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d
1. Consider a system of differential equations f = F(t, x).

Solutions of this system are said to be convergent if, given any pair
of solutions x(t), y(t), x(t) - y(t) - 0 as t — o. In this case the
system is also said to be extremely stable.

In [6] a technique was developed which yielded the convergence
of solutions of the forced Lienard equation. Here a similar technique
is applied to forced third order equations. A critical step in [6] was
to show that a certain matrix was negative definite. This could be
done directly in [6] since the matrix was only 2 x 2. With third
and higher order equations, direct use of necessary and sufficient
conditions is not feasible since the computations become unwieldy.

A theorem on Gersgorin circles is used to bound the eigenvalues
of the matrix. A theorem of Fan [2] is also used for the same purpose.
Since these conditions are only sufficient, it can not be expected that
they will reduce to the Routh-Hurwitz conditions.

The technique is theoretically applicable to higher dimensional
equations, but for more than 3 X 3 matrices, even the computations
with these techniques become unmanageable. It is to be emphasized
that in the following theorems one set of inequalities for a technique
is prescribed. Clearly there are other possibilities, and in any
particular case one might want to investigate these other possibilities.
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It is to be noted that the theorems yield convergence for any
forcing function e(t) for which solutions exist. This is an extremely
strong kind of stability and is particularly important when e(t)
represents an unwanted, or unplanned, disturbance.

The following equations will be studied

(1.1) "X+ AX 4 g(x)kx + h(x) = e(t)

(1.2) x4+ (X)X + g(x)x + h(x) = e(t).

2. THEOREM 1. Assume that A 1is a positive constant,

0,1 1,1
geC (R), heC (R ) and e(t) is such as to guarantee the
existence of solutions of (1.1); then all solutions of (1.1) converge

provided there exist positive constants ai, aZ, a3, b1, b2 and €

such that

2 2 3
i > b b
(1) a a_a a1b2 + ab, + 2.a2 1b + a,

123 2
s ‘1
(ii) a1a2 > b1 >"L t+e
(iii) b2 > L +e

2
(iv) [2b1g(x) + 2a_h'(x) - ZaiA + (a1 + biA - azg(x) + bzh'(x))

2
+(aA+bg(x)-ah'(x)-b)Z]<-efora.ll X.
2 2 3 1 =

Remark 1. If g(x) = b and h(x) = cx where b and c are

positive constants, then constants a2y, a3, b1

always be found such that inequality (iv) is satisfied. Thus, for the

and b2 can

constant coefficient differential equation 'x° + A% + bx + cx = e(t),
conditions (i) - (iv) can always be reduced to the inequalities (i) - (iii).
In particular, if A > 1 and b >1 then the conditions are all

satisfied if the Routh-Hurwitz conditions Ab > c hold, although it
is not necessary to have a > 1 or b > 1 in order that conditions

(i) - (iv) hold.

Remark 2. By taking a, =10, a, =2, a =1,

1 2 3 2
it is easy to see that.all of the conditions of Theorem 1 are satisfied
by the equation 'x + 6X + 11% + 6x = t. Solutions of this equation

= 4 and b1=b
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-t -2t -3t 0t 11
are of the form x(t) = c1e + c,e + c3e + ¢ " 36" Thus,
it is clear that the conditions of Theorem 1 do not imply that the

solutions of (1.1) are bounded.

Proof of Theorem 1. Equation (1.1) is equivalent to the system

x1 = x2 - Ax
(2.1) 5;2 = x; - G(x,)
3;3 = e(t) - h(x1)

x
where G(x) = f g(s)ds.
0

If 6(t) is an arbitrary but fixed solution of (2.1), then any
other solution of (2.1) can be written as x(t) = 6(t) + n(t); and for
each fixed x(t), n(t) is a solution of the system

-A 1 0
(2.2) n = | -R(t) 0 1 |
-5S(t) 0 0
where
Gix, (t)) - G(6,(t)) _
R(t) = X1(t) - gi(t) if x1(t) :# (-)1(t)
g(e,(t)) i x, (1) = 6,(t)
h(xl(t)) - h(Oi(t))
S(t) = =(t) - 8(t) i x, (1) § 0, (1)
h' (8, (t) if x,(t) = 8(1)
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Let V(n) =7 - Qn be a scalar valued function where
= ) ) and
n={n . my, g an

