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Abstract. Quantifying snow water equivalent (SWE) with ground-penetrating radar (GPR) in a 

warming climate is complicated by the incidence and variability of liquid water in snow. Snow 

surveys conducted during the melt season serve as a valuable analog to conditions under future 

warming. Here, we determine the variability of wet snowpack properties (relative permittivity 

and density) to quantify their impact on SWE estimates using GPR. We collected spatially 

continuous snowpack measurements with 400 MHz GPR in 2012 and 2021 across repeat 

transects (~150 km each year) along with spring and summer snow depth and density 

measurements from snow pits and snow cores. Snow relative permittivity values ranged between 

2.06 – 2.62 in 2012 and 2.11 – 5.11 in 2021, resulting in calculated volumetric liquid water 

content (LWC) between 1.7% – 5.7% in 2012 and 2.1% – 16% in 2021. This variability in snow 

relative permittivity results in SWE uncertainties between 8% – 33%, with more extreme cases 

reaching 13% – 45%. We attribute this uncertainty to spatial and temporal variability in liquid 

water content when using GPR to estimate SWE. As snowpacks become wetter with rising 

atmospheric temperatures, GPR surveys should include in-situ relative permittivity 

measurements to reduce depth and SWE interpretation uncertainties. 

 

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 18:29:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


 

 

1. Introduction      

Quantifying snow water equivalent (SWE) is crucial for assessing the annual mass balance of 

glaciers, water resources, and potential glacier contributions to sea-level rise. Ground-penetrating 

radar (GPR) offers a valuable quantitative, non-destructive method to estimate SWE along 

profiles tens to hundreds of kilometers long within a single field season, accounting for 

variability of snow distribution across larger areas (e.g., Bradford and others, 2009; McGrath and 

others, 2015; McGrath and others, 2018). Often studies conduct surveys early in the year 

(spring), avoiding the impact of liquid water content (LWC), simplifying assumptions of radar 

wave velocity when determining snow depth. However, research suggests that the sub-Arctic and 

Arctic are already rapidly warming (Winski and others, 2018; Ballinger and others, 2023) and 

are projected to continue doing so, leading to earlier spring snowmelt onset (Zheng and others, 

2022), more incidences of rain-on-snow events (Pan and others, 2018), and greater contributions 

from glaciers to global sea-level rise (Oerlemans and others, 2005; Rounce and others, 2023). 

Given this trend, assessments of wet snowpacks for SWE will likely become more common. 

Therefore, our aim is to determine the variability of wet snowpack properties and quantify their 

impact on SWE estimates using GPR and ground-truth methods. 

Most data related to our understanding of mass balance and SWE on Alaskan glaciers 

come from smaller U.S. Geological Survey (USGS) Benchmark glaciers (areas <20 km
2
) 

(McGrath and others, 2018; O’Neel and others, 2019) with few results from larger glaciers (e.g. 

McGrath and others, 2015). McGrath and others (2015) used GPR surveys across seven glaciers 

and five climate regions and find that SWE across Alaskan glaciers is highly variable, and 

heavily influenced by wind-shading, elevation, and storm track trajectory. Further, they find that 

accumulation rates derived from radar exceed those estimated by glaciological methods, and that 

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 18:29:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


 

 

there is significant SWE variability along those centerlines. This included a small survey (several 

kilometers) on Taku Glacier, suggesting that there is limited spatial variability in end-of-winter 

SWE on Taku Glacier and greater variability on other Alaskan glaciers in their study.  

