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The Characteristic Numbers
of Quartic Plane Curves
Ravi Vakil

Abstract. The characteristic numbers of smooth plane quartics are computed using intersection theory on a
component of the moduli space of stable maps. This completes the verification of Zeuthen’s prediction of
characteristic numbers of smooth plane curves. A short sketch of a computation of the characteristic numbers
of plane cubics is also given as an illustration.
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1 Introduction

The nineteenth century work on finding the characteristic numbers of families of
curves of higher degree is rich and lovely. Understanding it well enough to vindicate
it and continue it, is possibly the most important part of Hilbert’s fifteenth problem
remaining open. — [FKM, p. 193]

1.1

The classical characteristic number problem for smooth plane curves (studied by Chasles,
Zeuthen, Schubert, and other geometers of the nineteenth century) is: how many smooth
degree d plane curves curves are there through a fixed general points, and tangent to b
fixed general lines (if a + b =

(d+2
2

)
− 1)? The success of earlier geometers at correctly

computing such numbers (and others from enumerative geometry), despite the lack of a
firm theoretical foundation, led Hilbert to include the justification of these methods as
one of his famous problems. (For a more complete introduction to the history of such
problems, see [K] and S. Kleiman’s introduction to [S].)
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H. G. Zeuthen predicted the characteristic numbers of curves of degree at most 4. Only
with the advent of Fulton-Macpherson intersection theory have these numbers begun to be
verified. The characteristic numbers of the complete cubics were rigorously calculated by
P. Aluffi [A1] and S. Kleiman and R. Speiser [KSp], and the first ten characteristic numbers
of the smooth quartics were computed by Aluffi [A2] and van Gastel [vG].

It is interesting to compare the results and calculations with those of Zeuthen (Sec-
tion 9). Although we use quite a different compactification, unlike many other modern
solutions of classical enumerative geometry problems (such as the charactersitic numbers
for twisted cubics), the calculations are “similar”. They give a modern verification, not only
of these classical numbers, but, at least to some extent, also of a classical approach.

1.2 Sketch of Method

The classical approach is to interpret the problem as the intersection of divisors (corre-
sponding to the incidence and tangency conditions) on the parameter space of smooth
curves, an open subvariety of a projective space. A “good” compactification must be given
(hopefully smooth, e.g. [A1], at least in codimension 1), and it must be checked that there
are natural divisors on the compactification that intersect (transversely) only in the open
set corresponding to smooth curves.

The method used here is as follows. Kontsevich’s moduli space of stable maps gives us
a compactification of the space of smooth quartics. (Explicitly: take the normalization
of the component of the moduli stack corresponding generically to closed immersions of
smooth curves.) Morally speaking, this compactification is “good” in the sense described
above because in a concrete sense, each stable map to P2 is tangent to only a one-parameter
family of lines, so the excess intersection problems of the Hilbert scheme approach do not
arise.

This compactification is birational to the parameter space P14 of smooth quartics, on
which we have divisorsα ′ (corresponding to curves through a fixed point), β ′ (correspond-
ing to curves tangent to a fixed line), and∆ (corresponding to nodal curves), and

β ′ = 6α ′, ∆ = 27α ′.(1)

There are analogous divisors α, β, ∆0 on the compactification, and equations (1) re-
main true when “lifted” to the compactification, modulo “boundary divisors”. The rele-
vant boundary divisors are determined (Sections 4 and 5), and many of their co-efficients
in the “lifts” of (1) are found using one-parameter test families (Section 6). The intersec-
tions of the boundary divisors with cycles of the form αaβ13−a (0 ≤ a ≤ 13) are calculated
(up to two unknowns, Section 7). Then (the “lifts” of) the equations (1) are intersected
with αaβ13−a, giving a large number of linear equations in the unknowns (including the
characteristic numbers), which can be solved (Section 8). The characteristic numbers agree
with Zeuthen’s predictions. For example, there are 23,011,191,144 smooth plane quartics
tangent to 14 general lines.

