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Some models containing 

Regge poles* 

3.1 Introduction 

In the previous chapter we showed how, by analytically continuing the 
partial-wave amplitudes in angular momentum, one can represent 
the scattering amplitude as a sum of pole and cut contributions in the 
complex l plane. Cuts do not occur in potential scattering, or in some 
of the simpler models for strong interactions, and they will not be 
introduced until chapter 8. But Regge poles correspond to bound­
state or resonance particles, and in this chapter we shall examine their 
occurrence in non-relativistic potential-scattering amplitudes, in 
Feynman perturbation field theory, and in various models of strong­
interaction dynamics. 

Though clearly none of these examples can prove that Regge poles 
will actually occur in hadronic processes, they do help to make it 
plausible. They also give some indication of the properties which 
Regge trajectories may be expected to possess. 

We begin by discussing some of the more general results which are 
independent of particular models. 

3.2 Properties of Regge trajectories 

The analyticity and unitarity properties of the partial-wave ampli­
tudes imply certain general features of the Regge trajectories. 

For example the occurrence of a pole at l = a(t) implies that 

(3.2.1) 

which may be used implicitly to define the function a(t), and hence 
tells us about the analyticity of a(t). It is more useful however to 
begin by writing, from (2.6.2) and (2.6.8) (Oehme and Tiktopoulos 

* This chapter may be ommitted at first reading. 
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1962, Barut and Zwanziger 1962), 

B,(t) = J:~ +Is~ [ 1:1T2 Q1(zt) D8 (8, t) dzt(qtl3qt24)-l] 

= E1(t) + Fz(t) 

79 

(3.2.2) 

where to define E1(t) and Fz(t) we have split the region of integration at 
some arbitrary point 81• Then if D8 (8, t) "' 8"<t>, since from (A.27) 

Q,(zt) "' s-1-1 

we find that (3.2.3) 

and so contains the pole. E1(t) involves only a finite integration in 8 

and so has no pole. Thus instead of (3.2.1) we can define a(t) by 

(Fz(t))-1 --+0 as l--+a(t) (3.2.4) 

It is evident from (3.2.2) that Fz(t) has similar singularities to B1(t), 
i.e. the same dynamical right-hand cut starting at the threshold tT, 
and a similar left-hand cut due to the 8-singularities, but with the 
branch point pushed further to the left in the t plane as its position is 
determined by 81 not 8T (substituted for M 2 in (2.6.16),see section 2.6). 
The kinematical threshold singularity has of course been removed 
from B1(t), and hence Fz(t) in (3.2.2). 

The implicit function theorem (Titchmarsh (1939) p. 198) tells us 
that if (Fz(t) )-1 is regular in the neighbourhood of some point t = tP, 
say, and if 

(3.2.5) 

then a(tp) is also a regular function in the neighbourhood of tP. This 
is easily demonstrated by expanding (Fz(tp))-1 in a Taylor series about 
t = tP. l = a(tp), i.e. 

(Fz(t))-1 = a1(l-a(tp))+a2(l-a(tp))2 + ... +b1(t-tp) 

+b2(t-tp)2 + ... +c2(t-tp) (l-a(tp))+ ... (3.2.6) 

Then setting (Fz(t))-1 = 0 at l = a(t) gives 

b1 
a(t) = a(tp) -- (t- tp) + ... (3.2.7) 

a1 

a Taylor series for a(t), so a must be regular in the neighbourhood oftP. 
However, if (3.2.5) does not hold, i.e. if a1 = 0, then 

a(t) = a(tp) ± (- ~:) 1 (t- tp)l +... (3.2.8) 
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80 SOME MODELS CONTAINING REGGE POLES 

and so there are two trajectories which cross at t = tP, each with 
a square-root branch point, such that their imaginary parts fort< tP 

are equal and opposite, to preserve the analyticity of F[1. Of course 
if b1 also vanishes at this point there will not be a branch point. 

Thus we conclude that a(t) will be analytic where F[1 is analytic 
unless two (or more) trajectories cross each other, in which case there 
may, but need not, be a branch point in each trajectory function. So 
unless trajectories cross we can expect a(t) to have the same singulari­
ties as (.li;(t))-1. However, the position of the left-hand cut in Fz(t) is 
arbitrary as it depends on 81. We can make 81 as large as we like and still 
obtain a pole in (3.2.3) from the divergence of the integrand in (3.2.2) 
as 8--"?-00, so it is evident that a(t) cannot contain the left-hand cut of 
(F1(t}}-1. Hence a(t) has just the dynamical right-hand cut from tT --"?-00, 
unless two trajectories collide. 

Such collisions must in fact occur at t = 0 for fermion trajectories 
in order to satisfy the generalized MacDowell symmetry (see section 
6.5 below). Also they have been observed to occur in various potential­
scattering calculations, but this can only happen for Re {l} < -!(see 
the next section). There is no direct evidence that complex trajectories 
occur in hadron physics fort < 0 (see however section 8.6}, and it is 
usually assumed that the trajectory functions are real fort < tT. 

Then since a(t) is real analytic we can write a dispersion relation 

a(t) = ~ ["" Im,{a(t')} dt' (3.2.9) 
1T)tT t-t 

However, subtractions will usually be needed. For example if 

Re{a(t)}--"?- A(t}, 
t--> 00 

a polynomial in t, we may have 

a(t) = A(t) +~ ["' Im ,{a(t')} dt' 
1T)tT t-t 

(3.2.10) 

We shall find in the next section that with well behaved potentials 
like the Yukawa the trajectories tend to negative integers as t-"?-oo, 
giving 

1 J"' Im{a(t')} , 
a(t)=-n+;r t t'-t dt, n=1,2,3, ... 

T 

(3.2.11) 

On the other hand in particle physics trajectories seem to be approxi­
mately linear, with rather small imaginary parts (see section 5.3) 
suggesting instead 

1 f"' Im{a(t')} a(t) =a +a t+- dt' 
0 1 1T t t'- t 

T 

(3.2.12) 

https://doi.org/10.1017/9781009403269.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.004


PROPERTIES OF REGGE TRAJECTORIES 81 

Or the integral in (3.2.12) may not converge, in which case subtractions 
will be needed as in (1.10.10), and iffor example two subtractions are 
sufficient we get 

t2 roo Im{a(t')} I 

a(t) = ao+alt+; )t t'2(t'-t) dt (3.2.13) 
T 

We have chosen to make the subtractions at t = 0 so that a 0 = a(O) 

and a 1 = a'(O) == (dafdt)t~o· 
We shall find (see section 5.4) that Im {a(t)} > 0 for t > tT, so if 

we take the nth derivative of (3.2.11) or (3.2.12) or (3.2.13) 

dna= n!loo Im{a(t')} dt' 
dtn 1T t (t'- t)n+l 

T 

(3.2.14) 

we find that all the derivatives are positive for t < tT. A function 
with this property is called a Herglotz function (Herglotz 1911). 

