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Tannakian Duality for Affine Homogeneous
Spaces

Teodor Banica

Abstract. Associated with any closed quantum subgroup G ⊂ U+N and any index set I ⊂ {1, . . . ,N}
is a certain homogeneous space XG ,I ⊂ SN−1

C,+ , called an aõne homogeneous space. Using Tannakian
duality methods, we discuss the abstract axiomatization of the algebraic manifolds X ⊂ SN−1

C,+ that
can appear in this way.

Introduction

Compact quantum groups were introduced by Woronowicz in [13, 14]. _ese are ab-
stract objects, having no points in general, generalizing at the same time the usual
compact groups and the duals of discrete groups. Compact quantum groups have no
Lie algebra in general, but analogues of the Peter–Weyl theory, Tannakian duality, and
the Weingarten integration formula are available. _us, we have here some interest-
ing examples of noncommutative manifolds that are deûnitely algebraic and which
are probably a bit Riemannian too, because we can integrate on them.

_is is a continuation of [1], which was concerned with integration theory over
the associated homogeneous spaces. _e main ûnding there was the fact that, in or-
der to have a good integration theory, one must restrict attention to a certain spe-
cial class of homogeneous spaces, called “aõne”. To be more precise, associated with
any closed subgroup G ⊂ U+

N and any index set I ⊂ {1, . . . ,N} is a certain homo-
geneous space XG ,I ⊂ SN−1

C,+ , called aõne. In the classical case this space appears
as XG ,I = G/(G ∩ C I

N), where C I
N ⊂ UN is the group of unitaries ûxing the vector

ξI = 1
√

∣I∣ ∑i∈I e i . In general, however, there are many new twists and questions com-
ing from noncommutativity. Importantly, this construction covers many interesting
examples; see [1].

One question le� open in [1] was that of ûnding an abstract axiomatization of the
algebraicmanifolds X ⊂ SN−1

C,+ that can appear in this way. Wewill answer this question
with a Tannakian characterization of such manifolds. We believe that some further
improvements of this result can lead to an axiomatization of the “easy algebraic man-
ifolds”, which was the main question in [1] and which remains open.

_e paper is organized as follows: Section 1 is a preliminary section; in Sections 2
and 3, we state and prove the Tannakian duality result, and Section 4 contains a num-
ber of further results.
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484 T. Banica

1 Homogeneous Spaces

We use Woronowicz’s quantum group formalism in [13, 14], with the extra axiom
S2 = id. To be more precise, we will need the following deûnition.

Deûnition 1.1 Assume thatA is a unitalC∗-algebra, and thatu ∈ MN(A) is a unitary
matrix whose coeõcients generate A such that the following formulae deûne mor-
phisms of C∗-algebras ∆∶A→ A⊗ A, ε∶A→ C, and S∶A→ Aopp:

∆(u i j) = ∑
k

u ik ⊗ uk j , ε(u i j) = δ i j , S(u i j) = u∗ji .

We then write A = C(G) and call G a compact matrix quantum group.

_e above maps ∆, ε, S are called comultiplication, counit, and antipode, respec-
tively. _e basic examples include compact Lie groups G ⊂ UN , their q-deformations
at q = −1, and the duals of the ûnitely generated discrete groups Γ = ⟨g1 , . . . , gN⟩; see
[13].

We recall that the free unitary quantum group U+

N , constructed by Wang in [11],
and the corresponding free complex sphere SN−1

C,+ , from [3], are constructed as follows:

C(U+

N) = C∗((u i j)i , j=1,. . . ,N ∣ u∗ = u−1 , ut
= u−1

)

C(SN−1
C,+ ) = C∗(x1 , . . . , xN ∣ ∑

i
x ix∗i = ∑

i
x∗i x i = 1) .

Here both algebras on the right are by deûnition universal C∗-algebras.
Following [1], we can now formulate the following deûnition.

Deûnition 1.2 An aõne homogeneous space over a closed subgroup G ⊂ U+

N is a
closed subset X ⊂ SN−1

C,+ , such that there exists an index set I ⊂ {1, . . . ,N} such that

α(x i) =
1
√
∣I∣
∑
j∈I

u i j , Φ(x i) = ∑
j
u i j ⊗ x j

deûne morphisms of C∗-algebras satisfying (∫G ⊗ id)Φ = ∫G α( ⋅ )1.