Determining snow depth and SWE with GPR requires knowledge of the radar wave 

velocity traveling through the snowpack. Typically, this velocity is assumed to be spatially or 

temporally homogeneous. Many studies have addressed this limitation by applying a density-

dependent bulk radar wave velocity across the study area (e.g., Gascon and others, 2013; Miège 

and others, 2013; Sold and others, 2015; McGrath and others, 2018). However, since radar wave 

velocity is affected by snowpack density and strongly affected by LWC, both properties that can 

vary in space and time, this assumption can lead to uncertainty in SWE estimates. Understanding 

how density and LWC vary spatially is therefore crucial to interpretations of snow depth and 

calculating SWE from GPR observations. Several recent studies focused on evaluating the 

effects of density and LWC on radar wave velocity. For example, St. Clair and Holbrook (2017) 

used migration velocity analysis with common-offset radar to determine the most appropriate 

velocity for a dry snowpack in Wyoming. Recent work in seasonal snowpacks used GPR in 

combination with destructive (e.g., snow pits and dye tracing) and non-destructive methods (e.g., 

terrestrial Light Detection and Randing, airborne imagery, and Structure from Motion) for 

assessing and monitoring spatial variations in seasonal snowpack depth, density, SWE, and 

volumetric LWC throughout the springtime (Webb and others, 2018; Webb and others, 2019; 

Bonnell and others, 2021; McGrath and others, 2022; Webb and others, 2022; Bonnell and 

others, 2023). These studies find that LWC can vary spatially (Webb and others, 2018; Bonnell 

and others, 2023), diurnally (Bonnell and others, 2021) and seasonally (Schmid and others, 

2015). Other approaches have implemented multiple antenna configurations to determine radar 
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wave velocities of snow and firn layers. Examples include common mid-point (CMP) surveys on 

annual accumulation (McGrath and others, 2015) and multi-offset radar on seasonal snowpacks 

(Greissinger and others, 2018) and on polar firn (Meehan and others, 2021). Our work applies an 

approach most similar to Bonnell and others (2021) using in-situ snow depths to calculate snow 

LWC. 

With continued warming, we expect the window of dry snow to shorten and further work 

is necessary to better constrain LWC and SWE variations in wet snowpacks to expand the time 

to capture winter accumulation across large spatial areas. Here, we utilize 400 MHz common-

offset GPR surveys in conjunction with in-situ snow depth and density measurements to further 

constrain and assess the impact of wet snow properties on SWE estimates across the Juneau 

Icefield (JIF) in Southeast Alaska (Figs. 1, S1). We calculate bulk radar wave velocity in 2012 

and 2021 at a total of 13 locations with GPR surveys and ground-truth snow depths from snow 

pits and cores. We then combine these calculations with dry (spring) snow density measurements 

to quantify the variability in LWC across the study site. Density measurements collected from 31 

summer snow pits on JIF in 2012 and 2021 are combined with snow depth interpretations from 

repeat 400 MHz common-offset GPR surveys to calculate bounds of the range of SWE across 

JIF in July 2012 and 2021. We estimate variability in relative permittivity and LWC within the 

snowpack and the resulting uncertainties SWE estimates, constrained by in-situ snow density and 

depth measurements. 

2. Study Site 

2.1. Juneau Icefield, Alaska 

JIF (Fig. 1), one of Alaska's largest icefields, is currently losing mass with increased warming 

(McNeil and others, 2020) averaging 5.9 ± 0.8 km
3
 a

-1
 in volume loss between 2010 – 2020 
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(Davies and others, 2024). Taku Glacier (725 km
2
), traditionally named T'aakú Kwáan Sít'i (the 

T'aakú peoples’ glacier (Thornton, 2010)) is the main outlet drainage of the southern portion of 

JIF (McNeil and others, 2021). Since 1946, rates of annual mass loss have increased in 

correlation with increasing mean summer temperatures (McNeil and others, 2020). ERA5-Land 

2m temperature data (Muñoz, 2019) indicates a warming of 0.28˚C per decade
 
over the JIF 

region (58 – 59.3°N, 133.2 – 135°W) between 1950 and 2024 and with average yearly 

temperatures more frequently approaching 0˚C (Supplementary S.2.). JIF receives between 2.5 – 

4.4 m w.e. of winter (October – March) precipitation each year (Roth and others, 2018) and 

experiences prevalent melt during summer months (JJA) producing supraglacial melt ponds and 

streams in both the accumulation and ablation zones. The established field stations and annual 

field campaigns of the Juneau Icefield Research Program (JIRP) provide ideal access and 

logistical support to enable extensive GPR surveys and ground-truth efforts during peak warming 

(and increased snow water content) months.  

