
J. Fluid Mech. (2025), vol. 1003, A16, doi:10.1017/jfm.2024.1229

Clustering of buoyant tracer in quasi-geostrophic
coherent structures

Jamie Meacham1,† and Pavel Berloff1,2

1Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate,
London SW7 2AZ, UK
2Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8, Moscow 119333, Russia

(Received 25 January 2024; revised 7 October 2024; accepted 16 December 2024)

We have investigated the dynamics of floating tracer in an idealised turbulent
quasi-geostrophic ocean by advecting Lagrangian particles in a high-resolution velocity
field enhanced by the potential flow associated with vortex stretching. At first order in the
Rossby number expansion, this component of the ageostrophic circulation can be derived
through a diagnostic equation in terms of the geostrophic velocities. Borrowing methods
from the theory of Lagrangian coherent structures, we identify coherent material loops
around strong vortex cores using the Lagrangian averaged vorticity deviation (LAVD).
Building on studies of clustering in kinematic, stochastic velocity fields, we utilise methods
from statistical topography to show that the coherent vortices dominate the distribution
of extreme values of the concentration field. We find that the presence of clusters and
voids in a coherent vortex depends on more than just the sense of rotation, but also on
the full evolution of the vorticity over its lifecycle. We identify the mechanism behind
the cluster formation that respects the symmetries of the quasi-geostrophic equations but
can be expected to hold robustly in more complicated regimes, due to the simple physical
description. The association of cluster formation with vortex stretching implies that LAVD
is a particularly relevant metric for floating tracer dynamics. The detection of intense
clustering also has implications for reaction rates between ocean-borne flotsam, meaning
that our results are relevant to understanding the general risk of floating microplastics and
marine biological populations.
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1. Introduction

Spatial heterogeneity in the distribution of floating material is ubiquitous in observations.
Whether the subject matter is plankton populations, microplastic waste or floating drifters,
the organisation of these materials into dense clusters and sparse voids is self-evident
(Jordi, Basterretxea & Anglès 2009; Andrady 2011; Maximenko, Hafner & Niiler 2012;
Olascoaga et al. 2013; Pratt, True & Crimaldi 2017; Little et al. 2018). Understanding
the processes behind cluster formation is relevant to a number of open questions, such
as microplastic fate modelling (Cózar 2014), and the risk of pollutants to the marine
ecosystem (Meacham & Berloff 2024). Structures in the distribution of these materials
are often qualitatively linked to flow structures in the ocean currents (Lehahn et al. 2011),
suggesting an important geophysical component to clustering.

The dynamics of buoyant material can be investigated at several levels of complexity.
Beginning with fully three-dimensional models of inertial particles, such as in Reartes &
Mininni (2023), there is an observed tendency for buoyant particles in stratified flows to
settle at the level of their neutral buoyancy. This leads to a situation where vertical motions
of the particles are inhibited, but the material is still passively carried by the flow in the
horizontal plane. For significantly positively buoyant particles, such as some microplastics
(Andrady 2011) and plankton populations (Gross, Zeuthen & Yonge 1948), the floating
material is then trapped at the surface. At this point, the flotsam is carried by the horizontal
surface currents exclusively. This mechanism provides the basis for clustering, since even
incompressible ocean currents can have a divergent horizontal component, which leads
to a weakly compressible flow of floating tracer. On the global scale, it has been argued
that Ekman currents provide the dominant surface convergence, and that these determine
the locations of the so called ‘convergence zones’ of plastic pollution (Onink et al. 2019).
However, at smaller scales, especially at the lower boundary of the mesoscale, we still
observe large gradients of chlorophyll and other tracers (Jordi et al. 2009). At these scales,
there is a small but significant ageostrophic component to the surface flow, which is
naturally divergent, since it is associated with non-zero vertical velocity below the surface.

Geostrophic flows are manifestly non-divergent in the horizontal plane, so cannot be a
direct cause of cluster formation. At the quasi-geostrophic level, which includes all terms
up to order one in the Rossby number, there is a necessary divergent ageostrophic flow that
facilitates the time evolution of the geostrophic component (Gent & McWilliams 1983).
This ageostrophic divergence can be defined through a diagnostic equation in terms of the
geostrophic flow, then used to reconstruct the potential component of the flow. We examine
the dynamics of cluster formation in the geostrophic flow enhanced with this potential
component.

We utilise a Lagrangian approach to model clustering. Advantages of this approach
include preferential resolution of clustered regions, due to the convergence of Lagrangian
paths. It also avoids the inclusion of hyper-diffusivities that are necessary for numerical
stability in grid-based models. These are known to damp clustering and destroy the
spatial structure of clusters (Meacham & Berloff 2023). The Lagrangian approach also
allows for easier inter-comparability with observational studies. Lagrangian coherent
structure metrics, such as the finite time Lyapunov exponent, dilation, and Lagrangian
averaged vorticity deviation (LAVD), are increasingly utilised in an observational setting
(Olascoaga et al. 2013; Huntley et al. 2015; Abernathey & Haller 2018; Rypina et al. 2022).
The LAVD is particularly useful for identifying rotationally coherent vortices, which are
expected to have distinguished transport properties (Haller et al. 2016), while the dilation is
related to the surface divergence of the velocity, so is particularly relevant to the dynamics
of floating tracers.
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Clustering of buoyant tracer in quasi-geostrophy

Building on a series of studies that have investigated clustering in kinematic stochastic
fields (Koshel et al. 2019; Meacham & Berloff 2023, 2024) and deterministic mesoscale
fields with a kinematic, stochastic divergent sub-mesoscale (Stepanov et al. 2020a,b), we
move to a fully dynamical regime. Insights from the kinematic studies will be useful
in our investigation. First, metrics from statistical topography, such as cluster mass and
area (Klyatskin 2003), have proven incredibly effective in characterising spatiotemporal
features of clustering (Koshel et al. 2019). Second, the sensitivity of the clustering process
has been investigated (Meacham & Berloff 2023), showing that poor representation of
temporal statistics can lead to spurious clustering. This motivated the use of offline
velocity fields with very fine time resolution, verified with frequency spectrum analysis.
However, the dynamical fields have a character very different to that of their kinematic
counterparts, because they are dominated by coherent structures. This turns out to be of
great importance for the clustering process.