If the pole takes the form (2.8.3), we have from (2.6.8) 

B1(t)~ l y(t)() where y(t) == fJ(t) (qn3 qt24)-a(t) (3.2.15) 
z__,.a(t) -at 

The function y(t), the Regge residue with the threshold behaviour 
removed, is often referred to as the 'reduced residue'. We can use 
Cauchy's residue theorem to write (from (3.2.2)) 

y(t) = 2~i f dl F; (t) (3.2.16) 

where the integration contour is a closed path encircling the point 
l = a(t), but no other singularities ofF;. This equation together with 
the implicit function theorem tells us that y(t) will have similar 
analyticity properties to a(t), i.e. just the dynamical right-hand cut 
of F;(t) unless two or more trajectories cross. So as with (3.2.9) we can 
write 

y(t) =~roo Imfy(t')} dt' 
1T J tT t - t 

(3.2.17) 

again making subtractions if necessary. 
It is also possible to deduce the nature of the branch point in the 

trajectory function at tT from the unitarity equation. If we consider 
the elastic scattering process 1 + 3-+ 1 + 3 below the inelastic threshold 
in the t channel, tv we have, from (2.6.23), 

(3.2.18) 
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82 SOME MODELS CONTAINING REGGE POLES 

where p(t) = 2qtl3t-i. Now the function 

ip(t) ( _ qtl3)21 ip(t) (qtl3)21 e±ltrl 

cos 7Tl cos 1Tl 

has the same discontinuity as (B1(t))-1 for tT < t < tv so that 

Y(t, l) = cos 7Tl(B1(t))-1 + ip(t) (- qtl3)21 

is analytic in this region. From (3.2.1.) we have 

Y(t, l)-+ip(t) ( -qtl3)21, for l-+ex(t) 

(3.2.19) 

(3.2.20) 

(3.2.21) 

If we define exT= ex(t.r) we have (using (1.7.15), tT = (m1 +m3)2) 

{3.2.22) 

so Y(tT, exT) = 0 if exT > - t· We can expand Yin a Taylor series about 
the threshold values oft and ex, giving 

where 

and so 

Y(t,ex(t)) = Y(tT,a..r)+ Y/(ex(t)-exT)+ Y;(t-tT)+ ... (3.2.23} 

(3.2.24) 

Hence the trajectory has a threshold cusp for - ! < exT < ! and above 
threshold 

(3.2.26) 

However in potential scattering these cusp effects seem to be small 
(Warburton 1964). 

Since 2 
Y(t,l)-+-,, l-+-!, t-+tT, (3.2.27) 

ytT 

the condition for a pole (3.2.1) becomes, from (3.2.20), 

~ = ~ (q )2(1+i>e-i1r(l+i> 
,jtT ,jtT tl3 

(3.2.28) 

which can be satisfied by l = exn for any exn such that 

(log(q~13)-i7T)(exn+!)=21Tni, n=O, ±1, ±2, ... (3.2.29) 

that is (3.2.30) 
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PROPERTIES OF REGGE TRAJECTORIES 83 

So an infinite number of trajectories converge on a = - i as t-+t.r 
(qn3 -+0). This is sometimes called the Gribov-Pomeranchuk pheno­
menon (Gribov and Pomeranchuk 1962). Their occurrence should 
serve as a warning against supposing that the left-half angular­
momentum plane is likely to have a simple singularity structure. 

3.3 Potential scattering 

In this section we shall briefly review the behaviour of solutions of the 
Schroedinger equation for non-relativistic potential scattering as a 
function of l. As we have already mentioned this is how Regge poles 
were first discovered (Regge 1959) and there is the great advantage 
that all the results can be proved rigorously. But as potential scattering 
is only of limited relevance to particle physics our discussion will be 
rather cursory, and we refer the interested reader to more complete 
studies, where the required proofs are given in detail (Squires 1963, 
Newton 1964, de Alfaro and Regge 1965). 

a. Solutions of the Schroedinger equation 

If the interaction potential V ( r) is a function of the r only, the solutions 
of the Schroedinger equation ( 1.13. 3) 

(3.3.1) 

can be decomposed into partial waves (see for example Schiff (1968) 
p. 81) 

00 1 
ljr(r,O,if>) =I; -¢>1(r)~(cos0) 

l=O r 
(3.3.2) 

The cylindrical symmetry removes any dependence on the azimuthal 
angle¢>, and the radial wave function ¢>1(r) satisfies the radial Schroe­
dinger equation (2.1.1) 

d2rj>,(r) + (k2_l(l+ 1)- U(r)) rj>,(r) = 0 
dr2 r2 

(3.3.3} 

The quantization of angular momentum, which restricts l to integer 
values, stems from the requirement that angular dependence of 
(3.3.2) be finite for all values of 0. But in (3.3.3) l appears as a 
free parameter, and the equation can be solved for any value of l. 
Poincare's theorem (see below) tells us that the solutions of such a 
differential equation are usually analytic functions of such parameters, 

4 CIT 
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84 SOME MODELS CONTAINING REGGE POLES 

so we may expect ¢1(r) to be analytic in l. It is also useful to note 
the symmetry of (3.3.3) under the replacements l-+-(1+1), and 
k-+-k. 

As long as the potential is 'regular', i.e. r2 U(r)-+0 as r-+0, the 
small-r solutions of (3.3.3) are controlled by the centrifugal barrier 
term l(l + 1) r-2• This constitutes a repulsive addition to the effective 
potential (for l > 0), and physically of course it represents the increased 
difficulty of holding particles together if they have a high relative 
angular momentum due to the centrifugal force. As r-+0 we can 
neglect k2 and U in (3.3.3). Evidently there are two independent 
solutions which behave like r-1 and r+l, respectively, as r-+0. The 
physical solution must be finite at the origin, however, and we denote 
it by ¢1(r) = rp(l, k, r) ,...., r1+1. 

It satisfies the integral equation (Newton (1964) p. 21, de Alfaro 
and Regge (1965), p. 21) 

¢(l, k, r) = ¢0(1, k, r) + J: dr' G(r, r') U(r') ¢(l, k, r') dr' (3.3.4) 

where G is the Green's function, which may be written in terms of 
Hankel functions as 

G(r,r') = i i(rr')!(H}~1 (kr)Hi~t(kr') -Hi~t(kr)H}~!(kr')) 
(3.3.5) 

and where ¢0 is a solution of (3.3.3) with U(r) = 0, i.e. 

(k)-1-! ¢0 (l,k,r) = r!F(l+!) 2 Ji+t(kr) (3.3.6) 

J being a Bessel function. It can be checked by direct substitution 
that (3.3.4) satisfies (3.3.3), and the boundary condition at r = 0. 

As long as rU(r)-+0 as r---roo, both U(r) and the centrifugal barrier 
term become irrelevant in (3.3.3) as r-+oo, and in this limit it is more 
convenient to consider the 'irregular' solutions x(l, ± k, r) whose 
boundary conditions are x(l, ± k, r) ,...., eHkr as r---roo, because these 
give the incoming and outgoing plane waves, in terms of which the 
scattering amplitude is defined. They satisfy the integral equation 
(Newton (1964) p. 14, de Alfaro and Regge (1965) p. 23) 

x(l, k, r) = 'Xo(l, k, r)- LX> G(r, r') U(r') x(l, k, r') dr' (3.3. 7) 
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where again G is given by (3.3.5) and Xo is a solution of (3.3.3) with 

U(r) = 0, i.e. ( k i 
X (l k r) - e-i!tr(l+l) ~) H<2> (kr) (3 3 8) 

0 ' ' - 2 l+! .. 

