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ALGEBRAS INTERTWINING NORMAL AND 
DECOMPOSABLE OPERATORS 

ALI A. JAFARIAN 

I n t r o d u c t i o n . The celebrated result of Lomonosov [6] on the existence of 
invariant subspaces for operators commuting with a compact operator have 
been generalized in different directions (for example see [2], [7], [8], [9]). The 
main result of [9] (see also [7]) is: If 31 is a norm closed algebra of (bounded) 
operators on an infinite dimensional (complex) Banach space 36, if K is a non­
zero compact operator on 36, and if t\K Ç K^l, then 21 has a non-trivial (closed) 
invariant subspace. In [7], it is mentioned tha t the above result holds if instead 
of compactness for K we assume tha t K is a non-invertible injective operator 
with a non-zero eigenvalue belonging to the class of decomposable, hypo-
normal, or subspectral operators. 

Heydar Radjavi (in a private conversation) asked: Can we get the above 
results if we omit some or all of the conditions (1) "non-invert ibi l i ty", (2) " in-
ject iv i ty" , and (3) "existence of a non-zero eigenvalue" for K? If not in general, 
can we get it for "good" operators K, say normal operators? 

In this paper we will s tudy this question for normal and decomposable 
operators. We will show tha t for these operators the condition (3) can be re­
placed by a much weaker condition, namely, a(K) ^ {0(, and tha t the condi­
tions (1) and (2) can be relaxed for some cases of interest. As a result, we will 
obtain norms of normal spatial automorphisms of (topologically) t ransi t ive 
algebras of operators. 

1. Pre l iminar ie s . Throughout £> and ï will denote a complex Hilbert and 
Banach space respectively. The symbols 53(§) and 33 (36) will be used for the 
algebra of all bounded linear operators on § and 36 respectively. If T Ç 93(36), 
the spectrum and spectral radius of T will be denoted by <r(T) and r„(T) 
respectively. By a subspace we always mean a closed linear manifold. If 
{SWXJXCA is a family of linear manifolds in 36, then the subspace generated by 
{9WX}XÇA will be denoted by VX€A50?X- The dual space of ï will be denoted by ï* 
and if 2)? C 36, then 

wi± = {x* e x*: (x, x* ) = o vx e a»}. 

If 5 C C, then S° will denote the interior of S. 
An operator T Ç 93(36) has the single-valued extension property if whenever 

12 C C is open a n d / : Q, —» 3E is an analytic function such tha t (X — T)f(X) = 0 
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on Q, then we have / = 0 on Q. (See [1] and [3].) Let x £ X and T Ç 93 (Ï) have 
the single-valued extension property, then the local resolvent of T at x, PT(%), is 
defined by 

PT(X) = {̂  £ C: there exists an analytic £ valued function u defined 

on a neighborhood of X satisfying (X — T)u(X) = x.} 

It is clear that there exists a unique analytic function x(\) defined on pT(x) 
satisfying (X — T)x(k) = x on pT(x). The local spectrum of T at x, <rT{x), is 
defined to be C\pT(x). If F is a subset of C, define 

XT(F) = {x e X: crrW C F}. 

It is easy to see that %T(F) is an invariant linear manifold for T. 
The definition of decomposable operator will not be given here (see [1]). 

Let T G 93 ( ï) be decomposable, then it is well known that T has the single-
valued extension property and that HT{F) is closed for every closed set F ([1]). 

2. Results. Algebras considered will be assumed to contain the identity, 
although this is not at all essential ; the trivial modification necessary for the 
general case will be obvious to the reader. 

We acknowledge that our Theorem 1 and Corollary 3 are strongly inspired 
from the work of C. Foias [4]. 

THEOREM 1. Let %be a uniformly closed subalgebra of 93(36), and suppose that 
2li£ Ç Ktyt, for some infective decomposable operator K with o(K) ^ W- For 
a > 0, let Fa = {X G C: |X| ^ a}. Then for every 0 < a < ra(K) the subspace 
VT<E2I THk(Fa) is non-trivial and invariant under 21. 

Proof. First we will note that for every a > 0, VTÇSÏ TT£K(Fa) is an invariant 
subspace for 21, but it may be {0} or ï . We will show that there exists a constant 
c §; 1 such that for every a > 0 w e have: 

(1) VT&TXM) CXK(Fa/c). 

Suppose this is proved, then the proof of the Theorem can be completed as 
follows: Let 0 < a < r„{K). Then, since K is decomposable, {0} Ç <r(K), and 
c §: 1 we have 

(2) XK(Fa/e) £ Ï and 

(3) {0} C lK(Fa), 

Now since / G 21, in view of (1), (2) and (3) the subspace V r € a TXK(Fa) will 
be non-trivial. 