Combining the clustering metrics with Lagrangian coherent structure techniques reveals
rich dynamics for buoyant particles that are strongly dependent on the temporal coherence
as well as instantaneous flow features. When considering leading-order contributions to
the ageostrophic divergent flow, it becomes evident that the association between clusters
and coherent structures is not just a consequence of the long-time stability but is also
directly related to quasi-geostrophic dynamics.

2. Methods

2.1. Two-layer quasi-geostrophic ocean model
We study the behaviour of floating tracers in an idealised ocean model where we can
generate high-resolution velocity and divergence data. The ocean is a doubly periodic
square basin with side length 3600 km. It is a mid-latitude beta plane with local Rossby
radius of deformation 25 km. In the vertical, there are two layers. The upper layer is shallow
and less dense, with thickness 1 km, while the deeper layer has thickness 3 km. The ocean
is bounded by a rigid lid and a flat bottom boundary. We opt for a quasi-geostrophic model
to set the dynamics of the ocean currents. Quasi-geostrophy is most commonly derived
from an expansion of the fluid variables in increasing orders of the Rossby number (Vallis
2017a). This analysis can be applied in many scenarios, but here it is considered as a limit
of the multi-layer shallow-water equations.

At first order in the Rossby number, the equations for the zeroth-order contributions
(the geostrophic currents) become a closed set. The geostrophic velocity can be expressed
in terms of streamfunctions ψ1 and ψ2 in the upper and lower layers, respectively. The
associated potential vorticity equations are

∂ζ1

∂t
+ J(ψ1, ζ1)+ β

∂ψ1

∂x
= ν ∇4ψ1, (2.1)

∂ζ2

∂t
+ J(ψ2, ζ2)+ β

∂ψ2

∂x
= ν ∇4ψ2 − γ ∇2ψ2, (2.2)

where ζ2, ζ1 are the perturbation vorticities, given by

ζ1 = ∇2ψ1 + S1(ψ2 − ψ1), (2.3)

ζ2 = ∇2ψ2 + S2(ψ1 − ψ2), (2.4)

with the so-called ‘stratification parameters’ S1 and S2, which depend on the density
contrast and height difference between layers. The advection terms are expressed using
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Parameter Description Value

Rd Rossby radius of deformation 25 km
U Upper-layer westward background flow 3 m s−1

f0 Coriolis parameter 7.27 × 10−5 s−1

β Beta parameter 2.0 × 10−11 m−1 s−1

S1 First stratification parameter 1.2 × 10−9 m−2

S2 Second stratification parameter 4.0 × 10−10 m−2

ν Viscosity 5.0 m2 s−1

γ Bottom friction 1.0 × 10−7 s−1

H1 Depth of upper layer 1.0 km
H2 Depth of lower layer 3.0 km
N × N Grid resolution 4096 × 4096
L Domain width 3600 km

Table 1. Parameters relevant to the two-layer quasi-geostrophic system.

the Jacobian, which is defined as

J(ψi, ζj) = ∂ψi

∂x
∂ζj

∂y
− ∂ψi

∂y
∂ζj

∂x
. (2.5)

On the left-hand sides of (2.1) and (2.2), we have the usual advective terms. In addition
to this, on the right-hand sides, we have an ‘eddy’ viscosity in both layers, and a bottom
friction in the lower layer. The viscosity will act to stabilise our numerical solutions, but
will otherwise be negligible. On the other hand, bottom friction will lead to a decay in the
total energy in the system, unless it is resisted by some forcing mechanism. To maintain a
steady turbulent velocity field, we follow the method of Karabasov, Berloff & Goloviznin
(2009). A fixed background shear is imposed by adding a small, but constant westward
current to the upper-layer velocity. In mathematical notation, this is equivalent to applying
the transform

ψ1 → ψ1 − Uy, (2.6)

where y is the Cartesian coordinate in the north–south direction, and U is some negative
constant velocity. A chaotic turbulent flow is then generated because the eddy field draws
energy from the background shear through baroclinic instability (Berloff, Kamenkovich
& Pedlosky 2009). By injecting energy at the largest scale, a sustained energy cascade
develops, which leads to the formation of a mix of cyclonic and anticyclonic vortices. The
upper-layer streamfunction is initialised as a small Gaussian bump, which provides the
simulation with some kinetic energy, allowing baroclinic instability to develop.

The system of (2.1)–(2.4) was integrated using the CABARET numerical scheme as
described in Karabasov et al. (2009). This numerical scheme provides many advantages
for high Reynolds number (turbulent) modelling, due to its conservation properties and low
dispersion. First, there was a 2200 day spin-up period, until a steady state for the various
domain averaged kinetic energies was reached. This was followed by 260 days of high
temporal resolution simulation, which was output at half-day intervals. Some 4096 × 4096
grid points were used for the spatial discretisation, such that the deformation radius was
well resolved. The parameters used for the numerical simulation are summarised in table 1.
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Clustering of buoyant tracer in quasi-geostrophy

From the quasi-geostrophic streamfunctions, we can calculate the geostrophic velocity.
For example, in the upper layer it is given by

(ug, vg) =
(

−∂ψ1

∂y
,
∂ψ1

∂x

)
. (2.7)

In the derivation of the quasi-geostrophic system, higher-order corrections to the
velocity are specifically neglected. Therefore, the total velocity is not available at this level
of approximation. This is problematic from the perspective of a simulation of floating
tracer clustering, since a non-zero potential velocity is required. However, the divergence
of the ageostrophic velocity at first order in the Rossby number is essential to balance the
vertical velocities of the moving layer interface, and can be calculated from the geostrophic
velocities as a result. To demonstrate this, consider the displacement of the interface
between the layers, which can be expressed in terms of the geostrophic streamfunctions:

η = f0
g
(ψ2 − ψ1). (2.8)