Section 3 is a self-contained example of this approach, giving a sketch of a quick calcu-
lation of the characteristic numbers of smooth plane cubics.
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1.3

In summary, this paper resolves a problem of long-standing interest by a classical approach,
but using beautiful modern machinery, the theory of stable maps. If the measure of a new
idea is its ability to shed light on areas of previous interest, then this is yet another example
of the power of Kontsevich’s moduli space of stable maps.

1.4 Acknowledgements

The author is grateful to W. Fulton and B. Hassett for independently suggesting this prob-
lem, and for useful comments. He also thanks A. J. de Jong and T. Graber for many fruitful
discussions, and J. Black and V. Vourkoutiotis for translating parts of [S]. Fulton and J. Har-
ris made a helpful suggestion that substantially changed the presentation of the argument.
The argument and ideas presented owe much to the work (both published and unpub-
lished) of P. Aluffi, and his assistance throughout this project (including providing a copy
of [Z]) has been invaluable.

2 Conventions and Background Results

2.1

We follow the same conventions as in [V2]. We work over a fixed algebraically closed field k
of characteristic 0. By scheme, we mean scheme of finite type over k. By variety, we mean a
separated integral scheme. By stack we mean Deligne-Mumford stack of finite type over k.
All morphisms of schemes and stacks are assumed to be defined over k, and fibre products
are over k unless otherwise specified.

If S is a Deligne-Mumford stack, then a family of nodal curves (or a nodal curve) over S
is defined as usual (see [V2, 2.2] for example; see [DM] for the canonical treatment).

For basic definitions and results about maps of nodal curves and stable maps, see [FP] (or
the brief summary in [V2, 2.6]). Let Mg(P2, d) be the stack whose category of sections of a
scheme S is the category of families of stable maps to P2 over S of degree d and arithmetic
genus g. For definitions and basic results, see [FP]. It is a fine moduli stack of Deligne-
Mumford type. There is a “universal map” over Mg(P2, d) that is a family of maps of nodal
curves. There is an open substack Mg(P2, d) that is a fine moduli stack of maps of smooth
curves. There is a unique component of Mg(P2, d) that is the closure of such maps (of
dimension 3d + g − 1); call this component Mg(P2, d)+.

If ρ : C → P2 × S is a family of maps of nodal curves to P2 over S, where S is a Deligne-
Mumford stack of pure dimension e, then two classesα and β in A1S (the operational Chow
ring of S), functorial in S, were defined in [V2, Section 3]. The divisor α corresponds to
maps through a fixed general point, and β corresponds to maps tangent to a fixed general
line. We say that αaβb[S] (a + b = e) are the characteristic numbers of the family of maps.
If all the characteristic numbers of the family are 0, we say the family is enumeratively ir-
relevant. Recall conditions (*) and (**) on families of maps of nodal curves, from [V2,
Section 2.4]:

(*) Over a dense open substack of S, the curve C is smooth, and ρ factors C
α
→ C ′

ρ ′

→
P2 × S where ρ ′ is unramified and gives a birational map from C ′ to its image; α is a
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degree dα map with only simple ramification (i.e., reduced ramification divisor); and
the images of the simple ramifications are distinct in P2.

(**) Over the normal locus (a dense open substack) of S, each component of the normal-
ization of C (which is a family of maps of nodal curves) satisfies (*).

If the family satisfies condition (**), then the characteristic numbers can be interpreted
enumeratively using [V2, Theorem 3.15], as counting maps (with multiplicity).

The classical characteristic number problem for curves in P2 studied by geometers of the
last century is: how many irreducible nodal degree d geometric genus g maps are there through
a general points, and tangent to b general lines (if a+b = 3d+g−1)? By [V2, Theorem 3.15],
this number is the degree of αaβb[Mg(P2, d)+].

2.2 Genus 3 Curves

Let M3(P2, 4)∗ be the normalization of M3(P2, 4)+.
On the Deligne-Mumford stack M3, let h be the divisor that is the class of (the closure

of the locus corresponding to) smooth hyperelliptic curves. Let δ0 the the divisor corre-
sponding to irreducible nodal curves. Let δ1 be the divisor corresponding to nodal curves
with a component of arithmetic genus 1.

