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ON THE EQUIVALENCE PROBLEM AND INTEGRATION
OF DIFFERENTIAL SYSTEMS

TATSUO HIGA

Introduction

The purpose of the presnet paper is to study the relationship between
the theory of Lie pseudogroups and the problem of integration of differential
systems (cf. [6] pp. 30-47).

Let & be a Lie pseudogroup on a manifold M and S a differential
system on M. Let &(S) denote the largest subpseudogroup of & leaving
S invariant. Then the problems to be considered may be stated as follows.

A) Classify differential systems on M under the action of ®.

B) For each differential system S on M, determine the structure of
&(S).

C) Using the structure of &(S), reduce the problem of integration
of S to that of some auxiliary differential systems, each of which is in-
variant under the action of a Lie pseudogroup and irreducible in a sense.

To study these problems, we use the theory of Lie pseudogroups which
is developed in [7]. The problems A) and B) are subordinate to the so-
called general equivalence problem (see [2] §§ 11-13). The problem C) is
motivated by the classical scheme of S. Lie for the problem of integration
(see [8] and [9] Introduction).

In Section 1, we recall briefly the theory of Lie pseudogroups. A
Cartan system is a pair (P, C) consisting of a manifold P and an “‘invari-
ant system” C on P. We can define an effective action of (P, C) on a
manifold M. Then the action yields a Lie pseudogroup & on M. (P, C)
is called a defining Cartan system of ©.

In Section 2, we shall study the equivalence problem of Pfaffian (dif-
ferential) systems. Let (P, C) and ® be as above. For each Pfaffian system
S on M, we construct a Cartan system (P, C(S)) in such a way that (P,
C(S)) is a defining Cartan system of &(S) (Theorem 2.3). Then, using
(P, C(S)), we can study the structure of &(S). Moreover, we prove the
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following theorem.

THEOREM 2.2. Let S, and S, be Pfaffian systems on M. Then S, and
S, are locallly equivalent under the action of & if and only if (P, C(S,)
and (P, C(S,)) are locally isomorphic.

This theorem together with the isomorphic reduction theorem of a
Cartan system which is established in [7] gives us a principle to study
the problem A). In particular, in Section 4.4, we carry out the classifica-
tion of second order ordinary differential equations y” = f(x, y, ¥") under
the action of certain Lie pseudogroup.

In Section 3, we shall define a normal Cartan subsystem (P, C*) of
(P, C) and its quotient Cartan system (P, C)/(P, C¥). Then we prove an
existence theorem (Theorem 3.3).

In Section 4, we shall study the problem of integration of a Pfaffian
system S on P in the case when S is generated by invariant 1-forms of
a Cartan system (P, C). Such a system will be denoted by (S, (P, C)).
Then, by using C, we define a special subsystem of S, which is called a
normal covariant system of (S, C) (Definition 4.3). S is said to be ir-
reducible if there is no normal covariant system of (S, C). If S admits a
normal covariant system, we can use the results in Section 3. After de-
scribing our method of reduction, we obtain the following theorems.

THEOREM 4.4. The problem of integration of (S, (P, C)) is reduced to
that of the following two types of systems:

D (S, (P, Cy), where S, is completely integrable;

2) (S, (Py, Cy), where S, is irreducible.

THEOREM 4.5. Assume that k + 1 =rank S > 2 and that there are
normal covariant systems S; of (S,C), 1 <1 < k, satisfying the following
conditions:

1) rank S, =1i,1<i<k;

2) S, cS,c..-cS.cCS.

Then the integration of S is generically reduced to that of some completely
integrable Pfaffian systems.

For the integration of an irreducible system (S, (P, C.)), we can
also use the Cartan system (P,, Cy). In many cases, the structure equa-
tion of (P,, C,) enables us to find another kind of useful subsystems of
S. We shall deal with such subsystems in a forthcoming paper.
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Theorem 4.5 may be applicable to some special types of partial differ-
ential equations (see [4] §§ 34-37).

Throughout this paper, all manifolds and mappings (functions) are
assumed to be differentiable of class C= and the adjective “‘differentiable”
1s omitted unless otherwise stated. The theory is, however, also well
applied to the real analytic case.

The author would like to express his sincere gratitude to Professor
A. Morimoto for his kind advice and encouragement.

§1. Cartan systems and Lie pseudogroups

1.1. Let M be a manifold. We denote by F(M) the ring of all func-
tions on M and by A'M) the F(M)-module of all 1-forms on M. An
F(M)-submodule S of AM) is called a Pfaffian system of rank s on M
if there are s 1-forms @', ---,8° on M such that

1) S is generated by 6, - - -, 6°;

2) 6, ---,6 are linearly independent at each point of M.

We denote it by S = @', ---,6%. (6, ---,6°) is called a generator of
S. A function f on M is called a first integral of S if dfeS. A sub-
manifold NV of M is called an integral manifold of S if (¥ = 0 for any 6¢ S,
where ¢; N — M is the inclusion. S is said to be completely integrable if
df = 0 (mod S) for any Ae S.

Let &(M) denote the set of all local transformations of M. For each
fe &(M), we denote by U(f) the domain of f and by V(f) the range of f.
Let & be a pseudogroup on M (for the precise definition, see [7] or [11]).
For an open set U of M, we denote by &|U the pseudogroup on U con-
sisting of all elements f of & such that U(f) and V(f) are contained in
U.

Let P be a manifold and let C = (¢!, ---, u™; ', - -+, ") be a system
of functions u* and 1-forms o’ on P (n >0, r = 1). For each pe P, we
denote by D(C), the linear subspace of the tangent space 7,(P) consisting
of all vectors X such that 0/(X) =0, X |do’ =0,1<j<r, and Xu* = 0,
1< i < n, where X | do’ is the inner derivative of de’ with respect to X.
C is called an invariant system on P if it satisfies the following conditions:

1) o, .-, 0" are linearly independent at each point of P;

2) the Pfaffian system (o', - -, ®"> is completely integrable;

3) D(C), =0 for any pe P.

Then the pair (P, C) is called a Cartan system. We denote by &(P, C)
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the pseudogroup on P consisting of all elements f of &(P) such that
f*6 = 6 for every 6 in C, where f*6 is the pull-back of § by f. A func-
tion u (resp. a l-form w) on an open set U of P is called an invariant
(resp. an invariant 1-form) of (P, C) if it satisfies f*u = u (resp. f*o = w)
for any fe®(P, C)|U. A system of invariants of (P, C), v, ---,v™, is
called a complete system of invariants of (P, C) if v', - .-, v™ are independ-
ent functions on P and if, for any invariant u of (P, C), there is a func-
tion F of m variables such that u = F(v', ---,v™). Let U be an open set
of P. Restricting every member of C to U, we get an invariant system
C|U on U.

Let C, = (u}, - -+, u?; 0, - -+, 0)) be an invariant system on a manifold
P, i=1,2). A diffeomorphism F of P, onto P, is called an isomorphism
of (P,, C,)) onto (P,, C,) if it satisfies F*u{ = uj, 1 <j < n, and F*wf = of,
1<k<r Let p,eP, (i=1,2). We say that (P, C) and (P, C,) are
locally isomorphic at (p,, p, if there are open neighborhoods U, of p,,
i =1,2, and an isomorphism of (U, C,|U,) onto (U,, C,|U,) with F(p, =
p.. For the equivalence problem of Cartan systems, we refer to [10].

Let P and M be manifolds and let n: P — M be a fibering (a surjec-
tive submersion). Let E(x) denote the vertical distribution given by
E(z), = Ker (n4),, p € P, where (z,), is the differential of = at p. An ele-
ment F of ®&(P) is called a prolongation (resp. a local prolongation) of an
element f of &(M) if it satisfies (1) =(UF)) = U(f) (resp. «(U(F))c U(f))
and (2) 7o F = for on U(F).

Let C be an invariant system on P and let &M, C) denote the set
of all elements f of &(M) such that f has a prolongation F in &(P, C).
We say that (P, C) acts on M with respect to « if the following conditions
are satisfied:

1) E(r) is ®(P, C)-invariant, that is, Fy(E(r),) = E(z)p,, for all Fe
®&(P, C) and pe UF);

2) for any fe &(M, C) and any p € =z '(U(f)), there is an element F
of ®&(P, C) such that pe U(F) and F is a local prolongation of f.
Moreover, we say that (P, C)acts effectively on M if = satisfies the third
condition:

3) if rcF=gx on UF), Fe®P, C), then F = id. on U(F).