As the interface moves deeper, the depth of the upper layer increases. To conserve mass
of fluid in the column, there must be an associated convergent flow. This convergence
can be provided by the ageostrophic flow only due to the non-divergence of geostrophic
velocities. To order one in the Rossby number expansion, the ageostrophic divergence is
given by (Vallis 2017a)

∂ua

∂x
+ ∂va

∂y
= S1

f0

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)
(ψ2 − ψ1). (2.9)

If we further assume that the ageostrophic velocities are purely potential, then this
equation diagnoses the velocity field upon solving the equation

∂2φ

∂x2 + ∂2φ

∂y2 = S1

f0

{
∂

∂t
(ψ2 − ψ1)+ J(ψ1, ψ2)

}
(2.10)

subject to doubly periodic boundary conditions. The potential φ allows us to recover the
ageostrophic velocity:

(ua, va) =
(
∂φ

∂x
,
∂φ

∂y

)
(2.11)

Figure 1(a) shows the energy spectra of the geostrophic (ug), ageostrophic (ua) and total
(ug + ua) velocities in the upper layer, as a function of the magnitude of the wavevector,
k. It can be seen clearly that the geostrophic flow is significantly more energetic than the
ageostrophic flow, as would be expected from the assumptions of the quasi-geostrophic
equations. The energy spectrum of the geostrophic component demonstrates the classic
scaling of two-dimensional turbulence from the Kolmogorov theory (Kolmogorov 1941),
which is also shown in figure 1(a), denoted by ε. This consists of an inverse cascade of
energy towards large scales, associated with a −5

3 spectrum, as well as the direct cascade
of enstrophy in the inertial range, with a power-law spectrum of order −3 (Vallis 2017b).
There is a peak in the spectrum at the Rossby radius of deformation Rd, which is the
scale of the largest vortices. At the lower end of the inertial range, we see the effects of
dissipation and a steep loss of spectral power. The ageostrophic velocity contrasts with
this, as it exhibits a very flat spectrum. In spite of this, the total velocity has a spectrum
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Figure 1. Various spectra from the quasi-geostrophic simulation. (a) Temporally averaged energy spectra for
geostrophic (ug), ageostrophic (ua) and total (ug + ua) velocities. (b) The scale-dependent Rossby number,
which is the square root of the ratio of the ageostrophic energy spectrum to the geostrophic energy spectrum.
The vertical dashed line in (a,b) denotes the wavelength associated with the deformation radius (Rd). (c) The
frequency power spectrum of the geostrophic velocity and the ageostrophic divergence. (The vertical axis on
the left-hand side is for the power spectral density (PSD) of ug, and the vertical axis on the right-hand side is
for the divergence ∇ · ua.) The vertical dashed line shows the per day frequency. (d–f ) Zoomed-in plots of the
upper-layer streamfunction ψ1, displacement of the layer interface η, and the ageostrophic divergence ∇ · ua,
respectively. The domain is chosen to contain a coherent cyclone (upper half) and coherent anticyclone (lower
half).

that is almost indistinguishable from the geostrophic flow. However, it also lies below the
geostrophic spectrum, implying that the ageostrophic flow acts against the geostrophic
currents on average.
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Clustering of buoyant tracer in quasi-geostrophy

By taking the square root of the ratios of the energy spectra of the ageostrophic to
geostrophic components, we can define a scale-dependent Rossby number Rok, which is
shown in figure 1(b). At the deformation radius and above (for k < 1/Rd), this number
is vanishingly small. As we move from the ‘mesoscale’ of the system towards the
‘sub-mesoscale’, the Rossby number approaches unity, implying that there is a strong
potential component at smaller scales. Averaging over all scales leads to Rossby number
0.21, which represents a significantly ageostrophic system, contrasting with the global
Rossby number of approximately 0.015.

The energy spectra of turbulent flows as a function of wavenumber have been studied
extensively in a range of settings (Kolmogorov 1941; Rhines 1979; Tulloch & Smith 2006;
Callies et al. 2015; Cosentino, Simon & Morales-Juberías 2019). Temporal spectra are
often neglected, and there is generally less interest in quantifying the typical time scales
of variability. Previous studies of buoyant and inertial particle clustering have shown
that resolving these time scales is essential to accurate modelling. This is because the
concentration of buoyant tracer depends on the whole time history of divergence along
Lagrangian paths, so it is sensitive to related errors. In particular, overestimating time
correlations by using poor temporal interpolation has been shown to lead to spurious
clustering (Meacham & Berloff 2023).

To ensure that we have resolved all relevant time scales, frequency power spectral
densities were calculated for the geostrophic velocity and ageostrophic divergence, and
these are shown in figure 1(c). For the half-day sampled high-resolution velocity data, the
high-frequency power is several orders of magnitude smaller than the slowest frequencies.
This implies that all time variability has been resolved satisfactorily at this sampling rate,
so the data are sufficient for the clustering study. Notably, the spectrum of the ageostrophic
divergence is skewed towards lower frequencies compared to the geostrophic velocity. This
is opposite to the trend observed in the spatial spectra, but with a simple explanation.
In the quasi-geostrophic model, the large-scale structures, such as the geostrophic vortices,
are the ones that excite a significant ageostrophic response. This response is at smaller
scales than for the generating structures, but inherits the slow time variability. Hence
the mesoscale forcing produces compressible sub-mesoscale velocities. This can be seen
qualitatively from snapshots of the various fields of the quasi-geostrophic simulation.
Figures 1(d–f ) show the streamfunction ψ1, the layer interface displacement η, and the
ageostrophic divergence ∇ · ua, respectively, around a pair of coherent vortices. The
anticyclone in the lower half has a strong core of rotational geostrophic velocity (which
can be seen in figure 1d), and coincides with a deepening of the layer interface (shown in
figure 1e). The response in the ageostrophic divergence field is a small region of divergence
that lies predominantly on the boundary of the vortex. The cyclone in the upper half is the
same but reversed, with a shallow upper layer and a strong convergent region. Compared
to the first two fields, the regions of non-zero divergence are clearly separated from the
non-divergent background. This demonstrates how the ageostrophic response is tied to the
large scales of the geostrophic field.