3. Methods 

3.1. Ground-Penetrating Radar 

To assess the impact of LWC on SWE from GPR, we analyzed approximately 150 km of GPR 

surveys collected across JIF in July 2012 and in July 2021, following the 2012 GPS tracks for 

repeatability (Fig. 2) (Campbell, 2024). Surveys covered 8 catchment basins and elevations from 

~1000 – 1800 m, providing data to encompass the spatial variability of snowpack depth, LWC, 

and SWE. We conducted these surveys by towing a Geophysical Survey Systems Incorporated 

(GSSI) control unit (SIR-3000 in 2012; SIR-4000 in 2021) and Garmin GPSMap handheld units 

for georeferencing (see Supplementary S.3. for detailed processing) coupled with a GSSI model 

5103 400 MHz antenna on a plastic sled at 3 – 7 km h
-1

 via snow machine. Surveys were 
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conducted along the centerline of several branches of Taku Glacier and along 3 cross-sections 

(Fig. 1). 

Figure 1 near here 

GPR data were collected with a time window of 250 – 400 ns, 2048 samples per trace, 24 

traces per second, and were not stacked during collection. The sampling rate and towing speeds 

of 3 – 7 km h
-1

 yield traces at 3.5 – 8.1 cm intervals across the profiles. After collection, all GPR 

profiles were time-zero corrected, distance normalized, and stacked 10- to 30-fold using GSSI’s 

proprietary software, RADAN v.7. Some profiles were filtered with low- and high-pass filters 

(800 MHz and 100 MHz, respectively) if noise was apparent in the radargrams. However, the 

data quality was generally high, so no other filtering or processing was required. We identified 

the annual accumulation – firn boundary as the most spatially continuous horizontal reflection 

horizon across both the ablation and accumulation zones (Fig. 2) and converted the GPR two-

way travel time (TWTT) data to annual snow accumulation depth (z) with: 

   
        

 
       (1) 

where the bulk average velocity v of the radar wave through the snowpack is given by 

    
 

√  
      (2) 

where c is the speed of light (0.3 m ns
-1

) and ԑs is the relative permittivity of snow. 

3.2. Ground-truth Snow Depth & Relative Permittivity 

In this study,    is determined by  

   (
          

    
)
 

      (3) 

using ground-truth measurements of depth (zgt), measured by snow pit and snow core depths 

located within 25 m of the GPR survey and TWTT of the accumulation layer at the ground-truth 
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site (TWTTgt). The latter are derived from the stacked profile, thus utilizing the average of the 

closest 10-30 original scans, where GPR transects passed at a distance of 3 – 24 m from each 

ground-truth site to both capture the local accumulation and also minimize potential reflections 

from the snow pit wall itself (Fig. 2). Sensitivity tests were performed on these single TWTTgt 

picks compared to the average picks over 50 m and the average of 25 traces nearest to the 

ground-truth site to validate our use of TWTTgt for    calculations (Supplementary S.4., Table 

S1). 

Figure 2 near here 

The snow pits used for ground-truth snow depth were selected from a dataset collected by 

JIRP during summer mass balance surveys (Campbell, 2024). Additional ground-truth snow 

depths were collected in 2021 with a Kovacs Mark II Coring System. GPR surveys and ground-

truth snow depth measurements were obtained concurrently whenever possible but, due to the 

time required to dig snow pits, this was not possible for 3 sites in 2012. For these cases, we 

applied a surface correction using ablation stake measurements (Table 1; see Supplementary 

S.5.). Additionally, we assessed the relationship between    and lapse-rate derived air 

temperature (see Supplementary S.6.). 