The other independent solution is obtained by letting k~- k. 
Since any solution of (3.3.3) can be expressed in terms of these 

independent solutions, we can relate the physical solution (3.3.4) to 
the asymptotic plane-wave solutions (3.3.7), viz. 

1 
rp(l, k, r) = 2ik (f(l, k) x(l, - k, r)- f(l, - k) x(l, k, r)) (3.3.9) 

where the f' s are called J ost functions and satisfy (de Alfaro and Regge 
(1965) p. 39) 

f(l, k) = fo(l, k) +foro u (r') x(l, k, r') rp(l, k, r') dr' (3.3.10) 

2 (k)-l f 0(l,k) = 1T1F(l+!) 2 e-!itrl (3.3.11) 

Hence as r~oo 

rp(l, k, r) ~ 2~k (f(l, k) eikr- f(l, - k) e-ikr) (3.3.12) 

But the partial-waveS-matrix is S(l, k) = e2i8l<k>, where 81(k) is the 
phase shift (see (2.2.10)), and is related to the asymptotic form of the 
regular solution by 

(3.3.13) 

i.e. S(l, k) gives the ratio of the outgoing flux (X "' eikr) to the incoming 
flux (X"' e-ikr) for the given partial wave, So in terms of the Jost 
functions 

S(l k) = f(l, k) eitrl 
' f(l, -k) 

(3.3.14) 

and the partial-wave scattering amplitude is obtained from this 
S-matrix by 

A (k) = S(l, k)- 1 
I 2ik (3.3.15) 

(See (2.2.10). With non-relativistic kinematics p(s)~k.) 

b. Analyticity properties of the solutions 

The analyticity properties of A 1(k) are readily deduced from those of 
f(l, k) obtained from (3.3.10). 
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Poincare's theorem (Poincare 1884) states that if a given parameter 
occurs in a differential equation only in functions which are holo­
morphic in that parameter, and if the boundary conditions are inde­
pendent of the parameter, then the solutions to the equation will be 
holomorphic in the given parameter. 

Thus since (3.3.3) is analytic in 1, and since if we consider the 
function r-1-1¢(1, k, r) the boundary conditions become independent 
of 1, the regular solution ¢(1, k, r) must be analytic in 1 for Re {l} > - !· 
However, for Re{1} <-!the regular solution -+00 as r-+0, because 
r = 0 is not a regular point of (3.3.3). 

To continue to Re {l} < - ! we have to analytically continue the 
integral equation (3.3.4), and the possibility of doing this depends on 
the nature of the potential. If the potential is singular, i.e. rU(r)-+oo 
for r-+ 0, then for a repulsive potential the boundary condition 
becomes independent of 1, since the potential provides the most 
singular term. So we can simply use the symmetry of (3.3.3) under 
l-+- (1+ 1) to obtain the S-matrix for Re{l} <-!,i.e. from (3.3.14) 

S(l, k) = - e-2"u S( -1-1, k) (3.3.16) 

This exhibits the Mandelstam symmetry (2.9.5). However, for an 
attractive singular potential the S-matrix cannot be defined as there 
will be an infinite number of bound states (see Frank, Land and 
Spector 1971). 

But we are mainly concerned with potentials which are regular at 
the origin, like the generalized Yukawa potential (1.13.17). For such 
we can make the expansions 

rD(r)-k2r= £anrn } 

<ft(l, k, ') ~::},b .... (3.3.17) 

and on substituting in (3.3.3), and equating coefficients of the various 
powers of r, one finds 

bn = (21+n+1)n~oambn-1-m• n ~ 1 (3.3.18) 
1 n-1 } 

b0 = 1 

So if> is meromorphic in 1 with poles at 21 = - (n + 1 ), i.e. 21 = negative 
integers, provided that the series (3.3.17) converges for r near zero. 
The same will be true of the Jost functions in (3.3.9) except that the 
poles at half-integer 1 values vanish due to the Mandelstam symmetry. 
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And since the positions of the poles at negative integer l are inde­
pendent of r, these fixed poles will cancel in the ratio (3.3.14), and so 
will be absent from the S-matrix. 

If the potential vanishes at the origin, so that rU(r) "'rP+l, which 
in (1.13.17) implies (expanding the exponential) that 

J: p(p,)p,ndp, = 0 for n = 0, 1, ... ,p, (3.3.19) 

then there are no poles of ¢1 for integer Re {l} > - 1-p/2. 
A special intermediate case is potentials which contain a singular 

term Vo/r2• This may be combined with the centrifugal barrier term in 
(3.3.3} to give an effective angular momentum L, where 

L(L + 1) = l(l + 1) + J'o. 

Thus the poles in L at L = n give rise to branch points in l at 

l = i{ -1 ± [1-4J'o+4n(n+ 1)]}i (3.3.20} 

whose positions depend on J'o. 
In strong interactions the very-short-distance behaviour of the 

interaction is the part we know least well, and so the applicability 
of the above analysis is uncertain. But the fact that the Yukawa 
potential and its generalizations, which are so analogous to particle 
exchange forces, do give rise to meromorphic Jost functions for 
Re {l} > - 1 suggests that the same may be true in particle physics too. 

By precisely similar arguments to the above it can be shown that 
¢(1, k, r) is also holomorphic ink for all k (Re l > - !), since k appears 
analytically in (3.3.3} and does not affect the boundary conditions. 
Similarly x(l, k, r) eikr is holomorphic in k for Re {k} > 0, Im {k} < 0. 
But at k = 0 X has a branch point which can be seen directly in the 
expression (3.3.8) for Xo· The solution for Re {k} < 0 can be obtained 
by continuing round this singularity replacing x by x(l, k e-1", r). 
Continuation to Im {k} > 0 can be achieved by series methods, and it 
is found that the Jost functions have the Hermitian analyticity 
property 

f(l, k) = j*(l*, k*) (3.3.21) 

However if the potential has the Yukawa form, say, and behaves like 
e-mr as r-+ oo, then the asymptotic form of the outgoing wave function 
X"' eikrisdampedawayfasterthan U(r)e-ikrasr-+ooiflm{k} > m/2 
and the series solution breaks down at this point. This is because 
the partial-wave amplitude has a left-hand cut in k2 beginning at 
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k2 = - m2/4, as one would expect from the analyticity properties 
discussed in sections 1.13 and 2.6. 