Here, and in what follows, a closed subspace Y ⊂ Z corresponds by deûnition to a
quotient map C(Z) → C(Y). As for ∫G , this is Haar integration; see [13].
As a ûrst observation, the coaction condition (id⊗Φ)Φ = (∆ ⊗ id)Φ is satisûed,

and we also have (id⊗α)Φ = ∆α. In the case where α is injective, we have the follow-
ing proposition.

Proposition 1.3 When α is injective, we must have X = Xmin
G ,I , where

C(Xmin
G ,I ) = ⟨

1
√
∣I∣
∑
j∈I

u i j ∣ i = 1, . . . ,N⟩ ⊂ C(G).

Moreover, Xmin
G ,I is aõne homogeneous, for any G ⊂ U+

N and any I ⊂ {1, . . . ,N}.
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Proof _e ûrst assertion is clear from the deûnitions. Regarding the second asser-
tion, consider the variables z i =

1
√

∣I∣ ∑ j∈I u i j ∈ C(G). _en we have

∆(z i) =
1
√
∣I∣
∑
j∈I
∑
k

u ik ⊗ uk j = ∑
k

u ik ⊗ zk .

_us, we have a coaction map as in Deûnition 1.2, given by Φ = ∆, and the ergod-
icity condition, namely (∫G ⊗ id)∆ = ∫G( ⋅ )1, holds as well, by the deûnition of ∫G ;
see [1].

Given exponents e1 , . . . , ek ∈ {1, ∗}, consider the following quantities:

Pi1 ,⋅⋅⋅ik j1 ⋅⋅⋅ jk = ∫
G
ue1i1 j1 ⋅ ⋅ ⋅u

ek
ik jk .

Once again following [1], we have the following result.

Proposition 1.4 We must have X ⊂ Xmax
G ,I , as subsets of SN−1

C,+ , where

C(Xmax
G ,I ) = C(SN−1

C,+ )/⟨(Px⊗k
)i1 ⋅⋅⋅ik =

1
√
∣I∣k

∑
j1 , . . . , jk∈I

Pi1 ⋅⋅⋅ik j1 ⋅⋅⋅ jk ∣ ∀k,∀i1 , . . . , ik⟩ .

Moreover, Xmax
G ,I is aõne homogeneous, for any G ⊂ U+

N , and any I ⊂ {1, . . . ,N}.

Proof _e idea here is that the ergodicity condition (∫G ⊗ id)Φ = ∫G α( ⋅ )1 pro-
duces the relations in the statement. To be more precise, observe that we have

( ∫
G
⊗ id )Φ = ∫ α( ⋅ )1

⇐⇒ ( ∫
G
⊗ id )Φ(x e1i1 ⋅ ⋅ ⋅ x

ek
ik ) =

1
√
∣I∣k
∫

G
α(x e1i1 ⋅ ⋅ ⋅ x

ek
ik ), ∀k,∀i1 , . . . , ik

⇐⇒ ∑
j1 , . . . , jk

Pi1 ⋅⋅⋅ik j1 ⋅⋅⋅ jk x
e1
j1 ⋅ ⋅ ⋅ x

ek
jk =

1
√
∣I∣k

∑
j1 , . . . , jk∈I

Pi1 ⋅⋅⋅ik j1 ⋅⋅⋅ jk , ∀k,∀i1 , . . . , ik

_us, we have X ⊂ Xmax
G ,I , and the last assertion is standard as well; see [1].

We will need one more general result from [1], namely an extension of the Wein-
garten integration formula [2, 5, 6, 12] to the aõne homogeneous space setting.

Proposition 1.5 Assuming that G → X is an aõne homogeneous space with index set
I ⊂ {1, . . . ,N}, the Haar integration functional ∫X = ∫G α is given by

∫
X
x e1i1 ⋅ ⋅ ⋅ x

ek
ik = ∑

π ,σ∈D
(ξπ)i1 ⋅⋅⋅ikKI(σ)WkN(π, σ),

where {ξπ ∣π ∈ D} is a basis of Fix(u⊗k), WkN = G−1
kN with GkN(π, σ) = ⟨ξπ , ξσ⟩ is the

associated Weingarten matrix, and KI(σ) = 1
√

∣I∣k
∑b1 , . . . ,bk∈I (ξσ)b1 ⋅⋅⋅bk .
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Proof By using the Weingarten formula for the quantum group G, we have

∫
X
x e1i1 ⋅ ⋅ ⋅ x

ek
ik =

1
√
∣I∣k

∑
b1 , . . . ,bk∈I

∫
G
ue1i1b1

⋅ ⋅ ⋅uekikbk

=
1
√
∣I∣k

∑
b1 , . . . ,bk∈I

∑
π ,σ∈D

(ξπ)i1 ⋅⋅⋅ik(ξσ)b1 ⋅⋅⋅bkWkN(π, σ).