We remark that if the system (P, z, M) is a principal fibre bundle
then, under a condition on C, we can verify the conditions 1), 2) and 3)
without knowing &(P, C) explicitly.
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When (P, C) acts on M, we denote by &M, C) the pseudogroup on
M generated by &M, C) (see [11] p. 8).

ProprosiTiON 1.1. Assume that (P, C) acts on M with respect to a
fibering n: P— M. Then, for any fe &M, C) and any p € =" (U(f)), there is
an element F of &P, C) such that pe U(F) and F is a local prolongation
of f.

For the proof, see [7] Proposition 1.1.

Let C= (!, ---,u"; 0, --+,0). Then the action of (P,C) on M is
said to be normal if, for every open set U of M and every 1-form 6 on
U, there are functions a; on #7'(U), 1 £j < r, such that z*6 = > 7_, a0’
on 7 (U).

A pseudogroup & on M is called a Lie pseudogroup if there are a
Cartan system (P, C) and a fibering n: P — M such that (P, C) acts ef-
fectively on M with respect to = and & = &M, C). (P, C) is called a
defining Cartan system of &. We can construct a defining Cartan system
of ® in such a way that the action is normal. In many cases, the system
(P, C), r, M) can be considered as a geometric structure on M, such as
a (higher order) G-structure or a Cartan connection.

1.2. Let C=(’ - --,u"; 0% --,0) be an invariant system on a
manifold P and let W be an open set of P. Suppose (du’),+#0 for any p ¢
W. For each qe W, we define a submanifold of W by

QW, q) = {pe W;u(p) = u’q)}.

Let ¢: QW, q) — P be the inclusion. Then we can define a system of
functions and 1-forms on Q(W, q) by

C(W, q) = (¢*ul, - - -, Fu"; Fo', - - -, Fo’).

It should be remarked that C(W, q) is not necessarily an invariant system.
In [7], we proved the following reduction theorems (for the terminologies
“reducible” and “an R-system”, see [7] § 2.1).

THEOREM 1.2. Let (P, C) and W be as above. If u’is reducible on W,
then, for any qe W, (Q(W, q), C(W, q)) is a Cartan system.

THEOREM 1.3. Let C, = (i, ---, u"; &% ---,0}) be an invariant system
on a manifold P, (i = 1,2). Assume that dim P, = dim P, and that u} is
reducible on an open set W, of P, 1 =1,2). Let q;e W, (i =1,2). Then
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(P, C) and (P,. C,)) are locally isomorphic at (q., q,) if and only if the fol-
lowing conditions are satisfied:

1) ui(q) = ujq,) for all i =0, .-, n;

2) there are R-systems (Wi, U, 95, a,, b*, c%) with q,€ W[, i = 1, 2;

3) the Cartan systems (Q(W, q), C(W, q,) and (Q(W,, q.), C(W,, ¢,))
are locally isomorphic at (q,, q).

§2. The equivalence problem of Pfaffian systems

2.1. Let M be a manifold and let S be a Pfaffian system on an open
set U of M (for the definition, see §1.1). Let f be an element of &(M)
satisfying V(f) = U. We denote by f*S the Pfaffian system on U(f) con-
sisting of all 1-forms f*f,6eS. Let V be an open subset of U. We de-
note by S|V the Pfaffian system on V generated by all 1-forms 4|V, e S,
where 0|V is the restriction of § to V. Let & be a pseudogroup on M.
We denote by &(S) the subset of &|U consisting of all elements fe &|U
such that f*(S| V(f)) = S|U(f). ©&(S)is a pseudogroup on U. We say that
& leaves S invariant if &(S) = &|U. Let S, be a Pfaffian system on an
open set U, of M and let x,e U, (i =1, 2).

DeFINITION 2.1. We say that S, and S, are locally &-equivalent at
(x,, x,) if there is an element f of & such that

1) x,eU{f)cU, x,e V(f)C U,;

2) f(x) = x;

3) XS V() = S| U).

Assume now that & is a Lie pseudogroup on M (cf. §1.1). Let
L0, C=w,  --,u~; 0, --+,0"), be a defining Cartan system of & with
respect to a fibering n: P— M. Let S = (¢, ---, 6> be a Pfaffian system
of rank s on an open set U of M. Then we can define a Pfaffian system
S* on ' (U) by S* = (z*d", ---,z%¢°>. From now on, we assume that
s<r.

DeriNITION 2.2. Let W be an open set of #7'(U) and let uj, 1 <j <
s, s +1< k<, be functions on W. Then (W; uf) is called a system of
invariants of (S, C) with respect to the ordering o, - - -, 0" if, putting

‘Qj = (l)j + Z;=s+1 u'ziwk; 1 éj g S,

(24, .-+, 2°) forms a generator of S*|W.
Adding the functions u}, 1 <j<s, s+ 1< k< to C|W, we get an
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invariant system on W, which we shall denote by C(W; uf). It is immediate
to prove the following lemma.

LEmma 2.1, Let (W;; uj.;) be a system of invariants of (S, C) with re-
spect to the ordering o', ---,0” (i =1,2). If WNW,#¢, then uj, = uj,
on WNW, 1<j<s,s+1=Zk<r

DerFINITION 2.1. A system of invariants (P*; uf) of (S, C) with respect
to the ordering o', - - -, " is said to be maximal if, for any system of in-
variants (W; v]) of (S, C) with respect to the same ordering o', - - -, 0", we
have W P* (and hence v] = u{ on W by Lemma 2.1).

ProposiTioN 2.1. Let &, (P, C) and S be as above. Assume that the
action of (P,C) on M is normal. Then, for any qe =z '(U), there is a
maximal system of invariants (P*; ul) of (S, C) with q ¢ P*.

Proof. By assumption, there are functions af on 7 '(U), 1 <j < s,
1<k <r such that #*¢’ = >7_  ajo*, 1 < j < s. Since rank(ef) =s on
z-'(U), we can assume that the matrix (¢{(g)).<,+<, is non-singular. Let
P* denote the open subset of = '(U) consisting of all points p ez *(U)
such that the matrix (af(p)):<; <. is non-singular. Then we have g e P*,
Let (bi(p))i<;.x<: denote the inverse matrix of the above matrix. Set u] =
S iblafon P¥1<j<s, s+1<k<r. Then it is easy to verify that
(P*; uj) is a maximal system of invariants of (S, C) with respect to the

ordering o', - - -, w".
Let & be a Lie pseudogroup on a manifold M and let (P, C), C =
W'y -, u"; ', ---,0"), be a defining Cartan system of & with respect to

a fibering =: P — M.

THEOREM 2.2. Let S, be a Pfaffian system of rank s on an open set
U of M(i=1,2). Let (Pf;uj,1<j<s,s+1<k<r) be a maximal
system of invariants of (S;, C) with respect to the ordering o', -- -, »" and
let x,en(P}) 0 =1,2). Set Ck¥=CP¥;ui,) C@=1,2). Then S, and S,
are locally &-equivalent at (x,, x,) if and only if there are points q, of P
with x, = n(q,), T = 1, 2, such that (P¥, C¥) and (P¥, C¥) are locally isomor-
phic at (g, q,).

TuEOREM 2.3. Let S be a Pfaffian system of rank s on an open set U
of M. Let (P*;uj,1<j<s,s+1<k<r) be a maximal system of in-
variants of (S, C) with respect to the ordering o', - -+, »’. Suppose n(P*) =
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U. Set C* = C(P*; uj). Then:

1) &(S) is a Lie pseudogroup on U and (P*, C¥) is a defining Cartan
system of &(S) with respect to the fibering =n|P*: P* — U.

2) The Pfaffian system S*|P* is generated by s invariant 1-forms of
(P*,C%), o' + 2 e ujo’, 1<) < s

3) If & leaves S invariant, then the functions uj, 1<j<s, s+1<
k < r, are invariants of (P, C).

The converse of 3) of Theorem 2.3 holds if P* = z~'(U).
2.2. We shall prove the theorems.