Having obtained the singularities of the Jost functions ink and l we 
can now discuss those of the scattering amplitude, which from (3.3.14) 
and (3.3.15) may be written 

A (k) = ...!.._ [ei11lj(l, k)- f(l, - k)] ( 
I 2ik j(l, - k) 3.3.22) 

Clearly its singularities in k2 will be the same as those of the f's, 

namely a left-hand cut starting at k2 = -m2/4, and a right-hand cut 
along the positive k2 axis starting at k2 = 0, as we found in section 
1.13. In fact these partial-wave methods can be used to prove that 
Yukawa potential scattering satisfies the Mandelstam representation 
(Blankenbecler et al. 1960). The right-hand cut is of course a conse­
quence of the unitarity condition SS* = 1, and for integral l, from 
(3.3.15) and (3.3.21), this becomes 

(3.3.23) 

where k+,- are evaluated above and below the cut (cf. (2.2.7)). But 
for non-integrall it is necessary to take out the threshold behaviour 
first (as in (2.6.8)) so we define 

B (k) = A 1(k) 
l k2l (3.3.24) 

which is Hermitian analytic and along the right-hand cut, k2 > 0, 
satisfies the unitarity equation 

2iim{B1(k)} = B1(k+) -B1(k_) = 2ik21HB1(k+)B1(k_) 

(3.3.25) 
(cf. (2.6.23)). 

c. Regge poles 

In addition to these branch points there is the possibility that pole 
singularities may appear in (3.3.22) due to the vanishing ofj(l, - k). If 
this happens for a given l at say k = ikb, kb > 0, then it is evident from 
(3.3.12) that as r-+oo the wave function is damped exponentially 
like e-kbr, corresponding to a bound-state pole on the real negative 
k2 axis. Since f is an analytic function of l the position of this pole at 
l = a(k~), say, where the function a is defined by 

(3.3.26) 
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will also be an analytic function of l. On the other hand if there is a zero 
ofj(l, -k) at some Im{k} < 0, say k = kR -ikv we may write, in this 
neighbourhood of k, 

f(l, -k) ~ C(k-kR +ikl) 

so f(l,k) =f*(l*, -k*) = O*(k-kR-ikl) (3.3.27) 

where Cis some constant, producing a resonance pole in the S-matrix 
(3.3.14) of the form 

S(l, k) ~ ei(7Tl-2 argO)(~- ~R- ~~~) (3.3.28) 
- R+ 1 I 

(Note that we cannot have k1 = 0 since then bothf(l,k) andf(l, -k) 
would vanish at the same place and so¢ would vanish.) So resonances 
will also lie on Regge trajectories, like bound states. 

To find the Regge trajectories produced by a given potential one 
must search for the zeros ofj(l, - k). One potential which has particu­
larly simple trajectories is the Coulomb potential V(r) = e2fr. Though 
this violates the convergence requirements as r-+oo (rU(r)+O), 
it is well known (see for example Schiff (1968) p. 138) that the phase 
shift ~1(k) can still be defined if one first removes the infinite part 
exp [(i e2 log r)/2k] stemming from the infinite range of the inter­
action. The S-matrix is then (Singh 1962) 

S(l k) = F(l + 1- ie2/2k) 
' F(l+ 1 +ie2f2k) 

(3.3.29) 

This has poles where the argument of the numerator F-function passes 
through negative integers, i.e. at 

ie2 
l = an(s) = -m-1 + 2k, m = 0, 1, 2, ... (3.3.30) 

giving bound states at 
e4 

8 = E = k2 = - 4(l + m + 1 )2 
(3.3.31) 

which is the usual Rydberg formula for the hydrogen atom (see 
fig. 3.1). Note how the trajectories tend to infinity atE= 0, which is 
a characteristic of the zero-mass photon exchange. 

With Yukawa-like potentials the Schroedinger equation can be 
solved numerically using the series method (3.3.17) and some examples 
are shown in fig. 3.2. A sufficiently attractive potential will produce 
a bound state for low l, which will become less bound as l increases due 
to the centrifugal repulsion, and perhaps manifest itself as a higher 
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0 

-1 E 

--!r; 

FIG. 3.1 Regge trajectories for the Coulomb potential from (3.2.29). For 
integer l we have the degenerate hydrogen-atom levels of principle quantum 
number n = l+m+ 1 (m = 0, 1, 2), where m is the radial quantum number. 
(E is measured in units of e4/4 = 1 rydberg.) 

Re{a} 

FIG. 3.2 Regge trajectories for an attractive Yukawa potential 

V(r) = -g2 e-'fr 

E 

for various values of g2, from Lovelace and Masson ( 1962). See also Ahmadzadeh, 
Burke and Tate (1963). 

spin resonance. The trajectory turns down again once the effective 
potential, U (r) -l(l + 1) r-2 , becomes too weak to produce a pole for 
the given l value. It will also be seen that as g2 ---+ 0 the leading trajec­
tory remains near l = - 1 for all k, i.e. near the position of the highest 
fixed pole in the J ost function. This is because the Born approximation 
(1.13.16) or (1.13.18), which behaves like t-1 for alls, is a good approxi­
mation to the scattering amplitude in this limit. 
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In fact the leading trajectory asymptotes to -1 for 8-+ ± oo even 
for large g2 because the first Born approximation dominates for large 8. 

However, if the potential vanishes at the origin, rU(r) "' rP+l as 
r-+ 0, then the trajectory asymptotes to the highest integer 
l ~ -1- (p+ 1)/2. This follows from (1.13.18) since if the denominator 
is expanded for large t 

AB(8,t)=-J~ djtp(Jt)G+~:+ ... ) (3.3.32) 

it is clear from (3.3.19) that coefficients oft-1, t-2, •.. , t-!P-1 all vanish. 
Other potentials for which the trajectories have been calculated 

include the square well (see Newton 1964) and the three-dimensional 
harmonic oscillator, V(r) = !Mw2r2, where w is the classical frequency. 
The eigenstates are (Morse and Feshbach (1953) p. 1662) 

E = k2 = liw(n+!) = liw(2m+l+!) (3.3.33) 

giving trajectories with l oc E. This is particularly interesting because 
with relativistic kinematics E 2 = k2 + m2 one might expect to get 
l cc E 2 instead, which corresponds to the behaviour found in particle 
physics (see chapter 5). Various quark models for meson trajectories 
have been proposed based on this observation (see Dalitz (1965), and 
chapter 5) using a static version of the relativistic Bethe-Salpeter 
equations (see (3.4.11) below) instead of the Schroedinger equation, 
with a harmonic oscillator potential between the quarks. However, 
such potentials do not satisfy the convergence requirement that 
rV(r)-+0 as r-+oo so there are no quark-quark scattering solutions. 
The quarks can never get out of the potential which, since they have 
not been observed, may not be a bad thing! 

For well behaved potentials it is possible to determine the slope of 
the trajectory below threshold from the 'size' of the bound state. 
The Schroedinger equation (3.3.3) may be written 

( d2 l(l + 1) ) 
Drp = 0 where D = dr2 +E --r-2 -- U(r) (3.3.34) 

We seek a solution rp(l, k, r) for l = a(E) where E = k2• Differentiating 
with respect to E gives 

dD drp dD 2a+ 1 da 
dErp+D dE= 0 where dE= 1-~ dE (3.3.35) 

Multiplying (3.3.34) by drpfdE and (3.3.25) by rp and subtracting gives 

drp D"" _ ""D drp = "" dD "" ( ) dE 'I' 'I' dE 'I' dE 'I' 3.3.36 
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But (3.3.37) 

so the left-hand side of (3.3.36) may be written 

(3.3.38) 

and integrating both sides from r = 0 to oo we get 

[d¢ d¢ -¢ d2¢ ]oo = (oodD ifJ2dr 
dE dr dEdr 0 Jo dE 

(3.3.39) 

Since ¢ "" r1+1 for r-+ 0 and "" e-lklr for r-+ oo (for a bound state) the 
left-hand side vanishes at both limits for l > -! and E < 0. Then 
substituting (3.3.35) in the right-hand side of (3.3.39) we end up with 

da 
dE 

(3.3.40) 

where R2 defined by (3.3.40) is the mean-square radius of the state 
described by the wave function¢. It shows that dafdE is positive for 
a>-!, E < 0. 

d. The NfD method 
In obtaining the scattering amplitude from the potential one is seeking 
a function whose left-hand cut in E = k2 is given by the potential, 
and whose right-hand cut satisfies the unitarity condition {3.3.25). 
An alternative to solving the Schroedinger equation which exploits 
these analyticity properties is the so-called N fD method (Blanken­
becler et al. 1960). This is of some interest because, unlike the Schroe­
dinger equation, it is readily generalized to particle physics provided 
the scattering amplitudes have the expected analyticity properties. 