But this gives the formula in the statement, and we are done; see [1].

Finally, here is a natural example of an intermediate space Xmin
G ,I ⊂ X ⊂ Xmax

G ,I .

Proposition 1.6 Given a closed quantum subgroup G ⊂ U+

N , and a set I ⊂ {1, . . . ,N},
if we consider the quotient algebra

C(Xmed
G ,I ) =

C(SN−1
C,+ )/⟨ ∑

a1 , . . . ,ak
ξa1 ⋅⋅⋅ak x

e1
a1
⋅ ⋅ ⋅ x ekak =

1
√
∣I∣k

∑
b1 , . . . ,bk∈I

ξb1 ⋅⋅⋅bk ∣ ∀k,∀ξ ∈ Fix(u⊗k
)⟩ ,

we obtain in this way an aõne homogeneous space G → XG ,I .

Proof We know from Proposition 1.4 that Xmax
G ,I ⊂ SN−1

C,+ is constructed by imposing
on the standard coordinates the conditions Px⊗k = PI , where

Pi1 ⋅⋅⋅ik j1 ⋅⋅⋅ jk = ∫
G
ue1i1 j1 ⋅ ⋅ ⋅u

ek
ik jk , PI

i1 ⋅⋅⋅ik =
1
√
∣I∣k

∑
j1 , . . . , jk∈I

Pi1 ⋅⋅⋅ik j1 ⋅⋅⋅ jk .

According to the Weingarten integration formula for G, we have

(Px⊗k
)i1 ⋅⋅⋅ik = ∑

a1 , . . . ,ak
∑

π ,σ∈D
(ξπ)i1 ⋅⋅⋅ik(ξσ)a1 ⋅⋅⋅akWkN(π, σ)x e1a1

⋅ ⋅ ⋅ x ekak ,

PI
i1 ⋅⋅⋅ik =

1
√
∣I∣k

∑
b1 , . . . ,bk∈I

∑
π ,σ∈D

(ξπ)i1 ⋅⋅⋅ik(ξσ)b1 ⋅⋅⋅bkWkN(π, σ).

_us, Xmed
G ,I ⊂ Xmax

G ,I , and the other assertions are standard as well; see [1].

We can now put everything together, as follows.

_eorem 1.7 Given a closed subgroup G ⊂ U+

N and a subset I ⊂ {1, . . . ,N}, the aõne
homogeneous spaces over G with index set I have the following properties.
(i) _ese are exactly the intermediate subspaces Xmin

G ,I ⊂ X ⊂ Xmax
G ,I on which G acts

aõnely, with the action being ergodic.
(ii) For the minimal and maximal spaces Xmin

G ,I and Xmax
G ,I , as well as for the interme-

diate space Xmed
G ,I constructed above, these conditions are satisûed.

(iii) By performing the GNS construction with respect to the Haar integration func-
tional ∫X = ∫G α, we obtain the minimal space Xmin

G ,I .

We agree to identify all these spaces, via the GNS construction, and denote them
by XG ,I .
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Proof Indeed, this follows by combining the various results and observations for-
mulated above. Once again, for full details on all these facts, we refer the reader
to [1].

Observe the similarity with what happens for the C∗-algebras of discrete groups,
where the various intermediate algebras C∗(Γ) → A→ C∗red(Γ)must be identiûed as
well, in order to reach to a unique noncommutative space Γ̂. For details here, see [13].

Regarding the basic examples of such spaces, we have the following proposition.

Proposition 1.8 Given N ∈ N and I ⊂ {1, . . . ,N}, the following hold:
(i) In the classical case, G ⊂ UN , we have XG ,I = G/(G∩C I

N), where C I
N ⊂ UN is the

group of unitaries ûxing the vector ξI = 1
√

∣I∣
(δ i∈I)i .

