever the solute has had time to diffuse near to solid boundaries
and the condition is satisfied by considering dispersion in an additional image
flow field. Of course, an image flow field becomes difficult to construct if the
boundary is anything other than very simple and, in general, the presence of
nearby boundaries would mean a full numerical solution is required.

Initial dispersion near a stagnation point

Consider a flow near a stagnation point at x = y = 0; thus take as velocity
components

u;=—Ux/L, uy=UylL, uy=0 4.1

and suppose that solute is injected at 7z = ¢, at 1y = x,€, +y,€;+2z,€;5. The series
(2.5) for the concentration is found to take the form
_ A LU, ., o2, LU 2 "
= mexp{—R R}{I—T(Xl Xz)T + 2K2 (XOX1+y0X2)T3+0(T )

4.2)
where X;, X,, X; are given by

_ x=Xo+(t~15) Uxo/L _y=Yo—(t—=1,) Upo/L z—z
= T Ty o gy 4
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Thus the concentration develops a skewed Gaussian distribution about the fluid
point originally coincident with the injection point. The result (4.2) has been
illustrated for a particular set of flow parameters in Fig. 1 and, based on the
computations, the theory seems to give reasonable answers provided ¢<0.2L/U
(see caption and Section 5). The theory does not apply for greater values of ¢ when
the curvature of the streamline through the injection point cannot be neglected.

y

S0

40

Injection point

1 1 1
X
50 60 70
Fig. 1. Initial dispersion from a unit point source near a stagnation point at x = y=0;
k=02cm?*s™, u =—x/l4cms™, v = p/ldcms~1, x, = 70 cm, y, = 30 cm. The diffusivity

is appropriate for the initial dispersion of a gas in air flow. The interior of the curves represent

points where C>10~* and the line represents the streamline through the injection point. The

effect of streamline curvature is not important for 3 or 4 seconds after injection, corresponding

to 1—7,<0.2L/U taking L = 100cm and U = 5cms-1. Three term and four term series
gave similar concentration curves.

Initial dispersion near a point vortex

Next consider a flow near a point vortex at x = y = 0; the velocity components
are therefore given by

— oy ox
u1=m, u2=§+—yz, U3=0. (4.4)

For this flow the coefficients Gy(R), ..., G,(R) given by (3.1,3.2) prove to be very
complicated and, consequently, the analytic form of the series (2.5) is omitted here.
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The computed results of a three-term series for the concentration are shown in
Fig. 2 for flow near a specified vortex. Again the concentration takes a skewed
Gaussian form and the results are clearly inapplicable when the curvature of the
streamline through the injection point is important. In this case the theory should
give reasonable answers for times after injection less than 0.15L/U (see caption
and Section 5).

y
50_.
40-
t=1 Injection point
I 1
60 70 X
Fig. 2. Initial dispersion from a unit point source near a point vortex at x = y = 0;
k =02cm?s™, u=—ay/x?+y*cms™?, v = oax/x2+y2cms~), o & 2715, x, = 70 cm,

Yo = 30 cm. The diffusivity is appropriate for the initial dispersion of a gas in air flow. The

interior of the curves represents points where C>10—° and the line represents the streamline

through the injection point. The effect of streamline curvature is not important for 4 or 5 seconds

after injection, corresponding to t—#,<0.15L/U taking L = 100cm and U = 3cms~!, The

results shown are for a three term series and those for a four term series were unsatisfactory

for t> 3 s when condition (5.3) had been violated. Even so, ¢ = 3 s corresponds to ¢ & 135«/U?
showing that (5.5) is quite pessimistic,

Initial dispersion in plane Poiseuille flow

Plane Poiseuille flow is a particular example of a uni-directional shear flow with

velocity components
u=uy), uy=uz=0. 4.5)
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If a solute were to be injected at t = ¢, at ry = x,€, +y, €, +2, € into such a flow,
the series (2.5) for the concentration takes the form