So let us prove the existence of a c ^ 1 for which the relation (1) is true. 
An application of the Closed Graph Theorem shows that the map \p : 21 —• 31 
defined by 

f(T) = K~lTK 
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is a continuous algebra isomorphism. Now l^ll ^ l , for^(7) = I.Letc = ||^||. 
Since ^(21) C 21 we can iterate TK = K^(T),T £ 21, to get 

(4) TKn = KnÇ{T) 

where \f/n is the composition of \f/ with itself n times, n = 1, 2, . . . . It follows 
from (4) that 

(5) K*nT* = [r(T)]*K*n, 

where * denotes the dual operator. Since 

l|[*"(r)]*|| = ||*»(r)|| gc»||r||,» = 1,2,.. . 
it follows from (5) that for every x* £ ï* we have: 

(6) \\K*nT*x*\\ ^ cn\\T\\ ||X*wx*||. 

Now let x* G £***(£«), where for a > 0, Da = {X Ç C: |X| ^ a}. (Note that 
i£* is decomposable too [5].) Then C\Da C PK*(X*) and the unique analytic 
function x*(X) which satisfies (X — i£*)x*(X) = x* for all X 6 p**(x*), has the 
power series representation 

x*(\) = Yiï=oK*nx*/\n+\ 

which is convergent for all |X| > a. Using this and (6) it follows that the series 

y M = J^n=oK*nT*x*/\n+l 

defines an analytic function for |X| > ac which satisfies (X — K*)y(\) = T*x* 
for |X| > ac. Thus T*x* £ XV(A*C) if x* £ X*K*(Da) and T G 31, i.e., 

(7) T*X*K*(Da) C ï V ( f t c ) , T e 31, a > 0. 

But this implies that 

(8) TXK(Fa°) C XK(Fa/c»). 

To see this let x Ç %K(Fa°) and w* £ (^(^«/c0))1- be arbitrary. If £ is a closed 
subset of C, then in view of [5] we have: 

**.*(£) = QLK(C/E))\ 

Thus u* 6 X*K*(Da/c) and by (7) we have 

(9) r*M* Ç ***.(/>„) = ( ^ ( T ^ ) ) ^ . 

Now by (9) we have 

(Tx, u* > = (x, r*w* ) = 0, 

which proves (8). We need to prove 

(io) mK(Fa) cxK(Fa/c), « > o , Ten. 
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To do so we note that Fa = C\p<a Fp° and using (8) we have 

mK(Fa) = TxK(ne<aFf) = T[nfKaXKW)] c r v « nKW) 
C r)fi<a%K(Fp/c°) C Pl/3<« T£K(F$IC) = XK(Fa/c) 

which establishes (10). Now (1) follows from (10) immediately, and hence the 
proof is complete. 

COROLLARY 1. / / in Theorem 1 we have %K = i£3l, for a (not necessarily 
injective) decomposable operator with a(K) 2 {0}, then 3( has a non-trivial 
invariant sub space. 

Proof. If K is not injective, then it follows from ?[j£ = K% that the null-
space of K will be invariant under 31. If K is injective, then the result follows 
from Theorem 1. 

COROLLARY 2. Let 31 be a uniformly closed subalgebra of 93($), and suppose 
that %K C K%,for some non-invertible and non-zero normal or scalar operator K. 
Then 31 will have a non-trivial invariant sub space. 

Proof. First suppose that K is normal. Then if K is injective, the result 

follows from Theorem 1. If K is not injective then $l(K) (the range of K) will 

not be dense in $ . But %K Ç. K% implies that ï)l(K) is invariant under 3(, 
and hence dt(K) will be a non-trivial invariant subspace of 3(. If K is a scalar 
operator (in the sense of N. Dunford [3]) then K = S~1NS for some normal 
operator N and an invertible operator 5. Let 93 = S%S~~\ then 3W C 7V33 
and by the first part of the proof 33, and hence 31, will have a non-trivial in­
variant subspace. 

COROLLARY 3. Let 31 and K be as in Theorem 1. If 0 is an accumulation point 
of a(K), then 31 has an infinite ascending chain of invariant subspaces. 

Proof. Let c be as in the proof of Theorem 1 and choose a sequence a„ Ç v(K) 
such that 

0) an -> 0, 

(ii) |an+i| < \an\/c, and 

(iii) A, = a(K) H {X G C: |an+i| < | \ | < \an\/c] 9* 0. 