3 Aside: The Complete Cubics Revisited

3.1

As an example of the method, we sketch a derivation of the characteristic numbers of
smooth plane cubics. The characteristic numbers of smooth plane cubics were predicted
by Zeuthen in the last century. They have since been calculated rigorously in the 1980’s
by Aluffi ([A1], using a smooth compactification, the complete cubics) and Kleiman and
Speiser ([KSp], using codimension 1 degenerations), and more recently by the author [V2]
and Graber and Pandharipande (using the theory of gravitational descendants [GP]). The
numbers have also been computed (although not rigorously proved) by degeneration of the
point and tangency conditions [V4].

3.2

Many verifications will be left to the reader. As an exercise, the reader may enjoy using the
same method to quickly calculate characteristic numbers of smooth plane conics. (In this
case, the method turns out to be identical in substance to the method of complete conics.)

Let M1(P2, 3)∗ be the normalization of the component of the moduli stack M1(P2, 3)
that is the closure of the locus of immersions of smooth curves. Then there are three enu-
meratively relevant boundary divisors:

(i) ∆0 is the closure of the locus of immersions of nodal cubics,
(ii) I is the closure of the locus of 3-to-1 maps from a smooth elliptic curve onto a line in

P2 (ramifying at 6 points), and
(iii) T is the closure of the locus of maps from curves C0 ∪C1 where Ci is smooth of genus

i, the two curves meet at a node, C0 maps to a line, and C1 maps 2-to-1 onto a line.
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(There are three other, enumeratively irrelevant, divisors; see [V1, Lemma 5.9] for their
description.) The divisor ∆0 won’t concern us in this example, but its analogue will be
necessary for the quartic case.

As described in Section 2 and [V2, Section 3.16], there are also two divisors α and β
such that the characteristic number of cubics through a points and tangent to b lines is the
degree of αaβb[M1(P2, 3)∗].

On the P9 parametrizing plane cubics, there are analogous divisors α ′ and β ′, and β ′ =
4α ′. The two spaces are birational, with isomorphic open subschemes parametrizing closed
immersions. Hence, in A8(M1(P2, 3)∗), modulo enumeratively irrelevant divisors,

4α = β + tT + iI.(2)

for some rational t and i. We can find t and i by intersecting this with suitable one-
parameter families.

Consider a pencil joining a general cubic curve and a triple line. In other words, if
p(x, y, z) = 0 describes a general cubic, consider the pencil λp(x, y, z) + µx3 = 0 with
[λ, µ] ∈ P1. This describes a family of nodal curves except at the point corresponding
to the triple line; perform stable reduction (for maps) to complete the family, and get a
map P1 → M1(P2, 3)∗. On this family, compute that T = 0 (as the family misses T),
α = 1 (because it’s a pencil), and β = 2. Check that the family intersects the Weil divisor
I transversely at one point, and hence I = 1/3. (It is essential to work with stacks rather
than schemes! The 1/3 comes from the fact that the limit stable map has an automorphism
group of order 3.) Hence i = 6.

Next, take a pencil joining a general cubic and x2 y = 0. On this family, I = 0, α = 1,
β = 3, and T = 1/2. Hence t = 2, and (2) can be rewritten

4α = β + 2T + 6I.(3)

3.3

We can easily compute the characteristic numbers of T and I. For example, the degree of
β8[I] (the number of maps in I tangent to 8 fixed general lines) can be computed as follows.
For a map in I to be tangent to 8 general lines, the image line ` of the map must pass through
the intersections of two pairs of these lines (there are 3

(8
4

)
= 210 choices of two pairs).