LemMmA 2.2. Let the situation and the notations be as in Theorem 2.2.
Let f be an element of & satisfying U(f) C U, and V(f) C U,. Assume that
f has a prolongation F in &(P, C).

1) If UF)CP¥ and [*(S,|V(f) = S,|U(f), then V(F) CP¥ and
Frul,=uj,on UF), 1<j<s, s+1<k<r

2) If UF)cC Py, VI(F)CPy and F*uj,= uj, on UF), 1<j<s,
s+ 1< k<, then, for any x € U(f), there is an open neighborhood V of
x in U(f) such that (f|V)*(S,|W) = S,|V, where we put W = f(V).

Proof. Let us fix a generator (6}, ---,6) of S; (i =1,2). By defini-
tion, putting

Qi =’ + Z/:=s+1 uljc';ia)ka 1 é.} =s,

(8%, .-+, 29 forms a generator of S¥|P} (i =1, 2).
1) If we set ' = (F)*Qf on V(F), 1 <j<s, then

D=0 + 2o (F Y ul), 1=j=<s

Using the condition f*(S,| V(f)) = S;|U(f)), we can prove easily that (2,
-+, ) forms a generator of S§| V(F). This means that (V(F); (F~")*uj.,)
is a system of invariants of (S,, C) with respect to the ordering o', - - -, 0"
Since (P§; ui,;) is maximal, we have V(F)C P¥ and hence (F~)*ul, = ul,
for all j and k.

2) By assumption, we have F*Q] = Q{ on U(F), 1<j<s. Since
(9%, -, 2% is a generator of SF|P¥ (i = 1,2), there are functions A} on
UF), 1 £j,k <5, such that the matrix (Aj(p)) is non-singular for any
pe UXF) and

Fx(z*0]) = >5_, Aj(z*6Y), 1<j<s.
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Hence,
m*(f*0]) = 2o Al(z*6Y), 1<j<s.

Take an open neighborhood V of x in U(f) and a cross section p: V —
U(F) of the fibering =|U(F): U(F) — U(f). Then we have

0] = 25 (0*ADoE, 1<) <s,
on V and hence (f|V)*(S,|W) = S,|V (W = f(V)).

Proof of Theorem 2.2. Assume first that S, and S, are locally &-
equivalent at (x,, x,). Then there is an element f of & with the properties
listed in Definition 2.1. Take a point g, of P} with x, = n(q,). By Pro-
position 1.1, there is an element F of G&(P, C) such that ¢, e U(F) and F
is a local prolongation of f. Shrinking U(f) and U(F) if necessary, we
can assume that U(F)C P} and that F is a prolongation of f. If we set
g, = F(q,), then x, = n(g,). By Lemma 2.2-1), we can conclude that F is
an isomorphism of (U(F), C¥|U(F)) onto (V(F), C¥| V(F)).

Conversely, assume that there are open neighborhoods W, of ¢, in
Pf, i=1,2, and an isomorphism F of (W, C¥|W,) onto (W,, C§|W,) with
F(q) = q.. Then F belongs to &(P, C). We can assume that F is a pro-
longation of an element f of . Using F, f and Lemma 2.2-2), we can
verify that S, and S, are locally ®-equivalent at (x,, x,).

Proof of Theorem 2.3. Let r, denote the restriction of = to P*.
Since &(P*, C*) C &(P, C)|P*, the vertical distribution E(r,) is &(P*, C*)-
invariant. Take any fe ®y(U, C*) and any xe U(f). Then f has a pro-
longation F' in &(P*, C*). It follows from Lemma 2.2-2) that there is an
open neighborhood V of x in U(f) such that f|Ve ®&(S). This implies
that ®(U, C*) C &(S). Next take any fe &(S) and any p € n;'(U(f)). Then
there is an element F of &(P, C) such that pe U(F) and F is a local pro-
longation of f. As before, we can assume that U(F) C z;(U(f)). Then,
by Lemma 2.2-1), F belongs to &(P*, C*). Since &(U, C*) C &(S), this
implies that (P*, C*) acts on U with respect to =, The above argument
also shows that &(U, C*) = &(S). The effectivity of this action is obvious.
This proves 1). 2) may be obvious.

To show 3), it will be sufficient to prove that &(P, C)|P* is contained
in ®&Px*, C*). Take any Fe®(P, C)|P* and any pe U(F). Then there
are an open neighborhood W of p in U(F) and an element f of &|U such
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that F|W is a prolongation of f. Since &(S) = &|U, it follows from
Lemma 2.2-1) that F|W belongs to &(P*, C*). Since &(P*, C*) is a
pseudogroup, we finally have Fe &(P*, C*). This completes the proof of
Theorem 2.3.

§3. Quotient Cartan systems

3.1. Let M be a manifold and let £ be a subset of the tangent
bundle TM of M. We say that E is a v-family on M if, for any x¢ M,
E,=ENTJ (M) is a linear subspace of T, (M). Therefore, a distribution
on M is a v-family E with the following properties: (1) dim E, = const-
ant on M and (2) E is a differentiable subbundle of TM.

Let E be a v-family on M and let @ be a set of 1-forms on M. We
define v-families on M, A(Q), D(Q), H(®), and a set of 1-forms on M,
P(E), as follows.

A(Q), = {Xe T(M); 6(X) =0, e @},

D(@). = {Xe AQ),; X 1d6 =0, 6¢Q},

H@Q), = {Xe A(Q),; d0(X,Y) =0, 6@, Ye AQ).},
P(E) = {6e N\'(M); 6(X) =0, Xe E},

xeM. We have D(Q),C H(Q),C A(@)., xe M. Set Ch(Q)= P(H(Q)).
Then Ch (@) is called the characteristic system of Q. It is easy to prove
the following lemmas.

Lemma 3.1. Assume that D(Q) (resp. H(Q)) is a distribution on M.
Then D(Q) (resp. H(Q)) is completely integrable. Moreover, let x ¢ M and
let x, - - -, x™ be independent first integrals of D(Q) defined on a small open
neighborhood V of x (m = dim M — dim D(Q),). Then, for every 6¢c @,
there are functions of m variables a,, 1 < j < m, such that

0 =27 ax, -, x™)dx’ on V.

Lemma 3.2. Let P be a manifold and let zn: P--» M be a fibering. Let
7*Q denote the set of all 1-forms of the form z*0,0¢ Q. Then:

1) E(x),C D(r*Q), (E(z), = Ker (r4),, p < P).

2) my(H(#*Q),) = H(Q).» (pe P).

3) 7(D(*Q),) = D(@)x(ry (P € P).

Let C= (!, ---,u"; 0", ---,0") be an invariant system on a manifold
P and let S = (o', ---, 0> (s, < r) be a Pfaffian system on P. Set H =
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W, -, ul, @={o, -+, 07}, @ = {0, -+, 0"} and E° = A(Q,). We define
v-families on P, E*, i > 0, and subsets of @, @,, i =0, by induction. Sup-
pose that E*"' and @,_, are defined for an integer ¢ > 1. Then we set
E'=D(Q, ) and @, = @ N P(E?). We have E'DE**!' and Q,CQ,,, (i =
0). Set E; = Mz E} (peP), Q. = Uz @ and

H,={ueH; Xu=0, Xe E~}.
Suppose H,, = {¢!, ---,u™} and @, = {o', -+, 0} (m < n, s, <s<r). Fin-
ally, we set S, = o', - - -, 0*).
DeriniTION 3.1. S is said to be closed in C if, for each i >0, E? is

a distribution on P and if S. is completely integrable.

DerFiNITION 3.2. Let Cy, = (@, --.,u™; @', ---,®) be an invariant
system on a manifold P,. Then (P, C,) is called a quotient Cartan system
of (P, C) by S if there is a fibering =: P — P, such that

1) E; = E(x), for any pe P;

2) it =u,1<i<m and n*@’ = o/, 1< j < s,

In this case, we say that S admits a quotient Cartan system (P, C,) =
(P, C)/S.

As for the uniqueness, we can prove easily the following.

ProrposiTiON 8.1. Let (P, C), C, = (@, ---,u?; @, ---,®}), be a quoti-
ent Cartan system of (P, C) by S with fibering =, (i = 1,2). Then, for any
peP, (P, C) and (P,, C,) are locally isomorphic at (z,(p), mp)).