2.2. Lagrangian particle model
We perform two separate Lagrangian simulations in our quasi-geostrophic velocity field.
One simulation represents the dynamics of buoyant tracers, which follow both the
geostrophic and leading-order ageostrophic surface flow. The other simulation involves
only the geostrophic flow, and is used to detect the coherent vortices in the simulation.
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For the purposes of these simulations, we take the upper-layer quasi-geostrophic
velocities to also represent the surface velocity. This is consistent with the
discretisation of the vertical structure into distinct layers in the derivation of a layered
quasi-geostrophic system. Limited vertical variation within each layer of velocity and other
characteristics is implicitly assumed for this model reduction to be valid. In the real ocean,
limited vertical variation in mesoscale properties is expected within the mixed-layer depth
(Kara, Rochford & Hurlburt 2003; Vallis 2017c). We require the surface velocity to model
floating tracer, since it is assumed that it resides almost exactly at the surface due to the
effect of positive buoyancy.

2.2.1. Buoyant tracers
We consider buoyant particles that are trapped at the top surface of the upper layer, but
which follow horizontal flows passively. This represents a reduction of the advection
problem to two dimensions, where the buoyant particles follow the surface Lagrangian
paths. This is a commonly used approximation for the modelling of such material
(Maximenko et al. 2012; Koshel et al. 2019; Stepanov et al. 2020a,b; Vic et al. 2022;
Maalouly et al. 2023; Meacham & Berloff 2023, 2024). Since the geostrophic flow is
horizontally non-divergent, it cannot lead to clustering of buoyant tracer. We construct
a velocity field that contains the leading-order contributions to both the solenoidal and
potential flows. The path of a particle in this flow satisfies

d
dt

x(t; x0) = ug(x(t; x0), t)+ ua(x(t; x0), t), (2.12)

x(0; x0) = x0, (2.13)

where ug and ua are specifically the upper-layer geostrophic and ageostrophic velocities.
The construction of the upper-layer surface velocities ug and ua is described in § 2.1.

Additionally, we consider the concentration of buoyant tracer in this flow:

∂C
∂t

+ ∇ · ((ug + ua)C) = 0, (2.14)

where ∇ = (∂/∂x, ∂/∂y) is the horizontal gradient operator. This is simply the
conservation of tracer mass, following the particle paths. It can be expressed as a material
derivative along paths:

d
dt

C(x(t; x0), t) = −C(x(t; x0), t)∇ · ua(x(t; x0), t). (2.15)

Solving this equation in conjunction with (2.12)–(2.13) allows us to reconstruct the
concentration field of buoyant tracer from an ensemble of Lagrangian particles.

We initialise a regular grid of these buoyant tracer particles in the upper layer of the
quasi-geostrophic flow. Each particle begins with unit concentration. We then integrate
(2.12) and (2.15) in time for each particle using the pseudo-symplectic Runge–Kutta
algorithm.

2.2.2. Virtual particles and coherent structures
Motivated by observations, we know that the spatial distribution of floating material
is strongly linked to large-scale flow structures such as geostrophic vortices and
jets (Brach et al. 2018). Geostrophic velocities are some of the most readily available
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Clustering of buoyant tracer in quasi-geostrophy

observations in oceanography, thanks to satellite altimetry (Park 2004; Sánchez-Reales
et al. 2012; Doglioni et al. 2023). As a result, it makes sense to try to understand
the observed distributions in terms of the geostrophic velocity alone. Observations of
sub-mesoscale currents are always improving, and this is a very active area of research.
Measurements of large surface divergences exist, but these measurements are often local,
provided by drifter estimates or mooring arrays (Callies, Barkan & Garabato 2020; Zhang
et al. 2021) that are naturally limited in scope compared to the global coverage of
mesoscale current data.

In the quasi-geostrophic setting that is our focus, the divergent velocity is simply a
perturbation to the stronger non-divergent flow. This can be verified from the kinetic
energies contained in each component, as shown in figure 1. While the surface divergence
is a necessary condition for clustering, we can still expect that the distribution and spatial
extent of clusters will largely be set by structures in the non-divergent flow. First, this is a
consequence of the relative strength of the two components. Second, it also relates to the
fact that the divergent ageostrophic flow in quasi-geostrophy does not undergo separate
dynamics, but is instead entirely determined by the geostrophic currents.

Temporal dynamics of the velocity field have been shown to be crucial in determining
clustering, even in stochastic kinematic models with limited coherence (Meacham &
Berloff 2023). This is because the concentration of a particle depends on the entire time
history of divergence along the Lagrangian path, not just the instantaneous value. In the
dynamical setting considered here, there are long-lived coherent structures that will have
a large imprint on temporally averaged quantities, even if the instantaneous strength of
divergence is small.

To identify coherent vortices in the geostrophic flow, we follow the LAVD method of
coherent structure detection (Haller et al. 2016). This is an objective (frame-independent)
method that identifies closed material curves that are minimally deformed over time.

We solve the following equations, for an ensemble of initial conditions x0:

d
dt

y(t; x0) = ug(y(t; x0), t), (2.16)

y(0; x0) = x0, (2.17)

LAVD(t, x0) =
∫ t

0
dτ [ω(y(τ ; x0), τ )− ω̄(τ )], (2.18)

where ω = ∂vg/∂x − ∂ug/∂y is the relative vorticity of the geostrophic velocity, and ω̄(t)
is the domain averaged vorticity at time t. This is the LAVD as defined in Haller et al.
(2016); however, we can simplify calculations in our case because the domain averaged
vorticity in this scenario is always zero. Once we have constructed the LAVD field as a
function of the initial conditions, we look for stationary points in this field. The Lagrangian
path y that is initialised at a stationary point is then the vortex centre. Finally, we look
for the outermost contour of the LAVD field around each vortex centre that is minimally
deformed over the full length of the quasi-geostrophic simulation (260 days in this case).
We first find the outermost closed contour of the initial LAVD field. After advecting this
contour as a material curve in the geostrophic velocity for the full 260 days, we find the
convex hull of the final curve. If the area of the convex hull is significantly larger than
the initial area, then this implies that filamentation has occurred, and the contour is not
coherent. We find the outermost closed contour for which the change in area is below a
tolerance parameter that can be chosen, and identify this contour as the vortex boundary.
The method of choosing the boundary is relatively unimportant because the edge of each
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Figure 2. (a) The LAVD over the full 6-month model run. Red curves show the cyclonic vortex boundaries,
and black curves show anticyclonic boundaries on the first day. (b) Trajectories of the 15 coherent vortices
detected using the LAVD method. Red trajectories correspond to cyclones, and black to anticyclones. Vortices
begin at circular markers and finish at crosses. Each vortex has been assigned an index in order of their LAVD
magnitude at the vortex core. (c) Deviation of the vortex core depth from the stationary depth of the upper
layer, averaged over cyclones (red curve) and anticyclones (black curve).