1 1 2
Q = by %2 -b,
) b, %3

The matrix, and hence the function V(mn), 1is positive definite

if and only if

(1) a >0
2
(2.3) (i) aa, >b

2 2 3
> ab b b b, +
(i) ajaya, > ab, + ab + 2a,bb, + a,

As an aid in evaluating \./'(n, t) we note that, since g(x) and
h'(x) are continuous, R(t) and S(t) can be written as

1
R(t) = [ glsm, (t) + 6, (t))ds
0

(2. 4)
1
S(t) = fh'(sn1(t) + 91(t))ds.
0

The method used here in evaluating V(q, t) is the same as the
method used by Waltman and Bridgland in [6] where a second order
equation was studied.

If we set
-A 1 0
B = -g(sn1(t) + ei(t)) 0 1
~h! 2] 0
h (sni(t) + 1('c)) 0
782
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and C =BTQ + QB, then C is the matrix

2b g+ 2a_h' - 2a A A - ! - L
1g a, a, at1+b1 a2g+b2h a2A+b2g a3h b1

- ! -
a1+b1A a2g+b2h Zb1 0

- ' - -
azf + bzg a3h b‘_l 0 sz

We show that

. 1
(2.5) V(n, t) :fo n- Cnds,

recalling that the matrix C is a function of both s and t.
Vi{n) = n-Qn

2-Zb

- 2b
1M

2 +
& ¥37M3

2
=2 2M2M3t 2m,

1My ~ %M N

With respect to a solution (1~|1 (t), nz(t), ﬂ3(t)) of the system
(2.2) we have
y = -2 2b A+ 2
V(n, t) [Za1 azR(t) + b1 + bZS(t)] LI PN
+ [ZaZA - 2b1 + ZbZR(T) - 2::135(t)]1v]'1-n3

2 1 2
+[2b,R(t) - 2a,A + 2a,5(t)]ny - 2b, m, - 2b,m. .

Recalling (2. 4), \.’('q, t) can be written as

. 1
Vin, t) = fo [2a, - 2a,8(sm,(t) + 8,(t) + 2b,A + 2b ' (s (1) + 6, (t))]ds n,n,

1
+ {)[ZaZA - 2b, +2b,g(sm,(t) + 8, (t)) - 2a,h' (sn,(t) + 6, (t)]dsnm,

1 2
+ f0[2b1g(s n,(t) + 8,(t) - 2a, A + 2a,h' (s 0, (t) + 8,(t)]ds n,

1 2 A 2
-2 - (2
fo b,dsn; { b,dsm,
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or

1
(2. 6) Vin, t) = [ n-Cnds
0

Assume that constants a1, az, a3, b‘l’ b_ have been chosen

such that Q is positive definite. Let 0 < )\1

A

N, < \_ be the
2= 3

eigenvalues of Q, then

@.7) atlnly= x, Inl® < vin)

A

xlnll® = oD

Let )\1(t, s), )\Z(t, s), N _(t, s) be the eigenvalues of C, if

3
)\i(t,s)g - g <0 for i=1, 2, 3, all t and 0_<_ s < 1, then

'\”(n,t) < -g ”11”2, and the solutions of (2,2) are uniform-asymptotically
stable in the large.

We will use the following theorem to obtain conditions on the
matrix C which will guarantee that all eigenvalues of C are bounded
above by a negative constant.