Let v, - -+, v be functions on P. Set
1 1 .
C*Z(u’_,,,un,v,,,,,vso’wl,,_,’wf).

DeriniTION 3.3. (P, C*) is called a normal Cartan subsystem of (P, C)

if there are s, 1-forms in C, say o', - - -, 0, such that
1) S= <, -, 0" is completely integrable;
2) v, .-+, v are independent first integrals of S.

S is called the defining Pfaffian system of (P, C*¥).

Assume that there exists a quotient Cartan system (P, C,) of (P, C)
by S with fibering =: P — P,

DeriniTION 3.4. (P, C) is called a quotient Cartan system of (P, C)
by (P, C*) if the following conditions are satisfied:

https://doi.org/10.1017/5S0027763000000878 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000878

60 TATSUO HIGA

1) GP,CH)={FeGP,C); noF =1z on UF)};

2) (P, C) acts on P, with respect to = and G&(P,, C,) = &(P,, C).
In this case, we say that (P, C*) admits a quotient Cartan system (P, C,) =
(P, O)/(P, C¥.

3.2. We shall prove the following existence theorems. Let (P, C),
C= (@, ---,u";0, - --,0"), be a Cartan system and let S = (o', - - -, 0™).
We use the notations in Section 3.1.

THEOREM 3.2. Assume that S is closed in C. Then, for any pe< P,
there is an open neighborhood P’ of p such that S|P’ admits a quotient
Cartan system (P’, C|P")/(S|P’).

THEOREM 3.3. Let (P, C%, Ct = (u!, ---,u™ V', -+, 00, -+, 0"), be a
normal Cartan subsystem of (P, C) with defining Pfaffian system S. Assume
that the following conditions are satisfied:

1) S is closed in C;

2) du'=0 (mod. 0, --+,0°), 1<i<n;
3) Let t=dimE; —(r—s) (peP). Then t =0 and there are t 1-
forms o™, .-, 0"*" on P and functions C%, of n variables, s +1<i<

r+t 1<j,kR<r4t, such that
a) If Xe E~ satisfies o/(X) =0,s+1<i<r -+t then X =0;
by Ci.+ Ci, =0 for all i,j, k and
dof = L S O, o wi Aot s+ 1ZiZr
Then, for any pe P, there is an open neighborhood P’ of p such that (P’,
C# P’) admits a quotient Cartan system (P’, C|P’)|(P’, Ct P’).

Proof of the theorems. Suppose first that S is closed in C. Let d >0
be the smallest integer satisfying @, = @,. Then we have E‘ = E¢*! for
all i>=d+ 1 and hence D(Q.) = E~. Let us set h = dim P — dim E3.
Since E~ is completely integrable, we can take independent first integrals

x', ..., x* of E~ defined on a small open neighborhood P’ of p. Let R”
be the standard euclidean space of dimension hA. Let zx: P’ — R* denote
the mapping given by =(q) = (x'(g), - - -, x"(q)) (qe P’). We can assume

that = is a fibering of P’ onto an open set P, of R*. Then, E~ = E(r)
on P’. By Lemma 3.1, there are functions @', 1 < i < m, and 1-forms @,
1<j<s on Pysuch that #*T' = v, 1 <i<m,and t*a0’ = o/, 1 < j < s.
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By assumption, (@', - - -, ®*) is completely integrable. Set C' = (u/, - - -, u™;
o, ,0) and C,= (@', ---,t™; @, ---,@"). Then, from Lemma 3.2, we
have 7,(D(C"),) = D(Cy)., for any g€ P’ (see §1.1). Since D(C) = D(Q..),
we finally have D(C)), = 0 for any xe P,. Therefore (P, C) is a Cartan
system. This completes the proof of Theorem 3.2.

Next suppose that the conditions of Theorem 3.3 are satisfied. We
shall prove 1) of Definition 3.4. For this purpose, we first show how to
construct x', ---, x*. Notice that v', - - -, v are first integrals of E~. Set
vp=1,1<i<s, and s, = dim (E]'/E}), j = 1. Let k& be an integer with
0 <k <d Assume that we obtain independent first integrals of E* on

Pou, o0, Uy e, U Set @ = {0, -, 0%} (5, < 5). Since @, C
P(E¥), there are functions A7 on P/, 0<i <k, 1<j<t,1<1<s, such
that

o = f:o 1 A;“dvf, 1 é] :<: ty.

Then it is not hard to see that Ai”’s are first integrals of E**'. If k <d
or E* C E? we can choose independent functions vj,, on P/, 1 <j < 5,4,
in such a way that

a) v,0<i<k+1 1<j<s, are independent on P’/;

b) for each j, 1 £j < s;,y, UL, coincides with some A.

Then v/, 0<i<k+1 1<j<s,;, are first integrals of E**'. We can
repeat this procedure. In this way, renumbering v/, we obtain «!, .- -, x".

Now take any Fe &(P’, C*|{P’). Then, F*vj =vj,1<j<s, Assume
that F satisfies F*v/ = v/, 0 <i <k, 1 <j<s,. Then we have F*A"! =
A¥ for all i, j and ! and hence F*v],, =vi,, 1 <j < s;,,. Thus, by in-
duction, we can prove F*x/ = x?, 1 < j < h. This implies that 7o F =1
on U(F). The converse relation may be obvious.

Finally, we prove 2) of Definition 3.4. Since E(x) = E~, it follows
from Lemma 3.2 that E(x) is &(P’, C|P’)-invariant. It is easy to verify
that &(P,, C|P’) C &(P,, C;) (see §1.1). In view of the proof of Theorem
2.3-1), it suffices to prove that, for any fe &(P,, C,) and any g, € =~' (U(f)),
there is a local prolongation Fe ®&(P’, C|P’) of f with ¢, UF). Set
W, = = (U(f)) and W, = = (V(f)). Let n,: W, x W,— W, be the natural
projection (I = 1,2). Set U’ = n}u’ — nfu’, 1 <i<n, and, ¢ = nfe’ —
mfw’, 1< j<r+t We should integrate the exterior differential system
Y on W, X W, generated by U', ---,U" @', ---,6" (cf. [5]). Let us con-
sider the submanifold IV of U(f) X V(f) given by
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Ny = {(x, f(x) e U(f) X V(f);  xe U()}

and the submanifold N = (z X 7)"'(V,) of W, X W,. Then we have dim N =
dim P + (r — s + ). Let S’ denote the Pfaffian system on N given by
S’ = (ex¢°*, - - -, ¥, where : N— W, X W, is the inclusion. Since
Ui=0,1<i<n, and ¢ =0, 1 <j<s, on N, the condition 3)-b) of
Theorem 3.3 implies that S’ is completely integrable. For the given point
¢, there is a point g, of W, such that (q,,¢,)e N. Let L be the leaf of
S’ with (g, q)e L. L is an integral manifold of X with dim L = dim P.
Moreover, the condition 3)-a) implies that the differential (z;|L)y: T.(L) —
T, (P) (z=(q, ¢.) is non-singular (i =1,2). So we can define a local
transformation F of P’ by F = (m|L)o(x;]L)™* on a small open neighbor-
hood V of ¢, in W,. Clearly, we have F*u' =), 1 <i < n, F*¥o' = o',
1<j<r, and noF = foxr on V. Thus F is a desired element of &(P’,
C|P’). This completes the proof of Theorem 3.3.

§4. Integration of Pfaffian systems

4.1. By the integration of a Pfaffian system S, we mean to find in-
tegral manifolds of S. Let M be a manifold and let § be a closed 1-form on
M. A function f on an open set U of M is called an integral of ¢ if df = 0
on U. By the language “‘quadrature”, we mean to construct an integral
of a closed 1-form. We first consider a completely integrable Pfaffian
system S of rank s on M.

DerFINITION 4.1. Let (¢, - - -, 6°) be a generator of S and let o', - - -, 0
be 1-forms on M. We say that (¢, ---,6°) is a solvable generator of S
with auxiliary 1-forms o', - - -, °® if the following conditions are satisfied:

1) df' =o' N6, do' = 0;
2) (ifs=2)forall k=2, -...,s,

do* = o* N 0%, do* = (mod @', - - -, 6*7).