Then the map must be a triple cover of `, branched over the intersection of `with the 8 lines
(which are 6 points). The number of connected triple covers of `with 6 given branch points

is ( 35−3
3! ) = 40. (Proof: Rigidify the combinatorial problem by fixing some other point in

P1, and labeling the 3 points mapping to it. Monodromy about the six branch points
gives transpositions in S3, and the product of these transpositions must be the identity.
Conversely, six such transpositions uniquely determine a cover, by the Riemann existence
theorem. Thus five of the transpositions can be chosen arbitrarily (35 choices), and the
sixth is then determined. However, the five cannot all be the same transposition, as then
the cover would be disconnected (leaving 35 − 3 choices). Finally, divide by 3! to account
for the labeling of the 3 points.) Hence the degree of β8[I] = 210 × 40 = 8400. (This
is actually a special case of a formula of Hurwitz [Hu].) The other non-zero characteristic
numbers of I are α2β6[I] = 360 and αβ7[I] = 2520.
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= the five special points

= the seven general lines

`

Figure 1: The five special points on `

3.4

As another example, we compute the degree of αβ7[T] (the number of maps in T through
a fixed point and tangent to 7 general lines, with appropriate multiplicity). For such maps,
C0 must go through the fixed point. Let ` be the image of C1, and m be the image of C0.
Then ` must pass through the intersection of two pairs of the seven lines, so ` meets the
seven lines at a total of five “special” points. (See Figure 1 for a pictorial representation.)
Through each of three of special points one of the seven lines passes. Through each of the
other two special points, two of the seven lines pass.

The cover C1 → ` ramifies at 4 of these 5 special points, and m meets ` at the fifth.
Each such map is counted with multiplicity 2a, where a is the number of the 7 lines passing
through the intersection of m and ` (i.e., the image of the node of the source curve). There
are
( 7

2,2,3

)
/2 = 105 ways of choosing `. Then m can pass through one of the three special

points through which one of the seven lines pass (there are 3 ways of choosing this point,
and the multiplicity is 21), or m can pass through one of the two special points through
which two of the seven lines pass (there are 2 ways of choosing this point, and the multi-
plicity is 22).

Hence the degree of αβ7[T] is 105(3× 2 + 2× 4) = 1470. (The other non-zero charac-
teristic numbers of T are α4β4[T] = 24, α3β5[T] = 240, α2β6[T] = 885.)

Thus the characteristic numbers of I and T can really be computed by hand.

3.5

If we intersect (3) with αaβ8−a (0 ≤ a ≤ 8), we have an equation relating two “adjacent”
characteristic numbers of smooth cubics, and characteristic numbers of T and I. As the
degree of α9[M1(P2, 3)∗] is 1 (there is one smooth cubic through 9 general points), we can
compute all the characteristic numbers inductively.

As an example, the degree of αβ8[M1(P2, 3)∗] is 21004; from this we will calculate the
degree of β9[M1(P2, 3)∗]. Intersecting (3) with β8, we get

deg(β9[M1(P2, 3)∗]) = 4× 21004− 2 degβ8[T]− 6 degβ8[I].

As β8[T] = 0 (exercise) and degβ8[I] = 8400 from above,

deg(β9[M1(P2, 3)∗]) = 4× 21004− 6× 8400 = 33616.

Thus the characteristic numbers of plane cubics can be really be computed by hand.
The moduli space of stable maps, by providing an excellent compactification of the space
of smooth cubics, makes this classical problem much easier.
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q

(2,2)
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Figure 2: Source curves corresponding to general points of the boundary divisors T, P, Q, X, Y
(components labeled (degree, genus))

4 Boundary Divisors

4.1

We next describe the divisors on M3(P2, 4)∗ that are pertinent to the argument. Recall that
a divisor B is enumeratively irrelevant if αaβb[B] = 0 for all a + b = 13. We will see that the
following families are the enumeratively relevant boundary divisors on M3(P2, 4)∗. Each
locus is clearly irreducible of dimension 13. It will not be immediate that these loci lie on
M3(P2, 4)∗, but that will follow from Theorem 8.2.

Let ∆0 be the closure of the points in M3(P2, 4)∗ parametrizing immersions of nodal
curves. Let H be the closure of points parametrizing smooth hyperelliptic curves map-
ping canonically to the plane (and hence two-to-one onto a conic). Let I be the closure
of points parametrizing smooth genus 3 curves mapping canonically to a line in the plane
(i.e., ρ∗OP2(1)