From (3.3.22) and (3.3.24) we can write 

f(l, k) ei1rl_ f(l, - k) 1 Nz(E) 
Bz(E) = 2(ik)Z+l . (- ik)lf(l, - k) = Dz{E) (3.3.41) 

Now from (3.3.21) we find that N;(k) = Nz(ke-11T) (for real Z) so that 
N;(E) has no right-hand cut in E but just the left-hand cut stemming 
from the potential beginning atE= -m2f4, and N -+0 as IEI-+oo. 
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Similarly D,(E) has no left-hand cut, but just the right-hand unitarity 
cut, and JJ,(E)-* 1 as IEI-*oo. Both Nand Dare real analytic. 

Hence we can write dispersion relations 

N.(E) = ~ f-m'/4 Im {Nz(E')} dE' 
I 1T -<X> E' -E 

Dz(E) = 1 + ~ f"' Im \D(E')} dE' 
1r o E -E 

(3.3.42) 

(3.3.43) 

If we define the discontinuity of B1(E) across the left-hand cut as 
b1(E) we have 

(3.3.44) 

while on the right-hand cut 

Im{D1(E)} = Nz(E)Im{Bz;E)} = -Nz(E?~;~\~)} = -Nz(E)k21+1 

(3.3.45) 

from (3.3.25), and hence we obtain the simultaneous equations 

Nz(E) = ! f-m"/4 Dz(E:) bz(E') dE' 
1r _"' E -E 

JJ,(E) = 1-! f"' Nz(~')E'I+! dE' 
1r o E -E 

(3.3.46) 

(3.3.47) 

The solution of these equations, given b1(E), corresponds to the 
solution of the Schroedinger equation with the given potential. The 
problem of course is to find b1(E). This is easy for the first Born 
approximation (1.13.16) whose t-discontinuity is just 

which substituted in (2.6.19) (interchanging sand t and putting q = k) 
gives 

(3.3.48) 

If this is substituted in (3.3.46) and (3.3.47) we get quite a good ap­
proximation to the exact solution for small g2 • The second Born 
approximation can also be calculated fairly easily (see Collins and 
Johnson 1968), but higher order terms are more difficult. 

The Regge poles appear as zeros of the D function, i.e. DaCE>( E) = 0 
implicitly defines a(E), and so a trajectory a(E) can be followed by 
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observing the movement of this zero with l. This tells us that a(E) will 
have just the singularities of D1(E}, i.e. just the right-hand cut, in 
agreement with our conclusions of the previous section. 

3.4 Regge poles in perturbation field theory 

It is important to check that Regge singularities also occur in perturba­
tion field theory, because this has a much more realistic singularity 
structure ins and t than potential scattering. We shall find in chapter 8 
that more complicated l-plane singularities, Regge cuts, which are 
absent from potential scattering, also arise in such field theories. But 
in this chapter we restrict our attention to the poles. 

Perhaps the first thing to note is that the theory will include not 
only Regge poles but also the input elementary particles which 
correspond to Kronecker-8 functions in the l plane. We are concerned 
only with scalar mesons, and the partial-wave projection of at-channel 
propagator like (1.12.1) is, from (2.2.18} and (A.20}, 

(3.4.1) 

that is a contribution to the S wave only. Such elementary particles 
do not seem to exist so we can be fairly sure from the beginning that 
not all aspects of the l-plane structure of the field theory will corre­
spond to that of particle physics. (However we shall show in chapter 12 
that in some circumstances these input 8's may be cancelled away.) 
We shall only be interested in the composite particles which may arise 
as bound or resonant states formed by the interaction between the 
elementary particles. These should occur on trajectories in analogy 
with potential scattering. 

Such composite particles involve infinite sets ofFeynman diagrams, 
and we shall have to assume that the asymptotic behaviour of such 
sets of diagrams can be obtained by summing the leading behaviours 
of the individual diagrams. This certainly need not be true mathe­
matically, of course, but, at least for weak couplings where the per­
turbation series may make some sense, it has a certain plausibility. 

A much more complete review of this subject may be found in 
Eden et al. (1966, chapter 3). Here we are mainly concerned to obtain 
(3.4.11) below. 

For a general Feynman integral like (1.12.5), with n internal lines 
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and l closed loops, conservation of four-momentum at each vertex can 
be used to express all the qi in terms of the loop momenta k1 and the 
external momenta P;· Then after judicious changes of variables k1-+ k1 
the denominator can be rearranged so that the k' integrations can be 
performed using f 4 ' 1 i1T2 

d k (k'2+ U)a = 2U (3.4.2) 

and its derivatives with respect to U, and (see Eden et al. 1966} one 
ends up with Jl n 

II dai o(1-.Eai) C(a)n-21-2 
A= o i=l 

(D(p, a)+ ie C(a))n-21 (3.4.3) 

where Dis a function of the p's and a's and C a function of the a's only. 
Thus for the 2-+ 2 scattering amplitude where there are just the two 
independent invariants 8 and t and Dis linear in 8 we can rewrite this 
(dropping the ie term) as 

Jl n 
A = o i!:\ dai o(1- .Eai) C(a)n-21-2 

(g(a) 8 + d(t, a) )n-21 (3.4.4) 

where g and dare some functions. We are interested in the limit 8-+ oo, 
t fixed, and clearly the integrand ""s-n+21 unless g(a) = 0. So this will 
also be the behaviour of the integral unless somewhere on the contour 
of integration g(a) = 0, and it is impossible to distort the contour 
round this point because either (i) g(a) = 0 at one of the end points of 
integration (giving a so-called 'end-point' contribution) or (ii) the 
point g(a) = 0 is 'pinched' by two or more singularities of the integrand 
as 8-+00 (see section 1.12). 

It can be shown that as long as we stick to just planar diagrams 
(i.e. diagrams which can be drawn on a sheet of paper without any 
lines crossing) there will be no pinch contributions on the physical 
sheet. We shall have to consider non-planar diagrams in chapter 8, 
but here we shall only be concerned with the end-point contributions 
of planar diagrams. 