LEMMA 2.1 [2, p.131]. Let B = (b, ) be a hermitian matrix
1)

with eigenvalues )\1 ; )\2 ; ; )\n. Let ci, cee, cn_'1 and
di’ ..., d be2n-1 real numbers suchthat ¢, > 0, i=1, ..., n,
n — i
and d, - d. -, i=1, +-., n-1, and assume that
e 1 i+1 = Ci
b.. + c. Zlb'2< d., 1:1’.-.,11_ Then )\_<d., i=1,"',n.
ii ij>i 4 = i i= i

Applying this theorem to the matrix C we obtain the following
set of inequalities:

'- + +b A - + b_h'
2b1g+2a2h ZaiA ci[(a,1 ag )

1 2

2
- a_h' - a
+ (aZA + bzg a bi) ] é

(2.8) 2 1’

-2b_, < d_,

-2b, < dy, 22 9

where d1 -d >
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0 |

In particular, if we take d'1 =-g< 0, c1 =1, Cl2 = -1 -g, c2 =
and d3 = -4 -2¢, (2.7) reduces to conditions (ii)-(iv) of Theorem 1,

and by Lemma 2.1 the eigenvalues of C will all satisfy
(2.9) N(t,s) < -e< 0
i =

for i=1,2,3,t_>_0and 0< s < 1.

Let (111 (t), n, (t), M, (t)) be a solution of the system (2.2) and
suppose that constants ai, az, a3, b1 and b2 have been selected
such that conditions (i)~(iv) of Theorem 1 have been satisfied. Then,
by (2.7) and (2.9), this solution is asymptotically stable in the large;
i.e., ni(t) - 0, le(t) - 0, 113(t) - 0 as t - . It remains to be

shown that the solutions of (1.41) are convergent.

Let (xi(t), xz(t), x3(t)) and (y1(t), yz(t), y3(t)) be arbitrary

solutions of the system (2.1), then.

i - = 1 - = f i=1,2,3,
t11_1;n°0[xi(t) ei(t)] 0 and tJ.gnoo[yi(t) Oi(t)] 0 or i =1 3

and hence

(2.10) Lim [x (t) - y.(t)] =0 for i =1, 2, 3.
t-o0- i i

x(t) and y = y(t) be solutions of (1.1), then
0 and from (2.1), letting =x(t) = x1(t) and

Now let x
Lim [x(t) -y ()]
y(t) =y, (6), x,(t) =X (t) - Ax, (t) = x(t) - Ax(t) and y,(t) = y(t) - Ay(t).

From (2. 10),

0 = Iim [x,(t) - v,(t)]
= Iim [%(t) - Ax(t) - y(t) + Ay(t)]
t—>o

= lim [x(t) - y(t)]
t—>o0
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since tIim [Ax(t) - Ay(t)] = 0. Again from (2.1) and (2.10),
— 00

o
1]

Jim [x5(t) - y,(t)]

lim [X (t) - Ax(t) + G(x(t)) -y (t) + Ay(t) - G(y(t))]

t >

Jim [x(t) - ¥ (t)]

since Iim [G(x(t)) - G(y(t))] = 0 which follows from G(x) continuous.
t—>o00

Thus, under the hypotheses of Theorem 1, all solutions of (1.1) are
convergent.

3. The geometrical nature of inequality (iv) in Theorem 1 will
now be examined so that inequality (iv) can be replaced by a linear

inequality. If we set b1 = b2 = 1, then the conditions of Theorem 1

become

(i) > + 2a_ + + 3
oA 383 7y 273373

. >
(i1) aia.2 1

(iii) [2g(x) + Zazh' (x) - 2a1A + (a.1 + A - azg(x) + h! (x))Z

+ (a,A + g(x) - a3h'(x)- 1)2] < -g.

2

Assuming that positive constants a.i, a.2 and a3 have been selected

satisfying (i), (ii) and (iii) we examine the region of stability in the
g - h' plane for the inequality (iii).

Replacing g by g+ gy’ h' by h' + h0 and expanding, (iii)
becomes

2 2 2
(a5 + 1) g7(x) = 2(ay + a,) g(0) B (x) + (a2 + 1) [0 ()]

2
+ [2(:12 + 1) g - Z(a.2 + a3) h0 - 2a1a2] g(x)

2
-2 2 - A)lh!

(3.2) +[ (a2+a3)g0+ (a3+1)h0+2(a1+a2+a3+A a,a;A)|h! (x)

2 2 2 2 2 2
<-a -A-aA -1+2a2A-(a2+1)g0+a(az+a3)g0ho

2 2
- 2 2 - - - - A)h_ -¢.
(a3+1)h0+ a1a2g0+ (a2a3A a1 a, a, )0 €
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The quadratic discriminant is —4(a.2a3 - 1)2, so the region is the

interior of an ellipse or parabola. It is a parabola if a2a3 =1, but

in this case condition (i) is violated, hence the region is the interior
of an ellipse.