∼= KC ).
The boundary divisors T, P, Q, X, and Y are described in Figure 2. The source curve

is given (diagrammatically), where the components are labeled Ci , and each component is
labeled with an ordered pair of the degree and genus of the map (restricted to that compo-
nent). For T, the component C1 is mapped to P2 by the line bundle KC1 (−t). (Equivalently,
if ρ is the morphism from C1 to P2, ρ−1OP2 (1) ∼= KC1 (−t).) The component C1 triple-
covers a line. For P, Q, X, and Y , the image of C1 is necessarily a double-line. For Q, the
point q is required to be a Weierstrass point of C1, and the image of C2 (a smooth plane
conic) is required to be tangent to the image of C1. For X, the map from C2 to P2 (a double
cover of a line) is required to ramify at the point x. For Y , the points y2 and y3 are required
to be hyperelliptically conjugate.

Figure 3 depicts images of the maps corresponding to the general points of each of the
divisors described (with ramifications of the maps indicated suggestively).
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∆0 H I T

P Q X Y

Figure 3: The images of the general maps in the boundary divisors∆0, H, I, T, P, Q, X, Y

The fundamental theorem of this section is the following.

Theorem 4.2 The enumeratively relevant boundary divisors of M3(P2, 4)∗ are∆0, H, I, T,
P, Q, X, Y .

The proof is given in Section 5.

Corollary 4.3 Modulo enumeratively irrelevant divisors, in A13

(
M3(P2, 4)∗

)
,

6α = β + hH + iI + tT + pP + qQ + xX + yY(4)

27α = ∆0 + h ′H + i ′I + t ′T + p ′P + q ′Q + x ′X + y ′Y.(5)

for some rational numbers h, i, . . . , x ′, y ′.

Proof Let U ⊂M3(P2, 4)∗ be the open subscheme corresponding to closed immersions of
genus 3 curves. Then U ∼= P14 \ Ξ (where P14 is the Hilbert scheme parametrizing plane
quartics, and Ξ is a subset of codimension greater than 1), as both sides represent the same
functor. Then by standard arguments, β|U = 6α|U and ∆0|U = 27α|U in A13(U), so in
A13

(
M3(P2, 4)∗

)
, β = 6α and∆0 = 27α modulo boundary divisors except∆0.

4.4 A Criterion for 1-Parameter Families to Intersect Divisors with Multiplicity 1

Let C→ M be a family of nodal curves over a stack M, such that the curve over the generic
point is smooth. Let ∆ be an irreducible divisor on M such that the universal curve over
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∆ is singular (i.e., has a node). Let f : S → M be a morphism from a smooth curve to M,
intersecting∆ at a point s ∈ S, such that the pullback of the universal curve C to the generic
point of S is smooth. Suppose that∆ is locally Cartier at f (s). Recall that if the total space
of the pullback of the universal curve C to S is smooth above s, then f ∗∆ contains s with
multiplicity one, i.e., the one-parameter family intersects∆ transversely. (Sketch of proof:
the formal deformation space of a node is smooth and one-dimensional; let (D, 0) be this
pointed space. The universal curve over D is smooth, and the universal curve pulled back
to a cover of D ramified at 0 is singular. Choose any node of the curve above s. Then the
map S→ M induces a morphism π from a formal neighborhood of s ∈ S to D, and as the
total space of the universal curve over S is smooth above s, this map must be unramified, so
π is étale. But f−1(∆) is scheme-theoretically contained in π∗0 which is the reduced point
s, so f−1(∆) is a reduced point.)

4.5 Description of H, ∆0, X in Terms of h, δ0, δ1

Let ψ be the natural morphism M3(P2, 4)∗ → M3. Then let a be the multiplicity of ψ∗h
along H, b be the multiplicity of ψ∗δ0 along∆0, and c be the multiplicity of ψ∗δ1 along X;
a, b, and c are integers. We will see later that a = b = c = 1, using Criterion 4.4.

4.6 The Enumerative Geometry of I

A dimension count shows that of the 12-dimensional family of quadruple covers of P1 by
smooth genus 3 curves, an 11-dimensional family corresponds to canonical covers. In other
words, if 11 general points are fixed on P1, there are a finite number of quadruple canonical
covers branched at those 11 points; call this number ι.