Table 1 near here 

3.3. Liquid Water Content 

We calculated the volumetric LWC of the snowpack at each ground-truth location using an 

empirical relationship between dry snow density (ρd), volumetric liquid water content (Wv), and 

relative permittivity of dry, wet, and measured snow ( d,  w,  s) (Tuiri and others, 1984; Sihvola 

and Tuiri, 1986): 

    (             
 )           (4) 
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where the permittivity of dry snow is defined by Tuiri and others (1984) as: 

                     
 

      (5) 

For all LWC calculations we used a single value for ρd of 0.444 g cm
-3

, estimated by averaging 

spring snow densities collected across JIF in 2013-2015 (ranging between 0.400 g cm
-3 

to 0.550 

g cm
-3

;
 
McNeil and others, 2017; O’Neel and others, 2017) and used a value of 88 for  w for 

water at the freezing point. Although these densities were collected outside of the study years, 

we assume these measurements are representative of dry snow density for this snowpack because 

of the documented consistency in the summer wet snow density across JIF (LaChapelle, 1954; 

Pelto and Miller, 1990; McNeil and others, 2020).  

3.4. Snow Water Equivalent 

We calculated SWE across JIF using GPR and all available density measurements from JIRP’s 

mass balance program in 2012 and 2021 (Pelto and others, 2013; McNeil and others, 2020), 

including data from nearby or adjoining glaciers such as Lemon Creek Glacier and Tulsequah 

Glacier (Fig. 1). These snow depth and wet snow density measurements were from a total of 18 

and 13 snow pits in 2012 and 2021, respectively; typically, snow pit depths reached between 300 

– 500 cm. Density measurements were sampled from the north-facing wall of each pit at 10 cm 

intervals using a 500 cm
3
 sampling cylinder. Any observable ice lenses or ice pipes over 0.2 cm 

through the snowpack were recorded. For each study year, density data from all snow pits were 

aggregated and averaged within each 10 cm depth interval to yield the average and standard 

deviation of wet density ( w) at each depth interval across JIF, and an exponential equation was 

fit to all the density data for each study year ( w (z)) (Fig. S4). 

Because using snow depth-dependent density calculations reduce errors in calculating 

SWE (Lundberg and others, 2006), we calculated SWE along the JIF profiles by integrating the 
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exponential relation derived above,  w (z), from the surface (z = 0) to the snowpack depth (z = d) 

to capture the density differences throughout the snow column with: 

     ∫   ( )  
 

 
       (6) 

For the two study years, SWE was calculated using snow depths from mean (  ̅ ± 1 s.d.), 

minimum (      ), and maximum (      ) relative permittivity in each year to provide bounds on 

SWE for the range of observed conditions. 

4. Results 

4.1. Relative Permittivity and Liquid Water Content 

Relative permittivity and LWC (% volume) estimates show variability across the study region, 

with no consistent trend between 2012 and 2021 (Figs. 3, 4). Using the 13 ground-truth sites, 

estimates of    range from 2.06 – 2.62 in 2012 (  ̅   2.48 ± 0.20) and from 2.11 – 5.11 in 2021 

(  ̅   3.56 ± 1.07) (Fig. 3, Table 1). Uncertainty in relative permittivity is 0.106, calculated using 

mean TWTTgt (50.93 ns) and mean snow depth (447 cm) (see Supplementary S.8.). Using the 

calculated   , LWC estimates range between 1.7% – 5.7% in 2012 (avg. 4.8%), and from 2.1% – 

16% in 2021 (avg. 9.6%). While higher elevations exhibited higher relative permittivity values, 

no dominant spatial trend was observed (Fig. 3). Additionally, LWC values were not consistent 

between years, nor is there a consistent trend at the same locations (Figs. 4, S5).  

Figure 3 near here 

Figure 4 near here 

4.2. GPR-derived Snow Depths 

The average TWTT for the accumulation layer across all radar transects was 51.1 (±16.3) ns in 

2012 and 44.5 (±17.8) ns in 2021. For 2012 depth calculations, we used   ̅ of 2.48 (  = 0.444 g 

cm
-3

, Wv = 4.8%), resulting in an average annual accumulation depth of 524 cm ± 153 cm. In 
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2021, the   ̅ of 3.56 (  = 0.444 g cm
-3

, Wv = 9.6%) applied across the dataset resulted in an 

average annual accumulation depth of 351 cm ± 138 cm. 