Take an integral g of »'. Then we get a closed 1-form 6 = e 464"
Take an integral of 6, f, defined on an open set U of M and consider the
submanifold N of U defined by f = constant. If s =1, then N is an in-
tegral manifold of S. If s > 2, then §' =0, d#* = »* A\ §* and dw* = 0 on
N. So we can repeat the above procedure. Thus we have the following
proposition.

ProprosiTION 4.1. Let m = dim M. Assume that we find a solvable
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generator of S. Then every (m — s)-dimensional integral manifold of S is
locally constructed by quadratures.

This means that we can find s independent first integrals of S by
quadratures. Let (8, ---,8°) be a generator of S. An element 4 of S is
called an integral 1-form of S if there are functions A, on M, 1 <j <
k < s,such that df = 3, A,.6° N\ 6* (cf. [1]). Assume that the generator
@, ---,0°) consists of integral 1-forms 6 of S, 1<i<s. Then we find
some first integrals of S by differentiations. After reducing all known
first integrals to constants, we get a Pfaffian system S = @, -, 0% sat-
isfying

dét = %Z;,h, Cib' N\ G, 1<i<y,

where Ci, 1 < 1,7,k <t are constants with Ci + Ci, =0 (see [1]). If
these constants define a solvable Lie algebra, we can find a solvable genera-
tor of S by algebraic operations.

4.2. Let S be a Pfaffian system on a manifold M. S is said to be
regular if the characteristic system Ch (S) of S is a Pfaffian system on M.
In this case, Ch(S) is completely integrable (see § 3.1). The following
lemma is well-known (see [4] p. 1060 and [5] p. 52).

LemMmA 4.1. Let s =vrank S. Assume that there exists an absolute
parallelism @', -- -, 6%, o, ---,0" on M satisfying S = (6", ---,0°> (s +1t=
dim M). Set

6 = %z;,m Fiow' Aw*  (mod@, ---,6), 1<i<s,
where Fi,, 1<i<s, 1<j, k<t are functions on M with Fi, + Ff; = 0.
Then:

1) As an F(M)-submodule of /\'(M), Ch(S) is generated by 6', -- -, 6°
end 3L Fiof 1<i<s, 1K<

2) If S is regular, then there are integral 1-forms @, ---,6° of Ch(S)
such that (6, - - -, 6°) forms a generator of S.

DeriniTiON 4.2. Let & be a pseudogroup on M. A regular Pfaffian
system S’ on M is called a covariant system of S with respect to & if
®&(S) leaves S’ invariant.

In this case, Ch (S’) is also a covariant system of S. In [3] and [4],
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E. Cartan used such covariant systems for the problem of integration of

second order partial differential equations. We want to use them more
effectively.

Assume that & is a Lie pseudogroup. Consider a defining Cartan
system (P*, C*) of &(S) with respect to a fibering = of P* onto M (for
example, we can take the Cartan system (P*, C*) which appeared in
Theorem 2.3). As before, for a Pfaffian system S on M, we denote by S
the Pfaffian system on P* generated by all 1-forms z*6, ¢ S. If S is re-
gular, then Ch(S)* = Ch(S*) by Lemma 4.2-1). Now we can see that
the Pfaffian system to be considered is given by S*. Let S’ be a covari-
ant system of S with respect to ®. Then (8)* is a covariant system of
S* with respect to &(P*, C*). Assume that the action of (P*, C*¥) on M
is normal. Then, by Proposition 2.1 and Theorem 2.3, the systems S*,
(S8)* and Ch (8)* are generated by invariant 1-forms of (P*, C*). Chang-
ing C* if necessary, we can assume that Ch (S)* is generated by some
1-forms in C*.

By this consideration, we are led to the following problem. Being
given a Cartan system (P, C), C = (u', ---, u™; o, - - -, 0"), study the problem
of integration of a regular Pfaffian system S on P generated by invariant
1-forms of (P, C). Such a system will be denoted by (S, (P, C)). As &(P, C)
leaves S invariant, we can consider covariant systems of S. However,
we should restrict ourselves to the study of those covariant systems of S
which are constructed by the so-called rational operations.

DEeFINITION 4.3. A regular Pfaffian system S’ of rank ¢ on P is called
a normal covariant system of (S, C) if it satisfies the following conditions:

1) §c S and 0<t<rank S;

2) S’ is generated by ¢t 1-forms 37, c¢le’, 1 <i <t where ¢}, 1 <
1<t 1< j<r are real constants;

3) Ch(S’) is generated by some 1-forms in C;

4) Ch(S’) is closed in C (see Definition 3.1);

5) S8’=Ch(S)NS.
S is said to be irreducible with respect to (P, C) if there is no normal
covariant system of (S, C).

The structure equation of (P, C) enables us to find normal covariant
systems of (S, C). Let P’ be an open set of P. Then it is clear that
S’|P’ is a normal covariant system of (S|P’, C|P’).

https://doi.org/10.1017/50027763000000878 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000878

DIFFERENTIAL SYSTEMS 65

THEOREM 4.2. Let (P, C), S and S’ be as above. Then, for any pc P,
there are Cartan systems (P, Cy) and (P, C,) and a regular Pfaffian system
S on P such that

1) P, is an open neighborhood of p in P and C, = C|P;;

2) (P, C) is a quotient Cartan system of (P,, C,) by Ch (S|P, with
fibering n: P, — Py;

3) (Sp* = S’| P, with respect to the fibering r;

4) S} is generated by invariant 1-forms of (P, C,);

5) for a submanifold N, of P,, N = z~'(N,) is an integral manifold of
S’ if and only if N, is an integral manifold of Sj;

6) for a normal covariant system S’ of (S|P, C,) satisfying S"’ < S'|P,
and 0 < rank §” < rank S’, there is a unique normal covariant system S}
of (S;, C) with (SY)* = S”;

7) for a normal covariant system S{ of (S;, Cy), S” = (S{)* is a normal

covariant system of (S|P,, C)) satisfying S” CS’|P, and 0 <rank S” <
rank S’.

It should be remarked that once Ch (S’) is integrated we can con-
struct the objects in Theorem 4.2 by the rational operations. However, we
can determine dim P, and the structure equation of (P, C,) without in-
tegration. From 6) of Theorem 4.2, we have the following corollary.

CororLLARY 4.3. Let (P,C) and S be as before. Assume that there
are normal covariant systems S; of (S, C), 1 < i < k, satisfying the follow-
ing conditions:

a) 0<rank S, <rank S,,,, 1<i<k—1(@G k=2);

by S,cSc...cS§,cS.

Then, for any p € P, there are a sequence of Cartan systems

(Pevis Cot) =25 (Pyy C) —> -+ —25 (P, C) —> (P, C)

and regular Pfaffian systems S, and S, on P, 1 <i <k + 1, such that

1) P,,, is an open neighborhood of p in P and C,,, = C\P,,;

2 Si..= S|P, S, = S|P, and S| = S,;

3) rank S, =rank S, 1 <i<k;

4) 8§, is generated by invariant 1-forms of (P, C), 1 <i <k + 1;

5) S’ is a normal covariant system of (S;, C), 2 <i <k + 1;

6) (P, C) is a quotient Cartan system of (P,.., C,.,) by Ch(S/,.) with
fibering ;. P,,, »P,, 1 <i < k;
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7 (S)* = S.,, with respect to the fibering =, 1 <i < k.

Proof of Theorem 4.2. We use the notations in Section 3.1. We set
Ch(S) = (o', - -+, 0™y and Ch(S’)., = (&, -+, ®*). Moreover,

Q={u, 0}, Q. ={0, -+, 0} and E~ = D(Q.).

By Theorem 3.2, there is an open neighborhood P, of p in P such that
Ch (S)|P, admits a quotient system (P, C,) with fibering =: P, — P,. Let
C,=@@, - -, it~ a, ---,@°) (m < n). Without loss of generality, we can
assume that P, = P. Before going further, we prove the following lemma.

LemMa 4.2. Let S, be a Pfaffian system on P, and let S = (S)* Then
Ch(S) = <", - -+, o> if and only if k < s and Ch(S,) = <@, - - -, @").