(ii) In the group dual case, G = Γ̂ ⊂ U+

N with Γ = ⟨g1 , . . . , gN⟩, embedded via u i j =

δ i j g i , we have XG ,I = Γ̂I , with ΓI = ⟨g i ∣i ∈ I⟩ ⊂ Γ.

Proof In this statement, (i) follows from the fact that the action G ↷ XG ,I can be
shown to be transitive, and the stabilizer of ξI is the group G ∩ C I

N in the statement.
As for (ii), this follows directly from Deûnition 1.2, by using u i j = δ i j g i ; see [1].

One interesting question is that of understanding howmuch of (i) can apply to the
general case. _e answer here is as follows, with (ii) providing counterexamples.

Proposition 1.9 _e quotient map

G/(G ∩ C I+
N ) Ð→ XG ,I ,

is, in general, proper, where C I+
N ⊂ U+

N is the subgroup deûned by

C(C I+
N ) = C(U+

N)/⟨ξI = ξI⟩

and the relation uξI = ξI is interpreted as an equality of column vectors over C(U+

N).

Proof Observe ûrst that C I+
N is indeed a quantum group. In fact, it is standard to

exhibit an isomorphism C+I
N ≃ U+

N−1, by reasoning as in [10]. We must check that the
deûning relations for C(G/(G∩C I+

N )) hold for the standard generators x i ∈ C(XG ,I).
But if we denote the quotient map by π∶C(G) → C(G ∩ C I+

N ), we have

(id⊗π)∆x i = (id⊗π)( 1
√
∣I∣
∑
j∈I
∑
k

u ik ⊗ uk j) = ∑
k

u ik ⊗ (ξI)k = x i ⊗ 1,

as desired.
Finally, for the group duals this quotient map is given by Γ̂′I → Γ̂I , where Γ′I ⊂ Γ is

the normal closure of ΓI , and so this map can be indeed proper; see [1].

2 Algebraic Manifolds

In what follows, we discuss the axiomatization of aõne homogeneous spaces, as alge-
braic submanifolds of the free sphere SN−1

C,+ . We use the following formalism.
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Deûnition 2.1 A closed subset X ⊂ SN−1
C,+ is called algebraic when

C(X) = C(SN−1
C,+ )/⟨Pi(x1 , . . . , xN) = 0,∀i ∈ I⟩

for a certain family of noncommutative ∗-polynomials Pi ∈ C⟨x1 , . . . , xN⟩.

_ere are many examples of such manifolds, as for instance all the compact ma-
trix quantum groups. Indeed, assuming that we have a closed subgroup G ⊂ U+

N , by
rescaling the standard coordinates we obtain an embedding G ⊂ U+

N ⊂ SN2
−1

C,+ , and the
following result, coming from [14], shows that we indeed have an algebraic manifold.

Proposition 2.2 Given a closed subgroup G ⊂ U+

N , with the corresponding funda-
mental corepresentations denoted u → v, we have the formula

C(G) = C(U+

N)/(T ∈ Hom(u⊗k , u⊗l
),∀k, l ,∀T ∈ Hom(v⊗k , v⊗l

))

with k, l = ⋅ ⋅ ⋅ ○ ● ● ○ ● ⋅ ⋅ ⋅ being colored integers, with the tensor power conventions
w○ = w ,w● = w ,wx y = wx ⊗w y , and with the notation Hom(r, p) = {T ∣Tr = pT}.

Proof For any choice of two colored integers k, l and of an intertwiner T ∈

Hom(v⊗k , v⊗l), the formula T ∈ Hom(u⊗k , u⊗l), with u = (u i j) being the fun-
damental corepresentation of C(U+

N), corresponds to a collection of N k+l relations
between the variables u i j . By dividing C(U+

N) by the ideal generated by all these re-
lations when k, l , and T vary, we obtain a certain algebra A, which is the algebra on
the right in the statement.

It is clear that we have a surjective morphism A→ C(G), and by using Woronow-
icz’s Tannakian results in [14], this surjectivemorphism follows to be an isomorphism.
For a short recent proof of this fact using basic Hopf algebra theory, see [9].

In relation to aõne homogeneous spaces, we have the following proposition.

Proposition 2.3 Any aõne homogeneous space XG ,I ⊂ SN−1
C,+ is algebraic, with

∑
i1 , . . . , ik

ξ i1 ⋅⋅⋅ik x
e1
i1 ⋅ ⋅ ⋅ x

ek
ik =

1
√
∣I∣k

∑
b1 , . . . ,bk∈I

ξb1 ⋅⋅⋅bk ∀k,∀ξ ∈ Fix(u⊗k
)

as deûning relations. Moreover, we can use vectors ξ belonging to a basis of Fix(u⊗k).