4.3. Snow Pit Density and Snow Water Equivalence Estimates 

To calculate SWE, we established the average wet snow density curves using all available snow 

pits collected in 2012 and 2021, consisting of 18 snow pits in 2012 and 13 snow pits in 2021 

(Figs. 1, S4). Snow pit densities were relatively consistent between years, averaging 0.556 ± 

0.030 g cm
-3

 in 2012 (avg. depth 552 ± 94 cm) and 0.562 ± 0.025 g cm
-3

 in 2021 (avg. depth 422 

± 88 cm). Snow density follows the expected trend of increasing density with depth (Fig. S4). 

Equations describing the relationship between density and depth for each year are ρw,2012(z) = 

0.403z
0.06

 (R
2 

= 0.86) and ρw, 2021(z) = 0.450z
0.04

 (R
2 

= 0.66). 

Using GPR-derived snow depths and density data, we calculated average SWE to be 286 

± 89 cm w.e. (  ̅ = 2.48) in 2012 and the average SWE in 2021 to be 193 ± 80 cm w.e. (  ̅ = 

3.56) (Fig. 5), representing a -32% change between 2012 and 2021 (see Supplementary S.7. for 

ice lens considerations). However, there is high spatial variability in    in 2021, which we infer 

to be due to the variability in LWC. We therefore calculated the range of SWE possible in each 

year based upon the minimum and maximum calculated relative permittivity for each year 

(             ) and find a potential 13% difference in mean SWE in 2012 and a 45% difference 

in mean SWE in 2021 (Table 2). Acknowledging those are the maximum differences, we also 

calculated the potential difference in mean SWE for   ̅ ±1 s.d. to be 8% and 33% in 2012 and 

2021, respectively. 

Figure 5 near here 

Table 2 near here 
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5. Discussion 

5.1. Spatial and Temporal Variability in Relative Permittivity and LWC 

Spatial variability in    across JIF was lower in 2012 relative to 2021 (Fig. 3). Previous studies 

have documented spatial variability in relative permittivity, e.g. in seasonal snowpacks in 

Colorado and Montana, where measured permittivity values range between ~1.3 – 2.4 (Webb 

and others, 2022) and were calculated to be ~1.4 – 1.6 (Bradford and others, 2009), and ~1.5 – 

2.5 (Bonnell and others, 2023). The range of    in 2012 calculated here (2.06 – 2.62) is slightly 

greater than but more similar to    measured in those seasonal snowpacks than the range in 2021 

(2.11 – 5.11). In this glaciological setting, differences in relative permittivity are primarily due to 

differences in density and LWC. In this way, we attribute the wider range of    reported here to, 

in part, the greater wet snow density observed on JIF (0.460 – 0.600 g cm
-3

) when compared to 

these seasonal snow studies (~0.230 – 0.500 g cm
-3

), but more likely attribute this to differences 

in LWC. 

Observed density patterns across JIF (Section 4.3) are similar to those previously 

reported at this location (LaChapelle, 1954; Pelto and Miller, 1954). Since densification takes 

weeks to months, while meltwater production and percolation occur on timescales of hours to 

days, and our results include permittivity values greater than that of glacier ice (3.15), we 

attribute the variability of calculated relative permittivity in 2012 and 2021 to LWC within the 

snowpack. LWC values calculated here are spatially and temporally variable, ranging between 

1.7 – 16% (by volume), similar to the range presented in by Webb and others (2018) for seasonal 

snowpacks (0 – 19%). On a smaller spatial scale, Techel and Pielmeier (2011) carried out snow 

fork surveys in the Swiss Alps to demonstrate spatial variability in LWC of 0 – 10% (by volume) 
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in a 5 m wide by 80 cm deep snow pit. LWC results presented here agree with the findings of 

spatial (Webb and others, 2018) and temporal variability (Techel and Pielmeier, 2011) in LWC. 