A
C = mexp{_R'R}{l +T2512 Xl X2+ Ta(‘)/lX1+A122 Xl X§)+0(T4)},

(4.6)
where the constants are found to be
L2, B, 2I3
Prz = :“ 0o 7= 6_:<u 00, A= P u"(yo) 4.7
and X7, X, X3 are given by
X1 = x“xo—(t—to)u(yo) X, = Y—=Jo Z2—2, (48)

W=t it B A=t

The result (4.6) holds for initial dispersion in unidirectional shear flow far away
from boundaries. The concentration develops a skewed Gaussian distribution
about the fluid point originally coincident with the injection point and the main
features of the skewness are determined by the sign of B,,, that is of u'(yy).

The series (4.6) requires modification when the solute is injected close to a
boundary for then the condition éC/dn =0 has to apply at the boundary. This
condition may be satisfied by using an additional image flow on the other side of
the boundary. The construction of an image flow field is generally only possible
for very simple boundaries such as planes and perhaps intersecting planes. By
way of example, suppose a solute is injected at r, = x,€; +y,€,+ 2, €5 close to the
plane boundary y =0 in the unidirectional shear flow specified by (4.5). The
augmented asymptotic expansion for the concentration is then found to have the
form

A
¢= 8(71K(t—-to))i [exp{-R-RH{1+ T2, X; Xo+ T3y X1+ A1 Xy XH+ o(TY}

+exp{~S-SHI+ 2B 1 Y+ T¥7 T+ A1 Yy YY+O(THY  (4.9)

in which the additional terms are defined by

Bio=—PBi 71=v1> A=A, (4.10a)
S =Y,e, (4.10b)
Y, = x—Xo—(t—tx) u(y,) Y, = Y+ ; zZ—2Zy (4.100)

AuCt—t)t VICICETN) ™ %)

https://doi.org/10.1017/5033427000000165X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000165X

276 N. G. Barton [12]

The series (4.9) was computed for the concentration of a solute close to a boundary
in the case of plane Poiseuille flow, that is, where the velocity components are

U =c y(ca—y), up=uz3=0,

and the results are illustrated in Fig. 3.

Injection
point
Fig. 3. Initial dispersion from a unit point source close to the boundary in plane Poiseuille
flow; x = 0.2cm?s™L, u = 0.003y (100—~y)cms=2, v = 0cms~, x, = O cm, y, = 5 cm. The
diffusivity is appropriate for the initial dispersion of a gas in air flow. The interior of the
curves represent points where C>10~5 and the results have been computed using an additional
image field as shown in equation (4.9). Three and four term series gave similar concentration
curves for up to three seconds after injection corresponding to 7 &30« U2 The results shown
are for a three term series.

It is difficult to assess the range of applicability of the series (4.9) in this case-
and in similar cases when the streamlines are straight. Some critical comments on
the source of errors in the asymptotic expansion for the concentration are given
in Section 5.

5. The applicability and limitations of the asymptotic expansion

The theory presented above can be modified to describe the results of continuous
injection of a cloud of solute into a flow. Thus if F(ry, 4)|dr,| dt, is the amount of
contaminant injected in a volume | dry| at ry and time d#, at #,, the resulting concen-
tration will be given by
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where
R = {r—ry— (t— 1) u(r)}/2x(t — t))}, T = (s(t—1t))}/L

and the first four coefficient functions were obtained in Section 3. The volume
integration is taken over all space after assuming that the solute has had insufficient
time to diffuse to near any boundaries of the flow. The solution (2.5) thus represents
a Green’s function for problems where contaminant is continuously injected.

There are several possible sources of error in the results (2.5, 5.1) and, of course,
the results are only applicable for short times after injection. Major errors could
be caused by diffusion to proximity of boundaries, numerical divergence of the
series, or streamline curvature becoming significant.