Proof Indeed this follows from the various results in Section 1 and,more speciûcally,
from Proposition 1.6, using the identiûcations made in _eorem 1.7.

In order to reach a more categorical description of XG ,I , we will use Frobenius
duality. We use colored indices, and we denote by k → k the operation on the colored
indices that consists in reversing the index and switching all the colors. Also, we agree
to identify the linear maps T ∶ (CN)⊗k → (CN)⊗l with the corresponding rectangular
matrices T ∈ MN l×N k(C), written T = (Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk). With these conventions, the
precise formulation of Frobenius duality that we will need is as follows.

Proposition 2.4 We have an isomorphism of complex vector spaces

T ∈ Hom(u⊗k , u⊗l
) ←→ ξ ∈ Fix(u⊗l

⊗ u⊗k
)
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given by the formulae Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk = ξ i1 ⋅⋅⋅i l jk ⋅⋅⋅ j1 and ξ i i ⋅⋅⋅i l j1 ⋅⋅⋅ jk = Ti1 ⋅⋅⋅i l jk ⋅⋅⋅ j1 .

Proof _is is a well-known result that follows from the general theory in [13]. To be
more precise, given integers K , L ∈ N, consider the following standard isomorphism,
which in matrix notation makes T = (TI J) ∈ ML×K(C) correspond to ξ = (ξI J):

T ∈ L(C⊗K ,C⊗L
) ←→ ξ ∈ C⊗L+K .

Given two arbitrary corepresentations v ∈ MK(C(G)) and w ∈ ML(C(G)), the
abstract Frobenius duality result established in [13] states that the above isomorphism
restricts into an isomorphism of vector spaces as follows:

T ∈ Hom(v ,w) ←→ ξ ∈ Fix(w ⊗ v).

In our case, we can apply this result with v = u⊗k andw = u⊗l . Since, according to
our conventions, we have v = u⊗k , this gives the isomorphism in the statement.

With the above result in hand, we can enhance the construction of XG ,I , as follows.

_eorem 2.5 Any aõne homogeneous space XG ,I is algebraic, with

∑
i1 ⋅⋅⋅i l
j1 ⋅⋅⋅ jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l (x

f1
j1 ⋅ ⋅ ⋅ x

fk
jk )

∗
=

1
√
∣I∣k+l

∑
b1 ⋅⋅⋅b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck

for any k, l , and any T ∈ Hom(u⊗k , u⊗l), as deûning relations.

Proof Wemust prove that the relations in the statement are satisûed, over XG ,I . We
know from Proposition 2.3, with k → l k, that the following relation holds:

∑
i1 , . . . , i l
j1 ⋅⋅⋅ jk

ξ i1 ⋅⋅⋅i l jk ⋅⋅⋅ j1x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l x

f k
jk ⋅ ⋅ ⋅ x

f 1
j1 =

1
√
∣I∣k+l

∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

ξb1 ⋅⋅⋅b l ck ⋅⋅⋅c1 .

In terms of the matrix Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk = ξ i1 ⋅⋅⋅i l jk ⋅⋅⋅ j1 from Proposition 2.3, we obtain

∑
i1 , . . . , i l
j1 ⋅⋅⋅ jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l x

f k
jk ⋅ ⋅ ⋅ x

f 1
j1 =

1
√
∣I∣k+l

∑
b1 ⋅⋅⋅b l ∈I
c1 ⋅⋅⋅ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck .

_is gives the formula in the statement, and we are done.

3 Tannakian Duality

In this section we state and prove our main result. _e description of the aõne ho-
mogeneous spaces found in _eorem 2.5 suggests the following notion.

Deûnition 3.1 Given an algebraic submanifold X ⊂ SN−1
C,+ and a subset I ⊂

{1, . . . ,N}, we say that X is I-aõne when C(X) is presented by relations of type

∑
i1 , . . . , i l
j1 ⋅⋅⋅ jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l (x

f1
j1 ⋅ ⋅ ⋅ x

fk
jk )

∗
=

1
√
∣I∣k+l

∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck
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with the operators T belonging to certain linear spaces F(k, l) ⊂ MN l×N k(C), which
altogether form a tensor category F = (F(k, l)).