Proof of Lemma 4.2. Suppose first Ch (S) = <o, - - -, »*). From Lemma
3.2, we have E* C H(S) and hence @ N Ch(S)c Q.. This implies that
o' belongs to @., 1 < i< k. Thus, k<s and 7*0" = o', 1 < i < k. Take
any X € H(S). Then, by Lemma 1.2, we can write X = r,Y for some
Ye H(S). Then, a(X) = w'(Y) =0, 1 <i<k Thus, @eCh(S),1<i<
k. Next, for any @€ Ch(S,) and any Ye H(S), we have (z*@)(Y) = 0 and
hence n*@e Ch(S). This means that @ is an §(P,)-linear combination of
@, ---,@". This proves Ch(S) = <@, - - -, @.

The converse follows easily from the formula Ch(S) = Ch (S,)* (cf.
Lemma 4.1-1)).

We return to the proof of Theorem 4.2. Since S’ C Ch(S’), it follows
from the condition 2) of Definition 4.3 that S’ is generated by ¢ 1-forms
6 = 25, bie’, 1 <1 < t, where bi’s are real constants. If we set

g= > bial, 1<i<t,

then %' =6, 1<i<t We can define a Pfaffian system on P, by
Sy =@, ---,6'. Then we have (S))* = S’ and hence Ch(S}) = (@, -- -,
@) by Lemma 4.2. This proves 3) and 4) of Theorem 4.2. 5) may be
obvious.

Let S” be a normal covariant system of (S, C) with S”CS’. Then,
by the same argument as above, there is a unique Pfaffian system S; on
P, such that (S7)* = S” and Sy is generated by 1-forms >  cla’, 1 <
i < rank S”, where c¢?’s are real constants. Now we prove 6) and 7). In
view of the above remark and Lemma 4.2, it will be sufficient to show
that Ch(S”) = <w', - -+, 0*> (B < s) is closed in C if and only if Ch (S}) =

https://doi.org/10.1017/5S0027763000000878 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000878

DIFFERENTIAL SYSTEMS 67

(@, -+, @ is closed in C, Set @ ={a,---,0" and @, = {@, - - -, @"}.
Let (E¢, Q,) (vesp. (E', @,) be the system defined by Ch (S”) (resp. Ch (S7)).
Assume that 7*Q,_, = Q,_, for an integer i > 1. Then, from Lemma 3.2,
we have

E- CD(”*Q—i—I) = D(Qi—l) = E~l
and
ﬁ*Ei = ”*(D(ﬂ*éz-l)) = D(éi—l) = E°.

Take any @e @, For any Xe E’, we have (z*@)(X) = 0 and hence r*@e
Qi. Next, take any w € Qz Since @, C Q.., there is a 1-form @ in C, such
that w = n*@. Take any Ye E‘. We can write Y = r,X for some Xe E'.
Then we have

W(Y) = a(ryX) = 0(X) =0

and hence @e @,. We have thereby proved 7*@, = @,. Since 7*@, = Q,,
we can prove, by induction, the following relations:

EWCE.i,ﬁ*EizE_i,ﬂ*Qizéi (120)
Hence,
E*CE” n,E* = E*, 7*Q.. = Q..

Using these relations, we can easily verify that Ch (S”) is closed if and
only if so is Ch(S}). This completes the proof of Theorem 4.2.

4.3. We are now in a position to study the problem of integration
of a system (S, (P, C)), where C = (u!, - .-, u*; 0, - - -, »") is an invariant
system on a manifold P and S is a regular Pfaffian system on P generated
by invariant 1-forms of (P, C). A normal covariant system S’ of (S, C)
is said to be minimal if there is no normal covariant system S’ of (S, C)
satisfying S” < S’ and rank S” < rank S’. From now on, we suppose that
S is neither completely integrable nor irreducible with respect to (P, C).

LeEmma 4.3. For each pe P, there are an open neighborhood P’ of p
and a minimal normal covariant system S’ of (S|P’, C|P’) such that, for
any open neighborhood U of p in P’, S’|U is also a minima! normal covari-
ant system of (S|U, C|U).

Proof. Let S, be a minimal normal covariant system of (S, C). Assume
that S, does not satisfy the property in Lemma 4.3. Then we can find an
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open neighborhood P, of p and a minimal normal covariant system S, of
(S|P, C|P) satisfying S, C (S;|P,) and rank S, <rank S,. Assume further
that S, does not satisfy the property. Then we can proceed as above,
and so on. Since the rank of S is finite, we can repeat the procedure
only finite number of times. Now Lemma 4.3 follows from this fact.

Let us fix a point p of P and take an open neighborhood P’ of p
and a minimal normal covariant system S’ of (S|P’, C|P’) with the pro-
perty stated in Lemma 4.3. Let E= be the distribution defined by Ch (S’)
(cf. §3.1). Set s, =rank Ch(S’) and A =dim P — dim E;. Assume that
we can integrate Ch (S’). Then we can choose A independent first in-
tegrals v, - .-, v* of E~ defined on a small open neighborhood P, of p in
P’ in such a way that v, ---, v are first integrals of Ch(S’) (see the
proof of Theorem 3.3). Let n: P,-> R" denote the mapping given by

m(q) = (v'(q), ---,v(Q@)  (qeP).

Then we can assume that = is a fibering of P, onto a small open set P,
of R*. Moreover, we can construct Cartan systems (P, C) and (P, C,)
and a regular Pfaffian system S| satisfying the properties listed in Theorem
4.2. By Theorem 4.2-7) and Lemma 4.3, S; is irreducible with respect to
(Py, Cy).

Let («', - - -, x") be the canonical coordinate system on R* (and hence
on P,). Assume now that we can find an integral manifold N, of S, with
defining equations fi(x', ---,x") =0, 1<i<m. Let N=z"'(IV,) and let
S|N denote the F(IV)-submodule of A'(IV) generated by all 1-forms (*4,
6 ¢ S|P,, where ¢: N— P, is the inclusion. Then it is clear that N is de-
fined by the equations f*(v', - - -, v*) = 0, 1 < i < m, and that S|N is finitely
generated. Let us set

Cf = (uly ] un’ vl’ ] vso;wl’ ot '5(07)'

Then (P,, C¥) is a normal Cartan subsystem of (P, C,) with defining Pfaf-
fian system Ch (S’)|P,. From the first part of the proof of Theorem 3.3,
it can be seen that v', - .., v* are invariants of (P,, C¥). So each function
"= ', ---,v") is an invariant of (P,, Ci). We want to get a Cartan
system (N, C) so that S|N is generated by invariant 1-forms of (I, C).
For this purpose, we use Theorem 1.2, Carrying out the isomorphic re-
duction of (P,, C¥) by the invariants f*, 1 < i < m, we may get a Cartan
system (IV, C') (we reduce each f* to zero). N, (or N) is said to be generic
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if the above procedure really yields a Cartan system (XV, é) and if S|N is
a regular Pfaffian system on N. In this case, S|N is generated by invari-
ant 1-forms of (I, C) because, for every invariant 1-form o of (P, C?), o
is an invariant 1-form of (N, C‘). Thus, for a generic integral manifold
N, of S;, we get a system (S|N, (N[C‘)), where we put N = z7/(N,). Let
us arrange the above procedures as follows.

Step 1) For a point p of P, find an open neighborhood P’ of p and
a minimal normal covariant system S’ of (S|P’, C|P’) with the property
stated in Lemma 4.3.

Step 2) Find s, independent first integrals of Ch (S’).

Step 3) Construct Cartan systems (P,, C,) and (P, C,), a fibering =:
P, — P, and a regular Pfaffian system S; on P, satisfying the properties
listed in Theorem 4.2.

Step 4) Find an integral manifold N, of S; with defining equations

fi(xlr "'axh)=0> 1§1’§m
Step 5) Carry out the isomorphic reduction of (P,, C%) by the invari-
ants fi(v', ---,v"), 1 < i < m (we reduce f* to zero).

Step 6) For a generic integral manifold NV, of Sj, describe the system
(S|N, (N, C)), where N = =~ '(V;).

If S|N is neither completely integrable nor irreducible with respect
to (N, C), then we go back to Step 1). Notice that we can achieve Steps
1), 3), 5) and 6) by rational operations. Moreover, Sj is irreducible with
respect to (P, C;). As a general result, we have the following theorem.
By the word “generically”’, we mean to consider, in Step 6), only generic
integral manifolds of Sj.