vortex is clearly associated with a rapid decrease in LAVD. As a result, most methods will
identify similar boundaries. Figure 2 shows the LAVD field computed with a 1000 × 1000
grid of virtual particles, as well as the vortex boundaries of 15 coherent vortices that were
observed in our model. Figure 6 below shows the evolution of a large cyclonic vortex, with
the concentration field of particles inside the vortex boundary.

2.2.3. Lagrangian numerical schemes
In order to integrate the Lagrangian paths and concentration, a six-step pseudo-symplectic
Runge–Kutta algorithm was implemented, as constructed in Aubry & Chartier (1998). The
six-step method is third-order accurate in time, but preserves the area of material volumes
with sixth-order accuracy. This is a desirable property, since it ensures that there is limited
numerical diffusion of particles by the non-divergent flow. It is especially relevant to the
virtual particles used to construct the LAVD field, since we expect the area of vortices to
be conserved.
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Clustering of buoyant tracer in quasi-geostrophy

To evaluate gridded velocity and divergence data at particle positions, we use linear
interpolation in space and time. The 4096 × 4096 resolution of the velocity field means
that higher-order interpolations are unnecessary, although cubic interpolation has also
been implemented, and it was found that there is a negligible effect on the results of the
clustering simulation. Similarly, the temporal sampling time (0.5 days) is much shorter
than the temporal variability of the flow, as can be seen in figure 1(c). The spectral power
at the sampling frequency is five orders of magnitude smaller than the peak.

For the clustering simulation, 16 × 106 particles were initialised in a square grid,
whereas 106 virtual particles were used in the LAVD calculation. A large number of
particles is needed once clustering can occur in order to resolve the voids for long periods
of time.

2.3. Clustering measures
Methods from statistical topography have been applied to the clustering of floating tracers,
mostly in the context of tracers in stochastic kinematic velocity fields (Klyatskin 2003;
Koshel et al. 2019; Stepanov et al. 2020a,b). Two important quantities used to characterise
the rate of clustering are the cluster mass and area, which are defined as

M(t, C̄) =
{∫

d2x0 C(x0, 0)
}−1 {∫

d2x0Θ(C(x(t; x0), t)− C̄)
}
, (2.19)

S(t, C̄) =
{∫

d2x0 C(x0, 0)
}−1 {∫

d2x0
Θ(C(x(t; x0), t)− C̄)

C(x(t; x0), t)

}
, (2.20)

where Θ is the Heaviside step function, and x(t; x0) are the buoyant tracer particles
as defined in § 2.2.1. The cluster mass M(t, C̄) measures the quantity of tracer that has
clustered above concentration C̄, whereas the cluster area measures the area bounded by
C̄ isolines of the concentration field. Expressed as an integral over the initial conditions,
these quantities are readily calculated using the Lagrangian data from our simulations.
Observations of stochastic potential flow show exponential clustering, and this is also
expected from the analytical asymptotic theory. In an exponential clustering process,
M(t, C̄) → 1 and S(t, C̄) → 0 as t → ∞ for any C̄, leading to the creation of point-like
singular clusters. The presence of a solenoidal field can slow the process, but it is still
generally exponential in character (Koshel et al. 2019).

To isolate the contribution of the coherent vortices to the clustering process, we can
restrict the cluster mass and area to the vortex cores,

MV(t, C̄) =
{∫

d2x0 C(x0, 0)
}−1

×
{∫∫

d2x0 d2y0Θ(C(x(t; x0), t)− C̄)Θ(x(t; x0)− y(t; y0))

}
, (2.21)

and similarly for the cluster area,

SV(t, C̄) =
{∫

d2x0 C(x0, 0)
}−1

×
{∫∫

d2x0 d2y0
Θ(C(x(t; x0), t)− C̄)

C(x(t; x0), t)
Θ(x(t; x0)− y(t; y0))

}
, (2.22)
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where the integral over y0 is over all initial positions inside the vortex boundaries, and
y(t; y0) is a Lagrangian path following just the geostrophic velocity as in § 2.2.2.

To investigate clustering in individual coherent vortices, we can look at the total mass
inside the vortex boundary. In terms of Lagrangian particles, this is

Mi(t) =
∫
D0

∫
Ai

d2x0 d2y0Θ(x(t; x0)− y(t; y0)), (2.23)

where Ai is all initial conditions y0 inside the ith vortex boundary at time t = 0, and D0 is
all initial conditions within the doubly periodic domain x0.

3. Results

After the initial spin-up period, the geostrophic virtual particles were introduced to the
developed turbulence in a uniform grid of 1000 × 1000 particles. The LAVD field was
calculated over 260 days of Lagrangian integration in the high temporal resolution velocity
field. Using the method described in the previous section, 15 coherent vortices were
detected that existed at the beginning of the high-resolution dataset. Of these, there
were four anticyclones and eleven cyclones. Figure 2(a) shows the initial boundaries of
the vortices superimposed over the LAVD field. Each vortex is assigned an index that
corresponds to the size of the LAVD signal at the vortex core (i.e. vortex 0 is the largest
vortex in terms of LAVD magnitude, and vortex 14 has the smallest magnitude). While
additional peaks in the LAVD field can be seen, they were not associated with a coherent
material curve that survived until the end of the simulation. We are restricting our analysis
to the most coherent vortices that survive over the whole period of simulation.