Setting the coefficients of g(x) and h'(x) equal to zero in (3.2),
we find that the ellipse is centered at

2
a,a a +(aaA-a2-a3-A)(a2+1)-a

h o = 123 23 1
0 12
(a,a, - 1)
(3. 3)
) _a1a2+(a2+a3)h0
0 - 2
a2+1

Selecting 0 < <§ such that cot 2¢ = %(a3 - aZ)’ (3.2)

reduces to

(3.4) agz(x) + 5h'2(x) <Y

where
a = (ag + 1) cosz\.l.t - Z(a.2 + a3) sinycosy + (a§ + 1) sinzq;
B = (ai + 1) sinZLIJ + Z(a,2 + a3) sinycosy + (ai + 1) cosZLIJ

(3.5)

2 2 2 2 2 2
\{:-ai-A -aZA -1+2aA-(a2+1)g

2 h
2 o 2, taj)eghy

2 2
-(a3+1)h0+2a1a +2(aaA-a-a—a-A)h0-s.

280 2%3 17 % "%

From (3. 4) we see that the region of stability is an ellipse
centered at (go, ho) with major axis of length ,[y/@, and minor

axis of length J/ Y/3. Noting that 0 < a < B, we use the preceding
description to state the following.
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0_1
THEOREM 2. Assume that A is a positive constant, g ¢ C (R ),

1
h e C (R") and e(t) is such as to guarantee the existence of solutions
of (1); then all solutions of (1) converge provided there exist positive
constants ai, az, a3,a , gO, ho, a, B a_n_q vy satisfying (3.1), (3. 3)

and (3.5) such that

(i) 8y " g%<g(x)<go+sz[;

. _ ' Y
(ii) h0 E< h' (x) < h0+ ,2‘3

for all x ¢ Ri.

4. The relatively simple nature of the conditions needed in
Theorem 1 reflect the rather special nature of the matrix C used in
that proof. If one attempts to use Lemma 2.1 to determine corresponding
conditions for the matrix which arises from quation (1.2), it is found
that the inequalities so determined are very unmanageable. In Theorem
3 Gersgorin circles are used to determine bounds for the eigenvalues
of the matrix in question. Although the inequalities obtained are more
easily manipulated they do not yield as sharp results as does the use of
Lemma 2. 1.

0
THEOREM 3. If f, g ¢ C (R1), h ¢ C1(R1) and e(t) is such
as to guarantee the existence of solutions of (1.2), then all solutions

of (1.2) converge provided there exist constants ai, a, a3, b1, b2

and b3 such that the following inequalities are satisfied for some

e > 0 and for all x and vy:

2
i > 0, > , > 0;
(1) a.1 0 :;11a2 b1 bi

.. 2 2 2
(ii) a1a2a3 > a1b3 + azb2 + a?’b1 + 2b1b2b3,
b b
(i) — - — < f(y);
1 4 =
: < - h! - .
(iv) b3 < b2 (x) big(x),
b a b a
€ 2 2 2 2 €
V) s c T s e 1< fly) < - = -
2 b = = 2b
3 3 B3 by by 3
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(vi) b, -b_+

€
£ < - a_h! -
L "byt3 S baglx)-ahi(x) < b +b,

N o

(vii) zﬁ -a, -b, < bfly) +bh'(x) - a,gx) < by -a, - %

Proof of Theorem 3. Equation (1.2) is equivalent to the system

(4.1) X, = x_ - F(XZ) - G(xi)

where F(x) = fxf(s)ds and G(x) = fxg(s)ds.
0 0

If 6(t) is an arbitrary but fixed solution of (4.1), then any other
solution of (4.1) can be written as x(t) = 6(t) + n(t); and for each
fixed x(t), m(t) is a solution of the system

0 1 0
(4.2) n=|-R(t) -Pt) 1 |n
-S(t) 0 0
where
F(x,(t)) - F(8,(t))
P(t) = ¢ xz(t) ~ ez(t) if xz(t) ‘Jr ez(t)
L £(8,(t) it x,(t) =6,(t)
(4.3)
Gx,(t)) - G(8,(t)
if 8
R(t) = { x,(t)-8,(t) i x,(t) 3 6,(t)
\ g6, (t) i x,(t) =0,(t)
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h(x, (t)) - h(8(t))

1
S(t) = Xi(t) - 01(t)

if Xi(t) 3 ei(t)

h' (8, (t)) if x,(t) = @ (b).