Obviously the pole diagram, fig. 3.3(a), gives 

(3.4.5) 

which is just the Born approximation for the t-channel scattering 
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n rungs 

(a) (b) (c) 

FIG. 3.3 A sequence oft-channel ladder Feynman diagrams: (a) the single 
particle exchange Born approximation, (b) the box diagram with its associated 
Feynman parameters, (c) ann-rung ladder. 

process. Then there is the box diagram, fig. 3.3 (b }, whose amplitude is 

2 f rr dal djj'l o(1- .Eai- .EjJi) 

A2 = g2 ( -1~1T2) o i=(ala2s+d2(a,jJ, t))2 {3.4.6) 

As s-+ oo only the behaviour near av a 2 = 0 need be considered, and 
defining d~ = d2{0, O,fJvfJ2, t) we need 

{3.4.7) 

so (3.4.8} 

where K(t) = - g2 Jl dfJJ dfJ2 o(1-P~- fJ2) 
167T2 0 d2(0, 0, pl, p2, t) 

g2 I d2K 
= 167Ts (K2+m2) [(K +q)2+m2]' t = -q2 (3.4.9) 

is the loop integral corresponding to the Feynman diagram fig. 3.4 (a) 
in which the sides have been contracted out (since a 1 = a 2 = 0}, 
which is evaluated only with two-dimensional momentum K rather 
than four-dimensional k (because d2 appears only in the first power, 
unlike in (3.4.6)). 
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FIG. 3.4 The contracted diagrams corresponding to fig. 3.3 which 
give the coefficient of the "'s-1 asymptotic behaviour. 
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For then-rung ladder diagram, fig. 3.3(c), it is found similarly that 

( 
2)n-1 (

1 TI dai7Tdbo(1-I:ai-I:jJ)O(a,jJ)n-2 

An = g2 - g ( n _ 1) 1J ::..._ 10 _i ~_1_-=--------,--,---,---:-=---
1611" [a1 ••• an8+dn(a,j3, t)]n 

(3.4.10) 

and again, since the leading behaviour comes from the region where 
the a's vanish (Fig. 3.4(b)) the a integrations can be performed to give 

g2 (log8K(t))n-1 
An"' 8 (n-1)! (3.4.11) 

The power behaviour of all the diagrams in fig. 3.3 is thus s-1 like 
(3.4.5). This is because just a single-particle propagator is needed to 
get across the diagram. But the power of log 8 which appears depends 
on the number of such propagators. 

The next step is to take the asymptotic behaviour of the sum of all 
such ladder diagrams with any number of rungs, assuming, as men­
tioned above, that the asymptotic behaviour of the sum is the sum 
of the asymptotic behaviours. The similarity of figs. 3.3 to figs. 1.14 
indicates why this may be rather like solving the Schroedinger 
equation with a 'potential' given by the Born approximation (3.4.5). 
From (3.4.11) we get 

A(8, t) = ~An "' £ ~(log( 8K(t)))ln-1 "' r£. eK(t)logs (3.4.12) 
n n~1 8 n-1 . 8 

,.._ g28a.(tl where a(t) = -1 +K(t) (3.4.13} 

Clearly, through the Froissart-Gribov projection (2.6.2}, the power of 
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s in (3.4.13) may be identified with the leading t-channel Regge 
trajectory. Thus we see how the Regge behaviour comes not from any 
individual diagram, but from the accumulation of logs powers from 
the successive interactions of the two particles scattering in the 
t channel. Since K(t)-+0 fort--roo (see below) we have a(t)~-1, 

t-4 co 
due to the behaviour of the Born approximation (3.4.5). 

We can check this directly since from (2 .3 .4) the Born approximation 
gives 

g2 ( m2) AP (t) = 321Tq~ Q1 1 + 2q' , q' = l(t- 4m2) (3.4.14) 

which from (A.32) has a pole at l = - 1 
2 

AB(t) g 
1 ""321TqW+ 1) 

(3.4.15) 

When this fixed pole is inserted in the unitarity equations it is 
Reggeized. The partial-wave amplitude must tend to (3.4.14) as 
g2 -+ 0, and it must satisfy the unitarity equation (2.2.8) which it does 
if we write it as a series in g2 

A,(t) = ai;q~ [a(t~-l-l~1 ( 1 +g~;~>+ ... )J 
where we have expanded the trajectory function in g2 

g2 
a(t) = -1 + 161T a 1(t) + ... 

and 
g2 

Im{a(t)} = 161Tqt.Jt 

(3.4.16) 

(3.4.17) 

(3.4.18) 

Since a(t) is an analytic function satisfying the dispersion relation 
(3.2.11) with n = 1 we have 

g2 f co dt' g2 1 [2qt + t!] 
a(t) = - 1 + 161T2 4m• q;.jt' (t'- t) = - 1 + 161T2 qt.Jt log 2qt- t! 

(3.4.19) 

in agreement with (3.4.13). So as expected a(t)--r-1 as t-+±oo for 
all g2, and for all t as g2 -+0. This is almost certainly unrealistic for 
strong interactions because it stems from the elementary nature of 
the exchanged scalar meson. But the way in which the trajectory is 
built up from this basic interaction is so similar to potential scattering 
that it seems very plausible that a similar mechanism will operate 
in hadronic physics too. In fact, summing the ladders corresponds to 
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FIG. 3.5 The Bethe-Salpeter equation (3.4.20) for summing ladder 
diagrams. 
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solving the t-channel Bethe-Salpeter equation (see fig. 3.5) (Bethe and 
Salpeter 1951, see Polkinghorne, 1964} 

g2 I d4k 
A(s,t) = AB(s,t)+ (271)4 [(p1 +k)2-m2] [(pa-k)2-m2] 

x AB(pvp3,p1 +k,p3 -k)A(p1 +k,p3 -k,p2,p4} (3.4.20} 

which is the relativistic version of the Lippman-Schwinger equation 
(1.13.27). Trajectories generated by solving the Bethe-Salpeter 
equation with various potentials have been published by Swift and 
Tucker (1970, 1971). 

3.5 Bootstraps 

In section 2.8 we introduced the bootstrap hypothesis that the only set 
of particles whose existence is compatible with unitarity, analyticity 
in s and t, and analyticity in l, is the actual set of hadrons found in the 
real world. If this is so it should be possible to deduce the properties 
of the particles just by implementing the unitarity equations together 
with the constraints of crossing. Attempts to achieve this are called 
'bootstrap calculations'. 

The complexity of many-body unitarity has made it impossible to 
test this hypothesis properly so far. We shall examine some of the 
progress made in this direction in section 11.7, but here we want to 
illustrate the application of two-body unitarity, to complement our 
discussion of the previous sections. We review briefly the three main 
techniques which have been employed. 

a. NJD equations 
These are based on partial-wave dispersion relations, and their 
development closely parallels the discussion in section 3.3d. From 
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(2.6.20) we can write (Chew and Mandelstam 1960} 

B~(t) = BL(t) +! f<Xl lm{Br(t')} dt' 
l I 11 J tT t' - t 

(3.5.1) 

where Bf(t) is the contribution of the left-hand cut. If we neglect 
inelasticity completely, so that we can use the elastic unitarity 
equation (2.6.23) over the whole right-hand cut, this becomes 

B~(t) = BL(t)+! f<Xl p,(t') 1Br(t')l2 dt' (3 52) 
l I 11 J tT t' - t . . 

And if we suppose that all the crossed channel singularities are known, 
i.e. Bf(t) is given, then (3.5.2) is an integral equation for the scattering 
amplitude. To solve it we linearize by writing (cf. (3.3.41)} 

B~(t) = Nz(t) 
1 D1(t) 

(3.5.3) 

where, by definition, the numerator function Nz(t) has the left-hand 
cut of Br<t), and D1(t) the right-hand cut. So 

and 

Im{Nz(t)} = Im{Br<t)}..q(t) = b1(t)..q(t), say, t < tL (3.5.4) 

lm {_q(t)} = Nz(t) Im {B;(t)}, t > tT 

Im{Br<t)} 
= -Nz(t) 1Br<t)i2 = -Pz(t)Nz(t) (3.5.5) 

from (2.6.23). Since, using (2.2.10) and (2.6.8) 

(3.5.6} 

and N is real for t > tL, D,(t) must have the phase e-i8z(t) along the 
right-hand cut, t > tT. 