The vortex core point is always inside the material vortex boundary by definition. We
can use the layer depth at the core as a indicator of the strength of the vortex. Figure 2(c)
shows the vortex core depth over the course of the simulation, averaged separately over
anticyclonic and cyclonic vortices. From this, we can see that the initially strong vortices
decay quickly, in spite of their material coherence. The majority of the vorticity is shed in
the first 80 days of the simulation.

In addition to the geostrophic particles, we introduce the buoyant tracer particles to
the upper layer in a uniform grid of 4000 × 4000 particles, each with unit concentration.
We then run the Lagrangian scheme for 260 days. We observe dense clusters on cyclonic
vortices, whilst the anticyclones tend to clear particles from their orbit, leading to the
formation of sparse voids. Figure 3 shows the concentration field after the first 60 days
of the floating tracer Lagrangian simulation. Clearly, we can see the formation of spiral
clusters centred on point-like cores, which are very reminiscent of vortex structures. It is
this distribution of material that motivates an investigation of the relationship to the
coherent vortices. We will show through the use of clustering metrics and the results
of the LAVD analysis that the densest clusters are directly associated with the most
coherent vortices. The largest cyclone (vortex 0) contains almost 50 times its initial mass
at the end of the simulation; meanwhile, the largest anticyclone (vortex 1) expels all 2500
particles inside its boundary within the first 60 days of the simulation. This can be seen
in figures 4(a–d), which contain all the vortex masses for each individual coherent vortex.
Figures 4(a–c) show the cyclonic vortices, whereas figure 4(d) shows the anticyclonic
vortices.

Figure 5(a) shows the ratio of vortex cluster mass MV to total cluster mass M, as
defined in § 2.3. The total area of the coherent vortices is approximately 5 % of the
domain area. However, for larger concentration reference values C̄, the vortices dominate
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Figure 3. The concentration field over the whole domain after 60 days of the floating tracer Lagrangian
simulation.

the distribution. For the first 100 days of the simulation, between 80 % and 100 % of
particles with concentration over C̄ = 100.0 lie in the detected vortices. This share decays
over the course of the simulation, but slowly. Even after the full 260 days, more than 75 %
of the areas of highest concentration lie within the material boundaries. This is in spite
of the decay of the vortices and the emergence of new vortices that are not considered in
our methodology. The overall trend, observable in figure 4, is that cyclones form clusters,
whereas anticyclones form voids. This is the same trend that has been observed in other
studies (Vic et al. 2022; Maalouly et al. 2023). Examples of this behaviour are shown in the
supplementary movies (https://doi.org/10.1017/jfm.2024.1229), which show the evolution
of the concentration field following a handful of coherent vortices. However, it cannot
be the whole explanation, since there are notable exceptions. Vortex 6 is a cyclone, yet
it is initially expelling tracer, and ends the simulation as a weak cluster. Figure 6 shows
six snapshots of the concentration field inside vortex 6. The first two snapshots show the
creation of a weak void, before material begins to spiral in to the centre, with a chirality
that matches the cyclonic rotation. Vortex 11 is a cyclone that undergoes multiple phases
of expulsion and clusterisation. Figure 7 demonstrates this. Vortex 11 clearly forms the
ubiquitous spiral cluster in the first four snapshots, before rapidly voiding in the fifth (at day
200). It then forms a new cluster in the final two snapshots, in a way that is consistent with
the vortex mass calculation (figure 7). For the anticyclones, the majority (three out of four)
end up as voids. However, vortex 7 ends up as a weak cluster, and vortex 10 initially clusters
up to approximately day 50, before it expels all its particles in the remaining time. Figure 8
shows the evolution of the buoyant tracer concentration inside vortex 7. Material initially
accumulates at the boundary, as tracer is pushed out from the centre, before spiralling
back into the vortex in a spiral with the opposite chirality to the cyclonic clusters. This
cluster is also distinct from the cyclonic counterparts because it retains the local minimum
at the centre of the cluster, as opposed to a local maximum. Figure 9 shows vortex 10,
which initially attracts a small amount of material to its boundary, before rapidly expelling
all particles. What these particular vortices demonstrate is that the association between
vortex sign and cluster formation is more complicated than we may initially expect.
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Figure 4. Mass curves for buoyant tracer inside vortex boundary normalised by the initial mass in the vortex,
for (a–c) cyclones, and (d) anticyclones.

To understand the relation between vortex evolution and cluster/void formation, we can
examine the dynamics behind the potential ageostrophic circulation. Consider a coherent
vortex that occupies an area A(t) at time t, with boundary ∂A(t). We can define a flux
function of buoyant material into the vortex by integrating the ageostrophic velocity around
the boundary:

F(t) =
∮
∂A(t)

ua · n ds, (3.1)

where the boundary has been parametrised by s, and n is the normal to the boundary. From
here, we can see that F > 0 corresponds to floating tracer leaving the boundary (voiding),
whereas F < 0 corresponds to an accumulation of material (clustering). Applying the
two-dimensional divergence theorem to this integral, and substituting for the diagnostic
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Figure 6. Snapshots of the concentration field around and within vortex 6 (a cyclone) at 10, 50, 100, 150, 200
and 250 days, moving clockwise from (a) at the top left to ( f ).

equation for the ageostrophic divergence (2.9), leads to

F(t) =
∫

A(t)

S1

f0

D
Dt
(ψ2 − ψ1) dA, (3.2)

where D/Dt is the material derivative with respect to the geostrophic velocity.
Additionally, using the potential vorticity equation in the upper layer (ignoring the viscous
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Figure 7. Same as figure 6, but for vortex 11 (a cyclone).
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Figure 8. Same as figure 6, but for vortex 7 (an anticyclone).

term) will allow us to eliminate any dependence on the lower-layer velocities, i.e.