The proof of Theorem 3 will depend upon the same function
V(n) as defined in the proof of Theorem 1.

From (4. 3) it is seen that P(t), R(t) and S(t) can be written as:

1
S f(sm, () + 0,(t))ds

P(t) =
0
1
(4. 4) R(t) = [ glsn (1) + 0, (t))ds
0
1
s(t) = [ h'(s n, (1) + 8, (t)ds .
0
Now setting
0 1 0
B = [ -glsm () +6,(t) -f(sn,(t) +6,(t) 1
-h' (sm, (t) + 6, (1)) 0 0

and C = BTQ + QB we have

2b 2b_h! f h' - -a_h' -
1g+ 5 aL1+b1 -i-b3 azg b3g a3 b1
= LI - - -
C a1+ b1f+b3h a,g Zb1 2a2f a2+b3f b2
—a_h'- f-b -2
bjg-aght -b, 3+t byi-b, by

Now using (4.1), (4.4) and calculating as in the proof of Theorem 1,
1

Vin,t) = J m-Cnds.
0
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Hence, if we assume that V(rn) is positive definite, then the zero
solution of the system (4. 3) will be asymptotically stable in the large
if the eigenvalues of C are uniformly bounded above by some negative
number; i.e., there exists € > 0 such that if )\i(t, s), i=1, 2, 3,

are the eigenvalues of C then X\ (t,s) < -¢g,1=1,2, 3, 0<s <1
1 = —
and t > 0.
The following theorem will be used to establish a sufficient

condition that all the eigenvalues of C will be less than some fixed
negative number.

LEMMA 4.1 [5, p. 196]. The characteristic roots of the
n X n hermitian matrix A = (a, ) lie in the closed region of the
1)

complex plane consisting of all the disks

n
where P = Z la,,l .
1

This result is due to S.A. GerSgorin.

From Lemma 4.1 we see that the eigenvalues of C will have
the desired property if

- - L. LI -
(1) -2b,g-2b,h g;]a1+bf+bh a2g|+|b3g a

LI,
173 ht - b

3

2) 2b +2a_f- ' f -
(2) y T 2af-e > |a1+b1f+bh aZg]+]a2+b3 b

3 2 ,

- -~ L. -
(3) 2b, a;|b3g a h b1|+|a2+b3g b

3 2"

It is assumed that each inequality is valid for all values of the
variables of the functions f, g and h' although the variables are
not displayed.

If we assume that constants a1, az, a3, b1, b2 and b3 exist

such that conditions (i)-(vii) of Theorem 3 are satisfied, then
inequalities (1)-(3) are satisfied which implies that the eigenvalues of
C are bounded above by a negative constant -¢e. Thus,
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: 2
V(5 13)(11,'5) < - ”n” , and all solutions of (4.1) converge to zero.

From the definition of 8(t) and from the system (4.1) it is clear
that, if x = x(t) and y = y(t) are solutions of (1.2), then,
(i)( (1)

Iim [x (t)-y (t)] =0, i=1,2, 3.

t—>0

5. When F(x,t) is periodic of period T, La Salle [3] has
shown that extreme stability and the existence of a bounded solution
imply the existence of a periodic solution of period T.

Applying the results of Theorem 1 to this result, we get the
following.

THEOREM 4. If e(t+ T) =e(t) forall t >0, T > 0, and
(1.1) has a bounded solution and the conditions of Theorem 1 are
satisfied, then (1.1) has a periodic solution of period T, and every
other solution of (1.1) converges to that periodic solution.
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