According to _eorem 2.5, any aõne homogeneous space XG ,I is an I-aõne
manifold, with the corresponding tensor category being the one associated with the
quantum group G ⊂ U+

N that produces it, formed by the linear spaces F(k, l) =

Hom(u⊗k , u⊗l).
We will need some basic facts regarding quantum aõne actions. Following Def-

inition 1.2, we say that a closed subgroup G ⊂ U+

N acts aõnely on a closed subset
X ⊂ SN−1

C,+ when the formula Φ(x i) = ∑ j u i j ⊗ x j deûnes a morphism of C∗-algebras.
We have the following standard result from [4], inspired by [7, 8].

Proposition 3.2 Given an algebraic manifold X ⊂ SN−1
C,+ , the quantum group

G+
(X) = max{G ⊂ U+

N ∣ G ↷ X}
exists and is unique. We call it the aõne quantum isometry group of X.

Proof In order to have a universal coaction, the relations deûning G+(X) ⊂ U+

N
must be those making x i → X i = ∑ j u i j ⊗ x j a morphism of algebras. _us, in order
to construct G+(X), we just have to clarify how the relations Pα(x1 , . . . , xN) = 0
deûning X are interpreted inside C(U+

N). So, pick one such polynomial, P = Pα , and
write it as follows:

P(x1 , . . . , xN) = ∑
r
αr ⋅ x i r1 ⋅ ⋅ ⋅ x i rs(r) .

Now, if we formally replace each coordinate x i ∈ C(X) by the corresponding ele-
ment X i = ∑ j u i j ⊗ x j ∈ C(U+

N) ⊗ C(X), the following formula must hold:

P(X1 , . . . , XN) = ∑
r
αr ∑

jr1 , . . . , j
r
s(r)

u i r1 j
r
1
⋅ ⋅ ⋅u i rs(r) j

r
s(r)

⊗ x jr1 ⋅ ⋅ ⋅ x jrs(r) .

_us, the relations P(X1 , . . . , XN) = 0 correspond to certain polynomial relations
between the standard generators u i j ∈ C(U+

N), and this gives the result; see [4].

Now by getting back to our questions, let us study the quantum isometry groups
of the manifolds X ⊂ SN−1

C,+ that are I-aõne. We have here the following result.

Proposition 3.3 For an I-aõne manifold X ⊂ SN−1
C,+ , we have G ⊂ G+(X), where

G ⊂ U+

N is the Tannakian dual of the associated tensor category F.

Proof We recall from the proof of Proposition 3.2 that the relations deûningG+(X)
are those expressing the vanishing of the following quantities:

P(X1 , . . . , XN) = ∑
r
αr ∑

jr1 , . . . , j
r
s(r)

u i r1 j
r
1
⋅ ⋅ ⋅u i rs(r) j

r
s(r)

⊗ x jr1 ⋅ ⋅ ⋅ x jrs(r) .

In the case of an I-aõne manifold, the deûning relations are those from Deûni-
tion 3.1, with the corresponding polynomials P being indexed by the elements of F.
But the vanishing of the associated relations P(X1 , . . . , XN) = 0 corresponds pre-
cisely to the Tannakian relations deûning G ⊂ U+

N , and so we obtain G ⊂ G+(X), as
claimed.
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We now have all the needed ingredients, and we can prove the following theorem.

_eorem 3.4 Assume that an algebraic manifold X ⊂ SN−1
C,+ is I-aõne, with associated

tensor category F.
(i) We have an inclusion G ⊂ G+(X), where G is the Tannakian dual of F.
(ii) X is an aõne homogeneous space, X = XG ,I , over this quantum group G.

Proof In the context of Deûnition 3.1, the tensor category F there gives rise, by the
Tannakian result in Proposition 2.2, to a quantum group G ⊂ U+

N . What is le� now is
to construct the aõne space morphisms α, Φ, and the proof here goes as follows:

(i) Construction of α. We want to construct a morphism,

α∶C(X) Ð→ C(G)∶ x i Ð→ X i =
1
√
∣I∣
∑
j∈I

u i j .

In view of Deûnition 3.1, we must therefore prove that

∑
i1 , . . . , i l
j1 , . . . , jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jkX
e1
i1 ⋅ ⋅ ⋅X

e l
i l (X

f1
j1 ⋅ ⋅ ⋅X

fk
jk )

∗
=

1
√
∣I∣k+l

∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck .

By replacing the variables X i by their above values, we want to prove that

∑
i1 , . . . , i l
j1 , . . . , jk

∑
r1 , . . . ,r l ∈I
s1 , . . . ,sk∈I

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jku
e1
i1 r1 ⋅ ⋅ ⋅u

e l
i l r l (u

f1
j1 s1 ⋅ ⋅ ⋅u

fk
jk sk)

∗
= ∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck .

Now observe that from the relation T ∈ Hom(u⊗k , u⊗l) we obtain

∑
i1 , . . . , i l
j1 , . . . , jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jku
e1
i1 r1 ⋅ ⋅ ⋅u

e l
i l r l (u

f1
j1 s1 ⋅ ⋅ ⋅u

fk
jk sk)

∗
= Tr1 ⋅⋅⋅r l s1 ⋅⋅⋅sk .

_us, by summing over indices r i ∈ I and s i ∈ I, we obtain the desired formula.
(ii) Construction of Φ. We want to construct a morphism,

Φ∶C(X) Ð→ C(G) ⊗ C(X)∶ x i Ð→ X i = ∑
j
u i j ⊗ x j .

But this is precisely the coaction map constructed in Proposition 3.3.
(iii) Proof of ergodicity. If we go back to Proposition 1.4, we see that the ergodicity

condition is equivalent to a number of Tannakian conditions, which are automatic in
our case. _us, the ergodicity condition is automatic, and we are done.

4 Further Results

_e Tannakian result obtained in Section 3, based on the notion of I-aõne manifold
from Deûnition 3.1, remains quite theoretical. _e problem is that Deûnition 3.1 still
makes reference to a tensor category, and so the abstract characterization of aõne
homogeneous spaces that we obtain in this way is not totally intrinsic.

We believe that some deeper results should hold as well. To be more precise, the
work on noncommutative spheres in [4] suggests that the relevant category F should
appear in a more direct way from X. In analogy with Deûnition 3.1, let us formulate
the following deûnition.
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Deûnition 4.1 Given a submanifold X ⊂ SN−1
C,+ and a subset I ⊂ {1, . . . ,N}, we let

FX ,I(k, l) ⊂ MN l×N k(C) be the linear space of linear maps T such that

∑
i1 , . . . , i l
j1 , . . . , jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l (x

f1
j1 ⋅ ⋅ ⋅ x

fk
jk )

∗
=

1
√
∣I∣k+l

∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l ,c1 ⋅⋅⋅ck

holds over X. We say that X is I-saturated when FX ,I = (FX , l(k, l)) is a tensor cate-
gory and the collection of the above relations presents the algebra C(X).

Observe that any I-saturated manifold is automatically I-aõne. _e point is that
the results in [4] seem to suggest that the converse of this fact should hold, in the sense
that any I-aõne manifold should be automatically I-saturated. Such a result would of
course substantially improve_eorem 3.4, and make it ready for applications.

We do not have a proof of this fact, but we would like to present now a few prelim-
inary observations on this subject. First, we have the following result.

Proposition 4.2 _e linear spaces FX ,I(k, l) ⊂ MN l×N k(C) constructed above have
the following properties:
(i) _ey contain the units.
(ii) _ey are stable by conjugation.
(iii) _ey satisfy the Frobenius duality condition.

Proof All of these assertions are elementary.
(i) Consider the unit map. _e associated relation is

∑
i1 , . . . , ik

x e1i1 ⋅ ⋅ ⋅ x
ek
ik (x

e1
i1 ⋅ ⋅ ⋅ x

ek
ik )

∗
= 1.

But this relation holds indeed, due to the deûning relations for SN−1
C,+ .

(ii) We have the following sequence of equivalences:

T∗
∈ FX ,I(l , k)

⇐⇒ ∑
i1 , . . . , i l
j1 , . . . , jk

T∗

j1 ⋅⋅⋅ jk i1 ⋅⋅⋅i l x
f1
j1 ⋅ ⋅ ⋅ x

fk
jk (x

e1
i1 ⋅ ⋅ ⋅ x

e l
i l )

∗

=
1

√
∣I∣k+l

∑
b1 , . . . , i l ∈I

∑
c1 , . . . ,ck∈I

T∗

c1 ⋅⋅⋅ckb1 ⋅⋅⋅b l

⇐⇒ ∑
i1 , . . . , i l
j1 , . . . , jk

Ti1 ⋅⋅⋅i l j1 ⋅⋅⋅ jk x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l (x

f1
j1 ⋅ ⋅ ⋅ x

fk
jk )

∗

=
1

√
∣I∣k+l

∑
b1 , . . . ,b l ∈I
c1 , . . . ,ck∈I

Tb1 ⋅⋅⋅b l c1 ⋅⋅⋅ck

⇐⇒ T ∈ FX ,I(k, l).