Consider the subspaces 

SB?» = WTmTlK(Flanl),n = 1 , 2 , . . . 

Since {\an\} is a decreasing sequence, it follows that {5W„}«eN a r e ascending. 
By Theorem 1 they are invariant under 31. We have: 

9Kn £ 9K*+i,» = 1, 2, . . . 
To see this we note that %K(An) 9e {0} (this follows from the properties of 
decomposable operators) and hence 

a», c **(/%„,,,) £ *K(Fian+l]) c mn+l. 
(The last inclusion follows from the fact that / Ç 21). This finishes the proof. 
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Let us now consider the question: where was the condition 0 £ a(K) used 
in the proof of Theorem 1? A careful checking shows that it was actually used 
in the derivation of the relation (2), which was in turn used in establishing that 
VrçH THK(Fa) is a proper subspace of X. Now suppose that in the statement 
of Theorem 1 the operator K is just an invertible decomposable operator. 
If a, 0 < a < ra(K), can be chosen so that 

[r,(K-i)}~> = i n f { | X | : \ e *(K)} < « / W , 

which is possible if and only if 

(11) U\\ <rff(K-i)-r,(K), 

then again the relation (2) holds and Theorem 1 will be true. For a normal 
operator K £ 93(̂ >) the condition (11) becomes: 

(12) ||*|| < ||X-i|| \\K\\. 

Note that the right hand side of the inequality (12) is the norm of the spatial 
automorphism of $}(§) defined by 

T^K~lTK. 

(The inequalities (11) and (12) somehow involve the "smallness" of 31 and 
the "thickness" of the smallest annulus with center at 0 and containing a(K)). 

We will summarize the above discussion: 

THEOREM 2. Let 31 be a uniformly closed subalgebra of 93(£) (33(£>)) and sup­
pose that %K ÇZ K%, where K is an invertible decomposable {respectively, normal) 
operator for which the norm of the spatial automorphism \p of 31 defined by 

x/s:A ^K~lAK 

satisfies the inequality (11) (respectively (12)), then 31 has a non-trivial invariant 
subspace. 

Let us call an identity containing uniformly closed subalgebra of 93(36) 
(topologically) transitive if it has no non-trivial invariant subspace. As an im­
mediate corollary of Theorem 2 we obtain the following result. 

COROLLARY. Let 31 be transitive and K be an invertible decomposable (normal) 
operator for which %K C K$l. Then the norm of the spatial automorphism \p of 
31 defined by 

yP(A) = K~lAK, A 6 8 

is at least ra(K~l) • ra(K) (respectively, equal to \\K~l\\ • | |^| | .) 

The following examples show that if ||^|| = ||i£-1 | | \\K\\, then 31 can have no 
or many non-trivial invariant subspaces. 

Example 1. If 31 = 93(§) and K is any invertible normal operator on § , 
then H l̂l = Hi^"1!! \\K\\ and obviously 31 does not have a non-trivial invariant 
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subspace. In this example the smallest annul us with center at 0 containing 
o-(K) can be as "thick" as we please, but the algebra 21 is very "big". 

Example 2. Let 21 be the algebra of all compact operators on § and K be any 
unitary operator on § . Then obviously 2U£ = Ktyi, \\\[/\\ = ||i£_1[| • \\K\\ = 1, 
and §1 has no non-trivial invariant subspace. Here 21 is "small", but <r(K) is 
very "thin". 

Example 3. Let £ = £2(0, 1) and 

21 = {M,: <t> e 8°°(0, 1)! 

where M0: S2(0, 1) -^ £2(0, 1) is the multiplication operator M+if) = </> •/, 
/ Ç 82(0, 1). Let d: [0, 1] -> [0, 1] be defined by 0(x) = 1 - x. Then 6 is a bi-
jective Lebesgue measurable function (in fact, continuous) which preserves 
the Lebesgue measure on [0, 1]. Let U: § —•> § be the unitary operator defined 
by U(f) =fod.Let<t>£ 8°°(0, 1), then 

(u-iM*u)f= (u-m,)(fod) = (u-i)(<t>.fod) = ( « o r 1 ) - / 
= (M*o«-0/ 

and hence U"lM^U = M^e-i. This shows that 21[/ = [/SI. Here the norm of 
the algebra automorphism ^: 21 —> 21 defined by ^(^4) = [/~M C/ is 1, which is 
equal to || L^_1|| || U\\, and the algebra 21 has many non-trivial invariant (in fact 
reducing) subspaces. 
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