In addition to spatial variability in    and LWC, there is also likely substantial temporal 

variability of meltwater in this snowpack during the summer months, a time of high ablation and 

rain-on-snow events.  Colbeck (1975) modeled how different snowpacks respond to rain-on-

snow events and finds water moves fastest though an isothermal snowpack, as compared to fresh 

snow or refrozen snow. Temporal variability in    and LWC in snow is found to vary diurnally, 

between days, and between seasons in seasonal snowpacks (Techel and Pielmeier, 2011; Schmid 

and others, 2015; Bonnell and others, 2021) and on a glacier in Western Norway (Hart and 

others, 2011). Bonnell and others (2021) similarly observed spatial and temporal variability in 

LWC in a seasonal snowpack between April to June in Colorado with LWC values remaining 

low in the spring and increasing during the summer with some areas reaching >10% LWC. In 

our study, there was not a consistent trend of an increase or decrease in    at sites repeated in 

both years, agreeing with this temporal variability observed elsewhere (Figs. 3, 4). 

Values of    in this study are higher than most other ground-truthed GPR studies on 

glaciers, which are typically conducted in spring, whereas our data were collected in mid-July 

during a time when temperatures are consistently above freezing and precipitation may fall as 

rain.  Clayton (2022) conducted a snowpack meltwater percolation study on JIF, near the 

Matthes-Llewellyn ice divide (~1800 m), in 2018 and 2019 and observed the movement of 

meltwater within this snowpack on sub-daily timescales and trends indicative of diurnal melting 

and refreezing. In a dense and isothermal snowpack such as on JIF, we expect surface melt or 

rain to move through the snowpack, but this can be impeded by ice lenses. Evidence of ice 

lensing on JIF supports the idea that there are meltwater or rain events where water percolates 
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deeper into the snowpack before refreezing into an ice lens. Previous work has demonstrated 

horizontal hydrological connectivity in snowpacks and the effect of snowpack layering and ice 

lenses on vertical meltwater movement (Webb and others, 2019; Webb and others, 2022). It is 

likely that the ice lenses within the snow impact this water movement and result in increased 

snow permittivity. Here, the heterogeneity of ice lensing and water movement through 

snowpacks may additionally help explain such varied and high values of  s on JIF. 

Spatial variability in the LWC varies depending on the time of day of radar transects 

(Webb and others, 2018; Bonnell and others, 2021) and the prior meteorological conditions (Hart 

and others, 2013). In both 2012 and 2021, the average temperature during the days of data 

collection was above freezing (8.17 ± 1.43 ˚C and 7.21 ± 0.91 ˚C, respectively) at 1196 m on JIF 

from lapse-rate derived temperatures (Supplementary S.6., Fig. S3). However, there is not a 

strong correlation between relative permittivity and air temperature in either year. Some of the 

high variability in the 2021 data and low variability in the 2012 data may be attributed to 

precipitation (or lack thereof), but there are no in-situ continuous precipitation data available for 

this study site, and the meteorological data from the Juneau International Airport is too localized 

to represent precipitation on JIF. It is possible that differences in precipitation and solar 

insolation contribute to this difference in water content between years, but this cannot be 

ascertained with the present data. Therefore, this is an area of study that should be investigated in 

future work. 