(iii) We have a correspondence T ∈ FX ,I(k, l) ↔ ξ ∈ FX ,I(∅, l k), given by the
usual formulae for the Frobenius isomorphism, from Proposition 2.4.

Based on the above result, we can now formulate our observations, as follows.
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_eorem 4.3 Given a closed subgroup G ⊂ U+

N , and an index set I ⊂ {1, . . . ,N},
consider the corresponding aõne homogeneous space XG ,I ⊂ SN−1

C,+ .
(i) XG ,I is I-saturated precisely when the collection of spaces FX ,I = (FX ,I(k, l)) is

stable under compositions and tensor products.
(ii) We have FX ,I = F precisely when∑ j1 , . . . , j l ∈I(∑i1 , . . . , i l ξ i1 ⋅⋅⋅i lu

e1
i1 j1 ⋅ ⋅ ⋅u

e l
i l j l − ξ j1 ⋅⋅⋅ j l ) =

0 implies that∑i1 , . . . , i l ξ i1 ⋅⋅⋅i lu
e1
i1 j1 ⋅ ⋅ ⋅u

e l
i l j l − ξ j1 ⋅⋅⋅ j l = 0, for any j1 , . . . , j l .

Proof From _eorem 2.5, we know that with F(k, l) = Hom(u⊗k , u⊗l), we have
inclusions of vector spaces F(k, l) ⊂ FX ,I(k, l). Moreover, once again by_eorem2.5,
the relations coming from the elements of the category formed by the spaces F(k, l)
present XG ,I . _us, the relations coming from the elements of FX ,I present XG ,I as
well.

With this observation in hand, our assertions follow from Proposition 4.2.
(i) According to Proposition 4.2(i) and (ii), the unit and conjugation axioms are

satisûed, so the spaces FX ,I(k, l) form a tensor category precisely when the remaining
axioms, namely the composition and the tensor product one, are satisûed. Now by
assuming that these two axioms are satisûed, it follows by the above observation that
X is I-saturated.

(ii) Since we already have inclusions in one sense, the equality FX ,I = F from the
statement means that we must have inclusions in the other sense:

FX ,I(k, l) ⊂ F(k, l).

By using Proposition 4.2(iii), it is enough to discuss the case k = 0. And here,
assuming that we have ξ ∈ FX ,L(0, l), the following condition must be satisûed:

∑
i1 , . . . , i l

ξ i1 ⋅⋅⋅i l x
e1
i1 ⋅ ⋅ ⋅ x

e l
i l = ∑

j1 , . . . , j l ∈I
ξ j1 ⋅⋅⋅ j l .

By applying the morphism α∶C(XG ,I) → C(G), we deduce that we have

∑
i1 , . . . , i l

ξ i1 ⋅⋅⋅i l ∑
j1 , . . . , j l ∈I

ue1i1 j1 ⋅ ⋅ ⋅u
e l
i l j l = ∑

j1 , . . . , j l ∈I
ξ j1 ⋅⋅⋅ j l .

Now recall that F(0, l) = Fix(u⊗l) consists of the vectors ξ satisfying

∑
i1 , . . . , i l

ξ i1 ⋅⋅⋅i lu
e1
i1 j1 ⋅ ⋅ ⋅u

e l
i l j l = ξ j1 ⋅⋅⋅ j l ,∀ j1 , . . . , j l .

We are therefore led to the conclusion in the statement.

It is quite unclear as to how to make progress on these questions, and a more ad-
vanced algebraic trick, in the spirit of those used in [4], seems to be needed. Nor is
it clear how to explicitly “capture” the relevant subgroup G ⊂ G+(X), in terms of our
givenmanifold X = XG ,I , in a direct, geometric way. Summarizing, further improving
_eorem 3.4 is an interesting question that we would like to raise here.
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