The Wiener-Hopfmethod (see Titchmarsh (1937) p. 339) allows one 
to construct D,(t) knowing this phase, and the positions of the p1 poles 
at t =til, say, and the m1 zeros at t = ti, on the physical sheet. It takes 
the form 

D,(t)=D,(tT)ll (tT-til) n (t-ti')exp{-t-tT r<Xl ~,(t')-~,(tT) dt'} 
i=l t-til i=l tT-tjl 11 JtT (t -t) (t -tT) 

(3.5.7) 

We have assumed that 81(t) ~ constant, so that only one subtraction 
t-<Xl 

at tT is needed in the integral. We insist that (as in section 3.3d) all 
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the poles of the amplitude correspond to zeros of 4(t) (not poles of 
~(t)). These may be either bound states on the physical sheet at 
t=t11, or resonances on unphysical sheets where o1(t)-+(2n+1)1Tf2. 

Then from (3.5.7) 4 (t) ""'t{m1-p1+11 -lrct1(oo)-ct1(tTlD (3.5.8) 

We choose conventionally that 4(t)~ 1 so 
t->-oo 

Oz( 00) - Oz( tT) = 1T[p1- md 
and also that Oz(tT) = mz giving 

o,( 00) = 1Tpz 

(3.5.9) 

(3.5.10) 

This relation between the asymptotic value of the phase shift and the 
number of poles of the D function is known as Levinson's theorem 
(Levinson 1949). 

From (3.5.5) and (3.5.7) we can write a dispersion relation for 
~(t) in the form 

~(t) = 1-!.. f"" p,(t',> ~(t') dt' + ~ l'il (3.5.11) 
1T Jt t -t i=l t-til 

T 

where the l'il are the residues of the poles. Since the l'il and til are 
arbitrary, ~(t) is evidently not completely determined by the input 
B"f (t). This is known as the ODD ambiguity, after its discoverers 
Oastillejo, Dalitz and Dyson (1956). An elementary (non-composite) 
particle like that represented by (3.4.1) would correspond to a ODD 
pole in the appropriate partial wave. 

However for largeltheresult (2.5.5) implies thatB1(t)~B"f(t)~O 
1->-oo 1->-oo 

so that o,(oo)-+o,(tT)· There will clearly be no bound states in this limit, 
i.e. m1-+0, and hence from (3.5.9) p1-+0 too. Thus for large l there is 
no ODD ambiguity and the scattering amplitudes will be completely 
determined by B"f(t). However, our assumption of analyticity in l 
requires that the low partial waves should be obtainable from the 
high partial waves by analytic continuation, and so we cannot just 
start adding poles in (3.5.11) as lis decreased. So analyticity in l pre­
cludes ODD poles in low partial waves as well. 

Hence from (3.5.4) and (3.5.5) we arrive at the pair of simultaneous 
N /D equations 

(3.5.12) 

(3.5.13) 
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like (3.3.46), (3.3.47). If we introduce the function 

Oz(t) = N,(t)- Bf(t) D1(t) 

it will have no left-hand cut since 

I {BL(t)} = lm {N,(t)} 
m l D,(t) 

while on the right-hand cut 

lm {Oz(t)} = - Bf(t) lm {D1(t)} 

and so it satisfies the dispersion relation 

(3.5.14) 

(3.5.15) 

(3.5.16) 

0 (t) = ~ foo Im {Oz(t')} dt' 
l 1T J t t'- t (3.5.17) 

T 

or from (3.5.14) 

N,(t) = Bf(t) Dz(t)-~ Seoo Bf(t')t~: JDz(t')} dt' (3.5.18) 
T 

Then using (3.5.13) and (3.5.5) to eliminate ..q(t) this becomes 

N,(t) = Bf(t) + ~ Jtoo Bf(t:~ = ff(t) p1(t') N,(t') dt' (3.5.19) 
T 

This is an integral equation for N,(t) given Bf(t) which can be solved 
numerically. Once N,(t) is found it can be substituted in (3.5.13) to 
find ..l1(t). 

These equations can be generalized to include inelastic states (for 
a review see Collins and Squires (1968) chapter 6). The most important 
change is that it is then possible for bound or resonant states of one 
channel to appear as CDD poles in another channel. However, such 
a CDD zero will emerge from the inelastic cut as l is decreased, so 
continuity in lis not destroyed, and such CDD poles do not correspond 
to elementary particles. 

A zero of .Dz(t) at some t = tr, say, corresponds to a pole of the partial­
wave amplitude. Continuing the solution in l we generate a trajectory 
a(t) such that 

Da(tr)(tr) = 0 (3.5.20) 

Then expanding .Dz(t) about l = a(tr) we have (from (3.5.3)) 

so the residue of the Regge pole is given by N(oDfol)-1• 

A simple example of the use of such equations is the p bootstrap 
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1t 11: ·x· 1t 11: 
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FIG. 3.6 The p·exchange poles in the B·, t- and U·channels of 7t7t scattering. 

(Zachariasen 1961, Balazs 1962, 1963, Collins 1966). This is based on 
the observation that the dominant singularity in low energy elastic 1t1t 

scattering is the spin= 1 p resonance. Because 1t1t scattering is 
crossing symmetric this resonance will occur in all three 8, t and u 
channels (fig. 3.6). So if we make the very drastic approximation that 
this is the only important singularity we can obtain the left-hand cut 
of the t-channel partial-wave amplitude from the p poles in the 8 and 
u channels. Thus from (2.6.14) 

Bf'(t) = 1~17 qrt Q, ( 1 + ;~) ~ ( 1 + 2~~) (3.5.22) 

where q~ = !(m~-m!) 
The mass of p, mP, and its coupling strength to 1t1t, gP, can be regarded 
as free parameters. Then if we insert (3.5.22) in (3.5.19), solve the 
equation, and insert the solution for N,(t) in (3.5.13) we obtain an 
output t-channel trajectory and residue from (3.5.20) and (3.5.21). 
Crossing symmetry requires that D1(t) should have a zero for l = 1 at 
t = m~, and that the residue should beg~. Hence one can try and adjust 
these parameters until self-consistency under crossing and unitarity 
is achieved, and thereby deduce the mass and coupling of the p from 
self-consistency requirements only. 

Unfortunately there are several technical problems concerning the 
divergence of the integral in (3.5.19) which requires a cut-off, but 
a qualitative success may be claimed (see Collins and Squires (1968) 
chapter 6). This is probably the most we can expect given that we 
have neglected all the other singularities and inelastic unitarity. But 
the most important point is that this method of generating trajectories 
in particle physics is based on methods which we know can be em­
ployed successfully in potential scattering. 

https://doi.org/10.1017/9781009403269.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.004


104 SOME MODELS CONTAINING REGGE POLES 

b. The Cheng-Sharp method 

Another way of using partial-wave unitarity to calculate Regge 
trajectories was suggested by Cheng and Sharp (1963) and Frautschi, 
Kaus and Zachariasen (1964). 