Diffusion to proximity of boundaries
The results (2.5, 5.1) cannot apply in general if the solute has had sufficient time
to diffuse to the proximity of boundaries, that is, for

O(t—ty) > L¥«x, 5.2)

where L is a typical dimension of the domain. In the case of plane boundaries the
condition éC/dn = 0 can be met by considering dispersion in an additional image
flow field and an example of such a technique was given in Section 4.

Numerical divergence of the series
The asymptotic series (2.5) should be useful for computations provided that

T GR)|>T™| Gy (R)] (5.3)

for the first few terms at least. An examination of equations (3.1, 3.2) shows that
(5.3) is easily satisfied for

T< O(x/LU). (5.4)

(The value «/LU was obtained by assuming the velocity components were of
order U and that boundary layer effects were unimportant. Thus the order of
u; j1(ro), for example, was taken as U/L%.) Bearing the definition (2.6) in mind, the
series (2.5) might therefore become unsuitable for computation whenever

O(t—ty)> kU2 (5.5

The author’s experience with the computations described in Section 4 was that
the estimate (5.5) is very pessimistic for the stagnation point flow. In this case there
was little substantial difference in the numerical values predicted by 3 and 4 term
expansions even for #—1, very much greater than O(x/U?). For dispersion in flow
near a point vortex and in plane Poiseuille flow, no substantial discrepancies
between three and four term expansions occurred until #—7, was much greater
than O(x/U?) (see captions to Figs. 2 and 3).
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Streamline curvature

The theory described above is based on small modifications to isotropic diffusion
about a point which moves along the line tangential to the streamline at the injection
point. Clearly the theory will be inapplicable when streamline curvature becomes
significant which may be shown to be for 1—¢, of O(L/U). (Incidentally it was
shown in Section 1 that diffusion dominates the dispersion mechanism for times
after injection less than order (velocity gradient)~! which is O(L/U) if boundary
layers are not important.)

Thus the series (2.5) will not give applicable results due to streamline curvature
when O(t—1t,) = L/U. The computations described previously for the stagnation
point and point vortex flows show that the results are inapplicable when

t—ty>cL|U, (5.6)

where ¢ is a constant whose value is about 0.15 or 0.2. This condition does not
apply in the case of plane Poiseuille flow when the streamlines are straight.

All the above estimates need revising when considering the injection of a cloud
of finite extent over a period of time as in (5.1). Suppose the contaminant cloud
originally had the typical length / and that the velocity field had the typical
magnitude U with changes occurring over a length L. Then the present theory,
based on the modification of initial isotropic diffusion, will hold provided (x(z — £,))}
is greater than /x (U/L) x (t—t,), that is,

O(t—t0)<K—L2. 5.7
U2/2
The importance of this restriction would depend on the character of the flow, and
streamline curvature of numerical divergence may be a more likely source of
errors in some flows.

It seems reasonable to expect that the series (2.5) is asymptotic to the solution
of (2.1,2.2) as t—»0 although a proof of asymptoticity has not been attempted
by the author.

In conclusion, the preceding results should be suitable to describe the initial
dispersion of a cloud of solute injected into a laminar flow away from boundaries
and the results should be better for flows with straight or nearly straight streamlines.
The series (2.5) is applicable for only a limited time as suggested by (5.2, 5.5, 5.6,
5.7), but this time could still be important for applications. The series may be
particularly relevant for the dispersion of gases in gases where the diffusivity «
would commonly be much greater than that for dissolved solutes in fluids. For
longer times, the analysis could be used to provide initial conditions for a numerical
solution of equation (2.1). The possible applications to dispersion in turbulent
flows such as those found in oceanography and meteorology are very restricted in
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view of the assumption of a constant diffusivity. For most turbulent flows the eddy
diffusivities cannot be taken as constants; indeed, the vertical and horizontal
diffusivities in geophysical situations are often taken to differ by orders of
magnitude. A more comprehensive theory capable of handling some of these
limitations may be attempted by the author in the future.
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