F(t) = −
∫

A(t)

[
Dω1

Dt
+ β

∂ψ1

∂x

]
dA, (3.3)

which then further simplifies using the fact that ∂A(t) is a material curve with respect to
the geostrophic velocity:

F(t) = − d
dt

∫
A(t)
(ω1 + f0 + βy) dA. (3.4)
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Figure 9. Same as figure 6, but for vortex 10 (an anticyclone). Some plotting artefacts can be seen within the
vortex core in (e, f ), because the concentration field is being reconstructed from its values known only at the
Lagrangian particle locations, and there are no particles within the vortex. This means that there is no resolution
of the anticyclone vortex core.

As a result of this, it becomes clear that the clustering behaviour of a vortex is largely
determined by the rate of change of absolute vorticity in its interior. In particular, strong
cyclonic vortices will expel floating tracer as they spin up, but will accumulate material
as they spin down. Due to having the opposite sign for vorticity, anticyclonic vortices will
accumulate material as they spin up, and expel as they spin down. This clearly explains
the observed behaviour, since we can see from figure 2 that all the coherent vortices are
weakening on average, so cyclones are in a clustering state, and anticyclones are in a
repulsive state. However, this is different to a statement that cyclones are clusters and
anticyclones are voids. Instead, the observations are as much a consequence of initialising
a uniform concentration field in an established velocity field where the state of the vortices
has already been set. By considering the time-reversal symmetry of quasi-geostrophy, we
might expect that cyclones and anticyclones will spend a comparable amount of time as
clusters and voids over a large enough number of realisations, since they map to each other
under the action of the symmetry. The different behaviours of the two structures are simply
due to the fact that a time-reversed cluster is a void, and vice versa. If we include more
complex geophysical considerations, such as next-order corrections to quasi-geostrophy,
an asymmetry between cyclones and anticyclones will develop (Maalouly et al. 2023).
While these dynamics may have significant consequences for the clustering process, our
results show that this asymmetry is not required to observe the expected behaviour.

The above consideration may also help to explain why LAVD detection methods so
effectively identified the regions of most intense clustering, since areas with high LAVD
values have experienced large changes in vorticity, associated with intense clustering.

4. Discussion

Our results imply that coherent vortices defined through Lagrangian averaged vorticity
deviation (LAVD) will be efficient transporters of floating material for reasons beyond

1003 A16-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1229


J. Meacham and P. Berloff

coherence itself. These structures do more than simply move existing inhomogeneities
in the distribution of material for long times. They also have the potential to create
inhomogeneities by attracting material in one location before shedding it in another.
In fact, our results show an incredibly powerful ability of these vortices to ‘vacuum’ up
surrounding floating tracer, with interior concentrations often hundreds of times greater
than their surroundings.

We have observed a novel relationship between the direction of spin of a coherent
vortex and its clustering behaviour. In particular, both cyclones and anticyclones have
an equal propensity for forming clusters and voids of material. A single vortex can also
change its behaviour depending on its evolution and whether it is growing or decaying.
Specifically, anticyclones cluster as they grow and expel as they decay, with the opposite
relation for cyclones. We argue that this is a natural consequence of the symmetry
of quasi-geostrophy, but it still has implications for more complex models, where the
tendency is to look for a direct, rather than dynamic, relationship between vortex sign and
clustering. Looking towards more realistic scenarios, this will likely have consequences
for the distribution of material in the open ocean. For example, enhanced flow of floating
tracer in the western boundary currents could be expected. Boundary currents, such as the
Agulhas current, contain strong, energetic and coherent geostrophic vortices (Beron-Vera
et al. 2013; Casanova-Masjoan et al. 2017). These are prime candidates for the kind of
cluster formation that we have observed here, especially since they form along coasts,
which are naturally areas of high concentration of both marine populations and ocean
pollutants (Lehahn et al. 2011). Our results would suggest that anticyclonic vortices form
at the region of retroflection of the current, just south of the African coastline. Here, they
will pick up material in their vicinity. Then, as they move eastwards into the open ocean
of the southern Atlantic, they may rapidly expel this material. This would constitute a
significantly stronger transport pathway from the plankton- and pollutant-rich coastlines
to the ocean interior than with passive transport.

The relevance of LAVD to floating tracers also allows for reinterpretation of existing
observations, in terms of the potential for clustering and buoyant tracer transport. For
instance, in Rypina et al. (2022), both the LAVD and dilation were calculated for
an approximately 11 km × 11 km array of floating drifters. Dilation is defined as the
Lagrangian averaged divergence. If we separate variables and integrate (2.15) in time, then
we see that the concentration of floating tracer is simply the exponential of the negative of
the dilation:

C(x(t; x0), t) = C0 exp
(

−
∫ t

0
dτ ∇ · u(x(τ ; x0), τ )

)
. (4.1)

The LAVD and dilation, whilst not entirely coincident in this experiment, were found
to identify similar coherent regions. Although there will be an impact of many additional
processes not included in our idealised model, this would be consistent with our own
observations in the numerical setting.

If the characteristics of clustering observed here remain robust as we move to more
realistic modelling, then the theory of how and where these clusters should form could
aid in observation and removal efforts of plastic waste in the open ocean. The order of
magnitude variations in concentration observed here imply that there is room for more
efficient searching strategies for such waste, which could be defined in terms of ocean
current data, and perhaps even Lagrangian coherent structure detection will be of use
here. Methods from statistical topography, particularly cluster mass and area statistics,
have allowed us to exactly quantify how much of the clustering is due to the presence of
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the coherent structures. That only 5 % of the domain can contain the majority of regions
of concentration over 10 times the initial concentration (and 100 % of the regions over
100 times the initial concentration) is a remarkable result that indicates the importance of
these features in determining the distribution of floating tracers. That many vortices ended
the simulation with 10–100 times the mass of tracer with which they were initialised is
surprising for a low Rossby number, near geostrophic system. However, it is clear that
even the mesoscale ocean weather systems can significantly contribute to the formation of
clusters in ocean flotsam.