5.2. Snow Water Equivalent 

The GPR surveys still show patterns that are a result of climatological and topographical factors 

such as elevation and proximity to the moisture source. We observe SWE gradients with 

elevation of 30 cm/100 m (R
2 

= 0.46) in 2012 and 21 cm/100 m (R
2 

= 0.26) in 2021, computed 
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with   ̅ for each year. (Fig. S6 (a, c)). These values are within the range of accumulation 

gradients presented in McNeil and others (2020) from over 20 years of JIF data, and similar to 

values found by McGrath and others (2015) ranging between 11.5 – 40.0 cm/100 m for glaciers 

near the Gulf of Alaska. The impact of elevation may be amplified on marine-proximal glaciers, 

where the high-elevation areas are also those closest to the coast and therefore receive more 

precipitation than interior regions of JIF. We observe an inverse relationship between distance 

from the coastline and snow accumulation depth and SWE of -7 cm km
-1

 (R
2 

= 0.24) in 2012 and 

-9 cm km
-1

 (R
2 

= 0.46) in 2021 (Fig. S6 (b, d)). These trends are most notable for more coastal 

branches of JIF, in agreement with a comparison between Lemon Creek Glacier and Taku 

Glacier in McNeil and others (2020). These results also support the modeling presented in Roth 

and others (2018) who find that the area of JIF closest to the coastline has the highest winter 

precipitation and aligns with the wind direction most dominant between October and March.  

While these results align within expected values and trend direction, the magnitude of 

these relationships are impacted by the applied   , either being amplified or diminished (Tables 

S2-S3). Both the conservative (8% – 33%) and extreme (13% – 45%) differences in mean SWE 

from GPR due to different    indicate the potential for over- or underestimation in mass balance 

and water resources. Due to the lack of spatial trends in   , it is not possible at this time to 

establish these relationships more accurately. The implications of this may either steepen or 

lessen mass balance gradients and support the need for resolving    and LWC variations at 

higher spatial and temporal resolution.  

5.3. Survey Implications in a Warming Climate 

The onset of snowmelt across Alaska is occurring earlier in the spring due to increasing 

atmospheric temperatures (Zheng and others, 2022). Ballinger and others (2023) showed that 
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between 1957-2021, the Central Panhandle of Alaska, which includes JIF, experienced a -3.13% 

change in snowfall equivalent per decade and increases in 2 m air temperature in every season 

(Ballinger and others, 2023). Under modeled future warming scenarios, southeastern Alaska is 

predicted to experience warmer temperatures and less precipitation (Bigalke and Walsh, 2022). 

Alaskan glacier systems are amongst those predicted to lose mass and contribute the most to 

global sea-level rise in the next century (Oerlemans and others, 2005; Rounce and others, 2023). 

With warmer seasons throughout the year, JIF could experience an earlier onset of melt or more 

predominant spatial and temporal variability in LWC. In this way, perhaps even spring surveys 

of SWE using GPR should consider increasing the spatial and temporal sampling density of 

ground-truth snow depths for accurate interpretations. 

 These trends extend beyond Southeast Alaska, with broader implications for other areas 

in Alaska and for areas of the Arctic that typically have dry snow. Temperatures are rising faster 

at the poles than at mid-latitudes, especially in the Northern Hemisphere (Holland and Bitz, 

2003). Rain-on-snow events recently occurred at Summit Station, Greenland (Xu and others, 

2022) and predicted to occur under future warming scenarios in Svalbard (Hansen and others, 

2014). Such changes may require accounting for LWC variability considerations in areas that 

historically have dry snowpacks. 

The spatial variability in    and, by implication, LWC presented here supports the need 

for an increased sampling density of ground-truth points. This study demonstrated a large spatial 

variability in LWC (2.1% – 16% in 2021), even within 7 to 10 days, which negates the 

assumption that conditions are homogenous across a large (>500 km
2
) study site. Variations of 

LWC occur on annual, daily, or even shorter timescales, and the degree of variability between 

the survey years at the same location demonstrates that we cannot assume the same conditions 
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between years even if surveys occur at the same time as years prior. Understanding more about 

the spatial and temporal variability of meltwater in snow helps us potentially expand the window 

for data collection of SWE with GPR if we can properly account for the water. 

To remedy this situation, we recommend ground-truth points via snow pits or coring at 

least at the end-point of GPR surveys and potentially in the middle of survey lines if there are 

substantial changes in topography along the transect, such as more than 300 m of elevation 

change, rolling topography, or sudden increases or decreases in topographic wind shading. 