Let M be the space of genus 3 degree 4 admissible covers (with labeled branch points),
and D0 the divisor that is the closure of the locus of canonically mapped smooth curves.
If π : M → M0,12 is the natural map remembering only the branch points, let D = π∗D0.
(Surprisingly, D has multiplicity 120; see Section 9.1.) Let ∆I be the boundary divisor on
M0,12 whose general point parametrizes a curve with two components, with 2 of the marked
points on one of the components, and let S be the set of boundary divisors not supported
on ∆I . Let B be the one-parameter family with 11 of the labeled points of P1 distinct and
fixed and 1 moving, so B·∆I = 11 and B·∆ = 0 for any∆ ∈ S. By symmetry, B meets each
of the components of ∆I with equal multiplicity, and D contains each of the components
of∆I with equal multiplicity. Then as B · D = ι, D ≡ ι

11∆I (mod S).

4.7 The Enumerative Geometry of T

Similar to the previous case, consider M0,11, where the 11 points are labeled u, p1, . . . ,
p10. Let ∆T be the boundary divisor where (generically) the curve has 2 components, one
with two points pi , p j and one with the rest. Let ∆T,u be the boundary divisor where
(generically) the curve has 2 components, one with two points u, pi , and one with the rest.
Let S be the set of boundary divisors not supported on∆T ∪∆T,u. Let D be the divisor on
M0,11 that is the closure of the pushforward of the points of the pointed Hurwitz scheme
(where the marked points are a point t and the branch points p1, . . . , p10) corresponding
to maps induced by the linear system KC (−t).
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If 10 general points pi are fixed, then there are (39 − 3)/3! = 3280 possible connected
triple covers branched there (see Section 3.3 for an explanation of how to count connected
triple covers). For each such cover π : C → P1 there is exactly one point t ∈ C such that π
comes from the linear system KC (−t): if |L| is the linear system corresponding to π, then
h0(C,L) ≥ 2, so by Riemann-Roch, h0(C,K ⊗ L−1) ≥ 1. But h0(C,K ⊗ L−1) < 2 as
K ⊗ L−1 is a degree 1 line bundle on an irrational curve, so h0(C,K ⊗ L−1) = 1, and
K⊗ L−1 ∼= O(t) for a unique t ∈ C .

If 9 of the points p1, . . . , p9 and u are fixed on P1, then let τ be the number of genus 3
triple covers π : C → P1 branched at the 9 points p1, . . . , p9 (and one other) with a point
t ∈ C with π(t) = u, such that π is induced by the linear series KC (−t).

If B is the family described two paragraphs previously (with the pi fixed and the u mov-
ing) then B ·∆T = 0, B ·∆T,u = 10, and B · D = 3280. If B ′ is the family described in the
preceding paragraph (with p1, . . . , p9 and u fixed), then B ′ ·∆T = 9, B ′ ·∆T,u = 1, and
B ′ · D = τ . Hence D ≡

(
τ−328

9

)
∆T + 328∆T,u (mod S).

4.8 Description of I as a Degeneracy Locus

Let π : C → S be a family of smooth genus 3 curves, and L an invertible sheaf on C of
(relative) degree 4, with sections s0, s1, s2 ∈ h0(C,L) giving a base-point free family of
stable maps C → P2 × S. This induces a morphism S → M3(P2, 4)+. Suppose this lifts
to a morphism φ : S → M3(P2, 4)∗ (e.g. if S is normal), and suppose further that φ(S) is
not contained in I. The subset of S where the curve maps to a line is a degeneracy locus
(where the dimension of the vector space spanned by s0, s1, and s2 in a fiber is at most 2 [F,
Ch. 14]).

Lemma 4.9 If mdegen is the multiplicity with which an irreducible Weil divisor D appears in
the degeneracy locus, and mI is the multiplicity with which D appears in φ∗I, then mdegen =
mI.