THEOREM 4.4. Let (P, C) and S be as before. Then the integration of
(S, (P, C)) is generically reduced to that of the following two types of systems:

1) (S, (P, C,), where S, is completely integrable:

2) (Sy, (Py, Cy)), where S, is irreducible with respect to (P,, C.,).

If all systems (S, (P4, Cy)) of the second type satisfy the condition
rank S* = 1, then the integration of S is reduced to that of completely
integrable Pfaffian systems.

THEOREM 4.5. Let (P, C) and S be as before. Assume that
k+1=rankS>2

and that there are normal covarient systems S, of (S,C), 1 < i < k, satis-
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fying the following conditions:

1) rank S, =i, 1<i<k;

2) S,cSc-..-cS,cS.
Then the integration of S is generically reduced to that of finite number
of completely integrable Pfaffian systems.

The meaning of the word “generically” will be clarified in the follow-
ing proof.

Proof of Theorem 4.5. Suppose that S is not completely integrable.
First of all, we integrate completely integrable Pfaffian systems Ch (S)),
1 < i<k Then, for each point p of P, we can construct a sequence of
Cartan systems

(Pyosy Covt) —55 (P, C) —> + - —25 (P, C) —> (P, C)

and regular Pfaffian systems S, and §§ on P, 1<i<k+ 1, satisfying
the properties listed in Corollary 4.3. Then, rank S, =i, 1 <i <k + 1.
Assume that we can find a generic integral manifold N, of S, for an in-
teger i (1 <i< k). Set N,,, = n;'(N;) and consider the Pfaffian system
S, = SMINH,. By assumption, we have rank S; < 1. If rank S, = 0, then
N,,, is an integral manifold of S,,.. So we have only to consider the
case rank S, = 1. Since rank S, = 1, we are led to the integration of a
regular Pfaffian system of rank 1, S,, on a manifold P,. In this case,
we can use a theorem of Frobenius and Darboux (see [12] pp. 137-141).

Take a generator 6 of S,. A point x of P, is said to be generic if
there is an open neighborhood V of x such that P(D(F|V)) is a Pfaffian
system on V, where 4|V is the resriction of § to V (for the notation
P(D(6|V)), see § 3.1). Consider a generic point x of P, and an open neigh-
borhood V of x satisfying the above condition. Notice that Ch (S,) and
P(D(6|V)) are completely integrable. Let 2k 4+ 1 = rank Ch (S,). Then,
by the theorem of Frobenius and Darboux, we can find independent first
integrals of Ch(Sy), x', ---, x*, 2, p,, --+, Px, and a first integral u of
P(D(0|V)) such that

0 =dz— >}k _ p,dx for rank P(D(@|V)) = 2k + 1,
6 = u(dz — > %_, p,dx) for rank P(D(4|V)) = 2k + 2.

Using «Y, ---, %%, 2,p,, -+, Px, We can construct integral manifolds of S,.
This completes the proof of Theorem 4.5.
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The above 1-form dz — % p,dx’ is a standard form of generators
of S,. This can be generalized as follows. Let S be a regular Pfaffian
system of rank s on a manifold P. Then a generator (6", ---,6°) of S is
called an integral generator of S if ' is an integral 1-form of Ch(S), 1 <
i <s. By Lemma 4.1-2), such a generator exists at least locally. Let
t = rank Ch (S). Assume that s <t and that we can find an integral
generator (¢, ---,60°) of S and t independent first integrals y!, ---, y* of
Ch (S). Then each & must be of the form:

0 = ;':1 Ai'(yl’ ""yt)dyj (1§l§3)

From this expression, we can get another integral generator (4, ---,4°)
of S, where §' is given by

éi = dyz - Z;‘:s+1B§(yl7 te '7yt)dy7 1 -<,_—_ l é S.

This can be considered as a standard form of generators of S. Using such
a standard form, we can often construct integral manifolds of S (see [3]
p. 159 and pp. 169-171).

Consider a system (S, (P, C)), where S is irreducible with yespect to
(P, C). Then we should first try to find an integral generator of S by
integrating only completely integrable Pfaffian systems. If it is impossi-
ble, then we try to find a Cartan system (P, C’) so that (S, C') admits a
normal covariant system. Of course, this is not an effective method of
integration of S.

Remark. Let us consider a general system (S, (P, C)). When we find
integral manifolds of S on which some fixed linearly independent 1-forms
on P are still linearly independent, there may appear in Step 4) and
Step 6) certain integrability conditions. These are main obstructions for
solving partial differential equations.

Let us illustrate it by a simple example. Consider a Cartan system
(P, C), where dim P = 7 and C = (v, - - -, »") with

do® = o' \ o* + o* A\ &,
do'* = o' \ o + 0 A\ o,
do’ = o' A o' — o A\ o,
do' = 0, i=126 7.

Set S = (o* o', w’). Consider two-dimensional integral manifolds of S on
which o' and «* are still linearly independent. Let S’ = {(»*). Then,
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Ch (8) = (&', o, 0*, 0%, 0"y and (o', *, o’ ", ©°) is a solvable generator of
Ch(S’). We can see that 8’ is a normal covariant system of (S, C). Let
(P,, C;) be a quotient Cartan system of (P, C) by Ch(S’) with fibering =:
P P, Then, dim P, =5 and C, = (@, @, @, @, ®") with

do® = &' N\ @ — @ A @,
da® = 0, 1=12,6,T7.

S} is given by S; = (@°). Let IV, be a two-dimensional integral manifold
of S} on which @' and @* are still linearly independent and let N = = (V).
Then N is generic. We get a Cartan system (I, 6’), where dim N = 4
and C = (&', u*; 6, &%, 6", 6") with

dg' = 0,

d¢® = 0,

de’ = ¢' N\ ¢,
d¢* = ud' N\ ¢.

The invariant u is a function of u' and u®. We have S|N = (6. In
this case, the integrability condition is given by w = 0. If u = 0, then
S|N is completely integrable and (¢, ¢°) forms a solvable generator of S|N.

4.4. Finally, we consider the problem of classification. Let & be a
Lie pseudogroup on a manifold M and let (P, C) be a defining Cartan
system of & with respect to a fibering 7= of P onto M. Assume that the
action is normal (cf. §1.1). Let S, be a regular Pfaffian system on an
open set U, of M (i =1,2). Then we can consider the Cartan system
(P¥, C¥) which appeared in Theorem 2.2. S; determines a regular Pfaffian
system S¥ on P¥, which is generated by invariant 1-forms of (P¥, C¥)
(Theorem 2.3-2)). If S, and S, are locally &-equivalent, then (P¥, C¥)
and (P}, C¥) are locally isomorphic (Theorem 2.2). Shrinking U, and
P¥ if necessary, we can assume that there is an isomorphism F of (P},
C¥) onto (P¥, C¥) with F*S¥ = S*. Then there is a one-to-one corres-
pondence between the set of all normal covariant systems of (S¥, (P¥, C¥))
and that of (S§, (P, Cj)). Therfore we can conclude that the integra-
tion of S¥ is formally equivalent to that of S¥. Thus we get a class of
Pfaffian systems to which the same method of integration can be well
applied.

We are interested in the problem of classification of all Pfaffian
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systems S such that &(S) is finite dimensional. In this case, using
Theorem 1.3 finite number of times, we can reduce the problem to the
following lemma.

Lemma 4.4. Let (P, C), C, = (o}, ---,0}), be a Cartan system with
r=dimP, (i =1,2). Assume that there are constants Ci,,, 1 <j k1 <r.
satisfying Ci,; + Ci., = 0 for all j, k, | and

do) = 5 T Clyol Ao, 1Z5<7 (=12,
Then (P, C) and (P, C,) are locally isomorphic at every point of P, X P,
if and only if Ciy = Clin, 1, RIS T

For the proof, see [12] p. 221.
Now we deal with the problem of classification of second order ordi-
nary differential equations

ary _ < ﬂz)
i flx,y, d

under the action of the following Lie pseudogroup on R°.

.. {X=x—}—a,

Y — Yz, y), (a e R).