Examples of factors which may spatially and temporally influence snowpack relative 

permittivity include (but are not limited to) elevation change, aspect, and solar barriers such as 

nunataks (which may shield the sun and reduce melt). Newer techniques including multi-offset 

radar may mitigate some of these limitations where the antenna configuration consisting of 

multiple transmitters and receivers can continuously derive the layer radar wave velocity across 

the survey (Bradford and others, 2009; Greissinger and others, 2018; Meehan and others, 2021). 

Future research should consider annual surveys, sub-seasonal surveys, and the use of multi-offset 

radar to better quantify these trends and variability.  

6. Conclusions 

In this study, we analyzed two years of 150 km GPR surveys with ground-truth points from snow 

pits and snow cores in 2012 and 2021 to assess the variability of summer snowpack    on JIF. 

We calculated LWC at each ground-truth location using an empirical relation to infer snowpack 

LWC ranging from 1.7 – 16%. Finally, we provided bounds on the SWE across JIF in 2012 and 

2021 using density data from 31 summer snow pits and the calculated       ,       ,        from 

13 ground-truth points across JIF. We find that depth-density trends across JIF within and 

between years are relatively consistent and that, across the range of calculated   , differences in 
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interpreted depths due to    introduce substantial uncertainty to SWE calculations (8% – 33%, 

with extreme cases of 13% – 45%) by GPR. 

GPR is an effective, non-destructive tool to rapidly extend point-based measurements of 

SWE across large spatial extents (10s to 100s of kms). However, in wet snow environments, 

GPR assumptions about relative permittivity must be made with caution. Our results show that 

SWE estimates from GPR in such conditions require extensive ground-truth campaigns due to 

the spatial and temporal variability in snowpack LWC. As airborne and ground-based radar 

surveys become more common in high-latitude glacier and ice sheet studies, the expected 

increase in LWC due to rising temperatures may complicate GPR interpretation especially in 

Alaska, western Canada, and polar areas. To ensure accurate interpretations of depth and SWE, 

ground-truth campaigns should be conducted as close in time as possible to the time of surveying 

and across the broadest spatial scale feasible. Future work should aim to resolve this LWC 

variability at higher spatial and temporal resolution to improve SWE estimates. 
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Table 1. Dates and types of ground-truth data and GPR surveys. Surface correction was applied 

to the sites in 2012 where GPR and GT measurements were not collected on the same day.  

Year Ground-truth (GT) GT type GT date GPR date Surface Correction 

(cm) 

2012 DG1 Snow pit 14 July 14 July  

SWB2 Snow pit 18 July 15 July +14.6 

TKG3 Snow pit 16 July 17 July -5.6 

TKG7 Snow pit 21 July 22 July -5.0 

NWB1 Snow pit 22 July 22 July  

C161 Snow pit 23 July 23 July  

2021 SWB2 Snow core 10 July 10 July  
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TKG5 Snow pit 13 July 13 July  

TKG4 Snow pit 13 July 13 July  

TKG3 Snow pit 13 July 13 July  

MC1 Snow core 13 July 13 July  

TKG7 Snow pit 15 July 15 July  

C161 Snow pit 15 July 15 July  

 

Table 2. Comparison of the range of annual-accumulation snow water equivalent (SWE) for 

2012 and 2021 based on the maximum, average (± 1 standard deviation (s.d)), and minimum 

values for calculated relative permittivity (  ) for the shared extent of radar surveys.  

Year   s  min   ̅  - 1 s.d.   ̅   ̅  + 1 s.d.  s  max 

2012 

SWE 

 s 

315 ± 98 

2.06 

298 ± 93 

2.29 

286 ± 89 

2.48 

275 ± 85 

2.68 

278 ± 86 

2.62 

2021 

SWE 

 s 

253 ± 104 

2.11 

226 ± 95 

2.49 

193 ± 80 

3.56 

163 ± 68 

4.63 

160 ± 66 

5.11 
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