If the partial-wave amplitude is expressed as a sum of Regge poles 
plus the background integral 

B((t) = ~ 'Yi(t) + B{(t) 
i=ll-ai(t) 

(3.5.23) 

and substituted in the unitarity equation (2.6.23), or (4.7.4) below, 
for l-+ai(t) we get 

1 yf(t) -y* 
2iPaP) = ~ ai(t) _ ai(t) + B"j* (t), for j = 1, 2, ... , n (3.5.24) 

a set of simultaneous equations for the Regge parameters given the 
background integral (which contains the crossed-channel singularities, 
i.e. the' potential'). If one supposes that just a single pole ai dominates 
with Im{ai} small, then B can be neglected and (3.5.24) becomes 

Im {ai(t)} = Pa;(t) Yi(t), Im {yi(t)} = 0 (3.5.25) 

which has the correct threshold behaviour (3.2.26). 
To proceed further it is necessary to modify the Regge pole terms 

so that they have the correct Mandelstam analyticity. (The 8 dis­
continuity in (2.8.10) starts at Zt = - 1, from (A.13), i.e. at 8 = - 4q~ 

for equal-mass kinematics, rather than at the threshold 8T (see 
Collins and Squires (1968) chapter 3). One must also add the crossed­
channel poles, which provide the potential, in Br. This method has 
been applied successfully in calculating trajectories in potential­
scattering problems (Hankins, Kaus and Pearson 1965), and, with 
many necessary modifications, for some bootstrap calculations (Abbe 
et al. 1967). 

c. The Mandelstam iteration 

This method makes direct use of the Mandelstam representation 
discussed in section 1.11. Elastic unitarity is used to obtain the 
double spectral functions, Pst• in those regions of the 8-t plane where 
elastic unitarity holds, and the asymptotic behaviour of Pst gives the 
trajectory. 
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From (1.5.7) the discontinuity across the elastic cut for tT < t < t1 

in the t channel is 

Dt(8,t) = 32~.jtf d.QtA+(8',t)A-(8",t) (3.5.26) 

where (see (2.2.3) with 8 ~ t) 8' = 8(z', t), z' = cos ein being the cosine 
of the scattering angle between the direction of motion of the particles 
in the initial and intermediate states, and where 8" = 8(z", t) and 
z" = cos en/' the cosine of the angle between the intermediate and 
final states, in the t-channel centre-of-mass system. Similarly 8 = 8(Zt, t) 
where zt = cos Oil (see fig. 2.1) and d.Qt = dz" d¢. These angles are 
related by the addition theorem (2.2.4), i.e. 

z' = ztz" + .j( 1- z~) .j(1- z"2 ) cos¢ (3.5.27) 

Formally we can substitute the dispersion relation (1.10.7) for A+ 
and A- into (3.5.26) and obtain at fixed t (neglecting the pole terms for 
simplicity) 

D (8, t) = _!k__fd.Q [! f"' 1{(8v t+) d8 + !.f"' Du(Ut, t+) du] 
t 32rr2 It t rr 8 - 8' 1 rr u - u' 1 

'1/ ST 1 UT 1 

8+t+u = 8' +t+u' = 8" +t+u" = 81 +t+u1 = 82 +t+u2 = E 
(3.5.29) 

If then we replace the 8's and u's by z's using (2.3.2) and change the 
order of integration we find terms of the form 

J1 d ,J211 d¢ 1 = 2rr 1 (z-z1 z2 +L1l) 
-1 z o (z1 -z') (z2 -z") ,1! og z-z1 z2 -Lti 

(3.5.30) 

using (3.5.27}, where 

Lt(zt, zvz2 ) = -1 +z~ +zi+z~-2ztz1 z2 (3.5.31) 
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where 

K(8, 81, 82, t) = [82 + 8i +8~- 2(881 +882 +81 82)- 881 82/q~] (3.5.33) 

Now from (1.11.11) the double spectral function Pst(8,t) is just 
the discontinuity of Dt(8, t) across its cuts in 8. This discontinuity 
arises from the vanishing of K. But K-+ 0 makes the logarithm tend 
to log 1 = 211ni, where n depends on the branch of the logarithm which 
is chosen. So the discontinuity in going round the threshold branch 
point in 8 forK> 0 is just 211. Hence 

K=O 
,.--'--. 

( t) __ 1_ qt f d81 f d82 D8 (81, t+) 4(82, L) 2 2 
Pst 8' - 8 2 it 2 2 2 2 K!( t) qt 1T 'V ST qt BT qt 8, 81> 82, 

(3.5.34) 

The region of integration is over 8v 82 > 8T but with K > 0, since 
there is no discontinuity for K < 0. The boundary in 8 of Pst(8, t) is 
given by the lowest values of 81, 82, i.e. where 

( 4) K(8,8T,8T,t) = 8 8-48T- q~ = 0 (3.5.35) 

But 8 = 0 is not a singular point of (3.5.32) so the boundary is 

From (1.11.4) we have 

82 
8 = 48T + ~ = b(t) 

qt 

D8 (8, t) = - Pst, ' dt" +other terms 1 foo (8 t") 
1T b(s) t - t 

(3.5.36) 

(3.5.37) 

The most important 'other term' is the 8-channel bound-state pole 
from the Born approximation (2.6.13) 

D"[3 = 11g2 8(8- m2) 

If this is substituted in (3.5.34) we get 
4 

p (8 t)- g 
st ' - 16qt(8-4m2 -m4fqn!.Jt.j8 

(3.5.38) 

(3.5.39) 

whose boundary is at K(8, m2 , m2, t) = 0, i.e. (1.12.10). Then if (2.5.39) 
is substituted into (3.5.37) we get an additional contribution to 4 
(over and above (3.5.38)), which may in turn be substituted in (3.5.34) 
to give a further contribution to Pst(8, t) with a boundary at 
K(8, 4m2, 4m2, t) = 0; and so on. Hence we can find D8 (8, t) by iteration, 
the successive contributions to the double spectral function having 
boundaries at higher and higher s, as shown in fig. 3. 7. This is just 
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FIG. 3. 7 The boundaries of the successive contributions to the double spectral 
function (B1, B 8, B,, .. . ) obtained by iterating the input 8-channel pole B 1 with 
t-channel unitarity. The asymptotic 8 behaviour will be p(8, t) ,..., 8"<1> for fixed t, 
which enables the trajectory to be found. 

another way of summing the ladders corresponding to multiple ex­
change of the Born approximation (3.5.38). Indeed (3.5.39) gives 
us the behaviour (3.4.8), and the various iterations agree with 
(3.4.11). 

Of course (3.5.38) is unrealistic as a Born approximation for particle 
physics. Attempts have been made to incorporate crossing symmetry 
by takings-channel Regge poles as the input, and generating t-channel 
Regge poles as output, and seeking bootstrap self-consistency as 
described in section 3.5a, but so far with only modest success (see 
Collins and Johnson 1969, Webber 1971). We shall explore other 
similar dynamical schemes in chapter 11. However, it seems likely 
that the restriction to just planar diagrams with elastic unitarity 
precludes a proper self-consistent answer. Our purpose in discussing 
this method here has been to show that the Mandelstam iteration 
gives yet another procedure for generating Regge trajectories by 
summing ladder diagrams. 
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