Our results can motivate the definition of new identification metrics for coherent flow
structures that specifically relate to their ability to accumulate floating tracer. For instance,
we have used LAVD, which is an integral of vorticity over time, to identify coherent
structures. However, (3.4) shows that clustering of floating tracer is more closely related
to the change in vorticity along a Lagrangian path, so considering this quantity might lead
to a more successful metric. Additionally, we may consider an LAVD metric that includes
the contribution of the β terms to the absolute vorticity.

We can also consider other flow regimes of the quasi-geostrophic model, such as the
jet-dominated (Berloff et al. 2009) or oceanic gyre (Karabasov et al. 2009) solutions.
These contain coherent jets and westward boundary currents respectively, and may exhibit
unique clustering of floating tracer. Baroclinic vortex pulsar solutions can also provide
a more detailed model of vortex–wave interactions, which leads to novel evolution of
non-isolated coherent vortices (Berloff & Sutyrin 2024). Given the strong dependence
of clustering on the evolution of coherent vortices seen in this work, we may be able to
gain more insight into vortex clustering in such a solution. Exploring each of these regimes
individually can aid in building a more comprehensive picture of clustering in the marine
environment, as each of these quasi-geostrophic coherent structures has analogues in real
ocean currents.

Having built up from kinematic, stochastic models of turbulence (Koshel et al. 2019;
Meacham & Berloff 2023) to a fully dynamical model of ocean currents, we have observed
similar behaviour in terms of the global cluster mass and area statistics. This implies that
there is a similar exponential clustering process. However, the existence of the temporal
coherence changes the spatial character of the clusters, and leads to more intense clustering
at the extreme end of the concentration distribution. Given that these results from the
kinematic studies have proved to be robust, we might expect that other properties will
also carry over to the dynamic model. In Meacham & Berloff (2024), it was shown that
coextensive clustering between different floating species can lead to enhanced reaction
rates between them. Even for a weak clustering process, it can alter the global equilibria
of a system, motivating further study in this direction.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1229.
The codebase used to generate the Lagrangian data is available at https://doi.org/10.5281/zenodo.10566878
(Meacham 2024).
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Appendix. Floating tracer equations

In this paper, we have considered an idealised model of the distribution of floating material
carried in oceanic surface currents. In this model, the dynamics of a two-dimensional
concentration field of floating tracer is described by an ensemble of particles that
follow the horizontal surface flow passively, but retain a fixed depth just below the
ocean surface. This regime is distinctly different to a traditional passive tracer, which
follows the full three-dimensional ocean currents. Passive tracer will not form clusters
in an incompressible three-dimensional velocity field, since any regions of surface
divergence/convergence will be matched with an associated upwelling/downwelling
vertical velocity, respectively. In contrast, floating tracer will accumulate at regions of
persistent downwelling, due to convergence of the surface currents leading to the formation
of dense clusters.

Floating tracer and passive tracer can both be considered a limit of the dynamics of
finite size particles submerged in a fluid. The only difference is that the positive buoyancy
of the former material in seawater leads to it overcoming vertical ocean velocities and
becoming trapped in a thin layer just below the ocean surface. The motion of a spherical
particle in unsteady ocean currents is described by the Maxey–Riley equations (Maxey
& Riley 1983). This system of equations describes the forces on a particle due to drag
and buoyancy, and those related to the formation of a flow around the particle. The
Maxey–Riley equations derive from Newton’s second law, and as such are second-order
differential equations in time. To recover both passive and floating tracer dynamics from
the full description of an inertial particle, we can appeal to the slow-manifold solution,
which gives an approximate expression for the particle velocity. This can be used to
solve for the particle trajectories. The solution expresses the difference between the
particle velocity v and the fluid velocity u algebraically. After non-dimensionalisation,
the equations read as

v = u + St
R

(
3
2

R − 1
) (

Du
Dt

+ 1
Ro

k̂ × u − 1
Fr2 k̂

)
, (A1)

where R = 2mf /(2mf + mp) is the buoyancy parameter. The particle mass is mp, while
the mass of fluid displaced by the particle is mf . If we have a neutrally buoyant particle,
then the prefactor on the inertial corrections becomes identically zero since mp = mf . This
is how we recover the passive tracer behaviour where the particle and fluid velocities are
identical.

The central idea behind floating tracer is that it is positively buoyant in the surrounding
fluid, i.e. mp < mf . Whether or not this leads to distinct behaviour depends on the values
of the dimensionless Froude, Stokes and Rossby numbers:

Fr = U√
gL
, (A2)

St = 2
9

(a
L

)2 UL
ν
, (A3)

Ro = U
fL
. (A4)

For a microplastic particle in a mesoscale oceanic flow, we can make a few order of
magnitude estimates. First, a typical Froude number for the mesoscale could be Fr ∼ 10−4

(for U = 10 cm s−1 and L = 10 km). A typical Rossby number is Ro ∼ 0.01. Observational
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studies often classify any plastic particle with a radius of less than 5 mm as a microplastic
particle, in which case the Stokes number is St ∼ 10−6. The buoyancy prefactor is
(3

2 R − 1) ∼ 10−2. The Stokes number is small enough that we may ignore most of the
inertial corrections. However, if we restrict our attention to the vertical component, then
we see an overall order of magnitude 1 for the buoyancy term; meanwhile, the vertical
velocity of the mesoscale is at least Ro times smaller than the horizontal velocities due
to the dominance of the geostrophic currents. This means that the positive rise velocity
is about one hundred times larger than the vertical ocean current velocity. This leads to a
situation that has been observed in oceanic marine litter, in which the vertical distribution
of buoyant plastics is largely determined by rise velocity (DiBenedetto et al. 2023).
This study empirically determined rise velocities of the order of 10−2 m s−1, compared
with typical ocean vertical velocities at the mesoscale 10−6 m s−1 (Liao et al. 2022).

It is in this limit that we recover the two-dimensional model that has been considered
here. The buoyant plastics naturally rise towards the ocean surface, but more realistically
maintain some depth beneath the surface due to microscale turbulent mixing. The
buoyancy acts as a restoring force that resists vertical velocities, such that only the
horizontal velocities are followed. We can then model this floating tracer by integrating the
Lagrangian paths in the horizontal surface velocities alone, which are naturally convergent.
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