Let (P, C) denote the Cartan system givan by

P={xy0pqrst)eR, q + 0},

o, = dx,
c. o’ = qdy - pqdx,
" o® = —qdp + re' + so’,

o' = dglq + so' + to.

Let n: P— R® and «’: P— R* denote the natural projections defined by
n(z) = (x,y, p) and 7'(z) = (x, y), respectively (z€ P). Then (P, C) is a de-
fining Cartan system of &’. Moreover, (P, C) acts effectively on R® with
respect to . So it defines a Lie pseudogroup & on R°’. Let f be a func-
tion on an open set U(f) of R. Set § = dy — pdx, 6, = dp — f(x,y, p)dx
and S; = (4,60,)>. Then we are led to the problem of classification of the
Pfaffian systems S, under the action of ®.
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We have gqa*0 = o’ and sqa*f — qa*0, = o’ — u'o' on P} = 2 (U(f)),
where we put ¥’ =r — qf. (P};u’) is a maximal system of invariants of
(S;,C). Set Cf = (50, ---,0"). Then we get a Cartan system (P¥, C¥).
We can see that u® is reducible on P¥. Putting r = gf, we get a Cartan
system (P}, C~’}) We can verify that u) = 2s — f, is an invariant of (P},
~}) and that u} is reducible on P;. Here we use the notations f, = offox,
f, = df/op etc. Putting s = f,/2, we get a Cartan system (P? C~J}). We can
verify that u =t — (f,,/2g) is an invariant of (P}, C’}) and that uj is re-
ducible on P?. Putting t = f,,/29, we obtain a Cartan system (Q,, C,),

where
Q,={xyp QeR; q+0, (x,y,p)e U)}
and
o' = dx,
o' = qdy — pqdx,

C,:
! f = —qdp + wal + (fp/z)w29

o* = dqlq + (f,/20" + (f,,/20)0".

(Q,, C,) is a defining Cartan system of &(S;) (cf. [7] Theorem 2.3). The

Pfaffian system to be considered is now given by S¥ = (o’ 0*). Let g be

another function on an open set of R’. Then S, and S, are locally &-

equivalent if and only if (@, C,) and (Q,, C,) are locally isomorphic

(Theorems 1.3 and 2.2.). Therefore we have only to classify the Cartan

systems (Q,, C,). We remark that &(S,) is finite dimensional for any f.
Now we have the following structure equation of (@,, C,):

g

do' = 0,
do’ = * N\ o' + o' A o
d(i)3 = (1)4 /\ (03 —_ usa)z /\ wla

do* = ue® N\ 0 — we* A\ o,

Eq. 1)

where u,, u, and u, are invariants of (@,, C;). They determine other in-
variants u,, 4 < i < 10, as follows:

du, = u,w' + uw* + uw® — 2ut,
Eq. 2) du, = u.0' + uw® + ue® — ue,
du, = uw' + uw® — U

We have u, = —f,,,/(2¢"). If u, =0 on Q,, then f, u, and u, are given as
follows:
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f = alx, y)p* + 2b(x, y)p + c(x, y),
Eq' 3) U, = (ax - by)/q7
U = (ax - by)p + (GC — Cy + bz - bz)-

Using the invariants u, u, and u, we shall consider four cases.
Then we can study each case by using Theorem 1.3.

Before going further, we give the following complete list of classifica-
tion. We denote by m the dimension of &(S;) and by f, the standard
form of each type. As usual, we use the notations F'(x) = dF/dx, G(x, p)
= 0G/op etc.

A m=4,f =ay (aecR).
B) m=3, f, = F(x)y (F'(x) # 0).
C) m=2 f =12p" + 2a + b — y)p + 2a(y* — 2by + (@ — b))
(a,be R, a + 0).
C) m=2 fi=ap+ F(p —ay) (aeR, F""(p) # 0).
D) m=1, f, = a(x)p’ + (F(x) + b(x) — 2a(x)F(x)y)p
+ a(x)F(x)'y* + (F'(x) — b(x)F(x))y + c(x)
(a’(x) + a(x)F(x) = 1, >
da(x)c(x) = (F(x) — b(x))* + 2(F'(x) — b'(x))/.
D) m=1, f, = Fxp + F(x)y + Gx,p — F(x)y) (G,,,(x, p) + 0).
D) m=1, f, = a(y)p’ + 2bp + c(y) (beR,c'(y) = a(y)c(y) — (y + b)).
D) m=1, f.=a(y)p’ — 2yp + c(y).
D) m=1, f, = G,p) (G,,,(y, p) # O).
E) m=0, f, = alx, y)p* + 2b(x, y)p + c(x, y)
(¢, =b,, b, —c,=y+ b — ac, a’ + b. + c2 > 0).
E) m=0,f, = alx, y)p* + 2b(x, y)p + c(x,y)
(a, —b,=1,a,+ b+ ¢ > 0).
E) m=0, f, = Fux,y) + F,(x,)p + G(x,y,p — F(x,))
G,px(%, ¥, ) # 0. ¥y = f(x,y,y) is decomposed as follows:
{y’ = F(x,y) + 2(x),
2'(x) = G(x, y, 2(x)).

We shall give an outline of the argument.

Case I) u,u, and u, are constants. Then, from Eq. 2), we have
u, = u, = 0. Putting a = —u,, we get the first type A). (o® + v/ @ o’ &)
is a solvable generator of S} with auxiliary 1-forms o' — v @ o', 0* + 4/ @ @'

Case II) du; =0,i=1,2 and du, # 0 on @,. Then, u, = u, =0 and
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u, is a function of x and y.

1) uy = uy(x). Then u, forms a complete system of invariants of (@,
C,). Putting F(x) = —u,, we get the second type B). If we know a solu-
tion of Riccati’s equation u/(x) = u(x)* — F(x), then (0® — u(x)o’, o) is a
solvable generator of S} with auxiliary 1-forms o' + u(x)w', 0* — u(x)o'.

2) dufoy +#0 on Q,. Taking an element X = x, Y = u,(x,y) of &,
we can assume that u, =y. Then, u, = p, u,, = 1/g and hence dim &(S,)
< 1. In this case, f, a(x,y) and b(x,y) are also invariants of (Q,, C,),
where f is given by Eq. 3). From this fact, we get the types D,) and
E).

Case III) du, =0 and du, =0 on @,. Then, u, =0. We can see
that wu, and u, are reducible on @,. Putting u, =1 and u, = 0, we get
a Cartan system (Q}, C)), where C} = (u,, us, uy, Uy; ', 0?). If all invariants
are constants, then we have w, — u,, = 1/u, and u, = ulfu,, We get the
type C,), which depends on two constants. If one of the invariants u,
ug, U, and u,, is not a constant, then we can proceed as in Case II). If
dim &(S;) = 1, then (@}, C)) is locally isomorphic to one of the following
two cases:

1) x forms a complete system of invariants of (Q;, C));

2) y forms a complete system of invariants of (@}, C}).

Then we get the types D,) and D,). If dim &(S;) = 0, we get the type E,).

Case IV) du, + 0 on Q,. We can see that u, is reducible on Q..
Putting u, = 1/(20) (¢ € R, a + 0), we get a Cartan system (€3, C}), where
C? = (Us, Us, Uy, Us, Us; @', @, 0°). Tt is not hard to verify that dim &(S,) < 2
and that if dim &(S,) = 2 then (@2 C}) does not admit any invariant of
the form u = u(x,y). Therefore one of the invariants u,, 2 <1 <6, is
reducible on Q% We can carry out the isomorphic reduction and get a
Cartan system (%, C9), where C} = (u,, U, Us, Us, Us; 0, °). If all invariants
of (@3, C}) are constants, then we get the type C,). If dim &(S,) =1, then
an invariant v(x,y) forms a complete system of invariants of (@3, C)). As
in Case II), we can assume that v = x or v =y. Then we get the types
D,) and D;). If dim®&(S,) =0, we get the type E,). Assume that f and
g belong to the type E,). Let 7, 2 <i < 6, denote the invariants of (Q5,
C}). Then the equivalence of S, and S, is determined by the relations
u, = U;, 2 <1< 6., If the relations are compatible, they define a unique
element of & which makes S, and S, equivalent.
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