Proof If S = M3(P2, 4)∗ (with the universal family, and the sections given by s0, s1, s2

given by pullbacks of the co-ordinates x, y, z on P2) and D = I, then mI = 1, and mdegen

is a positive integer k. By pulling back to an appropriate family, we see that k = 1—for
example, fix a general genus 3 curve C and 3 general sections s0, s1, s ′2 of KC , and consider
the family C × A1 → P2 × A1 (with co-ordinate t on A1) given by

C
(s0,s1,ts ′2 )
−−−→ P2

(t ∈ k). This family has mdegen = mI = 1.
Finally, if S is any other family of maps inducing a morphism φ : S→M3(P2, 4)∗, then

the degeneracy locus and φ∗I are both pullbacks of the analogous loci on M3(P2, 4)∗, so
mdegen = mI on this family as well.

5 Proof of Theorem 4.2

This proof consists of rather involved case-by-case analysis, and the casual reader should
probably skip it.

For simplicity, we divide the proof into a series of steps.
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g\d 1 2 3 4
0 2 5 8 11
1 6 9 12
2 8 10 13
3 10 12 14

Table 1: Maximum intersection dimension of families of maps of irreducible curves

5.1

If C → P2 is a family of stable maps over S, define the intersection dimension of the family
(denoted idim S) to be the largest integer n such that there is an integer a (0 ≤ a ≤ n)
so there are maps in the family through a fixed general points and tangent to n − a fixed
general lines. (Recall that a line ` ⊂ P2 is tangent to a map ρ : C → P2 if ρ∗` is not a union
of reduced points.) Clearly idim(S) ≤ dim(S) (this is a consequence of [V2, Section 3];
idim(S) is also bounded by the image of the S in the moduli space of stable maps). Thus
the theorem asserts that the only boundary divisors of M3(P2, 4)∗ that have intersection di-
mension 13 are those listed. For the rest of the proof, supposeΞ is an irreducible boundary
divisor of intersection dimension 13.

5.2

If C → P2 is a family of degree d genus g maps over an irreducible scheme S (1 ≤ d ≤ 4,
0 ≤ g ≤ 3) and the curve over a general k-point of S is irreducible, then it is easy to verify
that the intersection dimension of the family is at most that given in Table 1, and that if
equality holds, then the general source curve must be smooth. Note that if d > g then the
maximum is 3d + g − 1 (which is the virtual dimension of the moduli space of degree d
genus g stable maps to P2).

5.3

Suppose that the general (source) curve has a component of arithmetic genus 3 that maps
with degree 4. Then this is the only component of the general curve. If the image of the
general curve is reduced, then (as the general map in Ξ isn’t an immersion of a smooth
curve), the image of Ξ in P14 must be the discriminant locus. Then Ξ = ∆0.

If the image of the general curve is non-reduced, then it is either a double conic or a
quadruple line. (As the general curve is irreducible, in the first case the conic must be
smooth.) If the general map is a double cover of a smooth conic, then Ξ lies in H. As
dim H = 13 and H is irreducible, Ξ = H. If the general map is a quadruple cover of a line,
then as Ξ ⊂M3(P2, 4)∗, the general map is a limit of canonical maps. As the general curve
in Ξ is irreducible, the general map is given by the canonical sheaf (i.e., the pullback of
OP2 (1) is isomorphic to the canonical sheaf), so Ξ = I (as dim I = 13 and I is irreducible).
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5.4

Suppose a component of the general curve over Ξ has arithmetic genus 3 and maps with
degree 3. Then the general curve must have one other component, with genus 0 and degree
1 (and the two components meet at one node). As Ξ ⊂ M3(P2, 4)∗, the map from a
general curve is a limit of canonical maps. As the general curve is of compact type (i.e., the
dual graph is a tree), the pullback of OP2 (1) to the general curve must be the line bundle
described in the definition of T (see Section 4.1). Hence Ξ ⊂ T, so Ξ = T (as dim T = 13
and T is irreducible).

5.5

Suppose a component of the general curve has arithmetic genus 3 and maps with degree 2.
Then the general curve must be one of the possibilities shown in Figure 4. In the first case,
C1 meets two components of genus 0, each mapping with degree 1. In the second case, C1

meets (at one point q) a union of components of total arithmetic genus 0, mapping with
total degree 2.

In case i), as the map is a limit of canonical maps, and the source curve is of com-
pact type, then for some integers n2, n3 the pullback of OP2 (1) to C1 is KC1

(
(1 − n2)y2 +

(1 − n3)y3

)
, and the pullback to Ci (i = 2, 3) is KCi

(
(1 + ni)yi

)
. From the degrees of the

maps on the components, n2 = n3 = 2. As the pullback of OP2 (1) to C1 has at least 2
sections,

h0
(
C1,KC1 (−y2 − y3)

)
≥ 2,

so KC1 (−y2 − y3) must be the hyperelliptic sheaf, and y2 and y3 must be hyperelliptically
conjugate. Hence Ξ ⊂ Y , so (as Y is irreducible of dimension 13) Ξ = Y .

In case ii), a similar argument (using h0
(
C1,KC1 (−2q)

)
≥ 2) shows that q is a Weier-

strass point of C1. We claim next that the image of C2 meets the image of C1 at one point.
Assume otherwise. Then the images intersect at two points: the image of q, and some other
point r ∈ P2. (A dimension count shows that the image of C2 cannot include the image
of C1—such maps form a family of dimension less than 13.) Then consider the germ of
this map above a formal neighborhood of r. The branch of C2 is immersed in P2 and is
transverse to the image of C1 (and the two branches are not connected), so we can con-
struct the local intersection product of C2 ↪→ P2 and C1 → P2 (where C1 locally consists of
two immersed branches, or one branch which double-covers the image of C1 with simple
ramification). These branches (of C1 and C2) intersect with multiplicity 2. By continuity
of intersection products, in any deformation of this germ of a map the two branches will
continue to intersect. Thus in any deformation of this germ, the image will remain sin-
gular. Hence such a map cannot be the limit of smooth maps, so our assumption is false.
(Remark: this possibility does not appear to be excluded by the theory of limit linear series.)

Therefore the image of C2 is tangent to the image of C1, soΞ ⊂ Q, so (as Q is irreducible
of dimension 13) Ξ = Q.

5.6

Suppose a component of the general curve has arithmetic genus 2 and maps with degree 2.
Then a quick case check shows that the general curve must be one of the possibilities
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y2

C3 (1,0)

C2 (1,0)

y3

C1 (2,3)
C1
(2,3)

C2

(2,0)
q

Case i) Case ii)

Figure 4: Possibilities for the general map in Ξ, Section 5.5 (components labeled (degree, genus))

Case i)

C1 (2,2)

C2 (2,0)

Case ii)

x

C1

C2
(2,1)

(2,2)

Figure 5: Possibilities for the general map in Ξ, Section 5.6 (components labeled (degree, genus))

shown in Figure 5, or the general curve has a contracted union of components of arith-
metic genus 1. We save the latter case for the end of the proof, Section 5.10.

In case i), Ξ ⊂ P, so Ξ = P. In case ii), the map from C2 to P2 is given by the line bundle
KC2 (2x) ∼= OC2 (2x), so the double cover from C2 ramifies at x. Hence Ξ = X.

We have now completed our list, so we now need to show that there are no more enu-
meratively relevant components.

5.7

Suppose that the general curve has no contracted components, and has no (arithmetic)
genus 2 component mapping with degree 2, and no genus 3 components.

Replace Ξ by an open subscheme where the topological type of the source curve is con-
stant. Then replace Ξ by an étale cover where the components are distinguishable (i.e., the
components of the universal curve correspond to components of a general k-fiber). Let c be
the number of irreducible components, and let Ξi (1 ≤ i ≤ c) be the families of maps cor-
responding to the components of the universal curve over Ξ. It is straightforward to check
that idimΞ ≤

∑
i idimΞi . Let n be the number of nodes connecting distinct components

of the general fiber, and di and gi the degree and arithmetic genus of the (map from the)
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i-th component (so
∑

i di = 4,
∑

i(gi − 1) + n = 2). As idimΞi ≤ 3di + gi − 1,

13 = idimΞ ≤
∑

i

idimΞi

≤ 3
∑

i

di +
∑

i

(gi − 1)

≤ 12 + (2− n)

= 14− n.

Hence n = 0 or 1. If n = 0, there is only one component, necessarily of arithmetic genus 3,
contradicting the hypothesis of 5.7 that there are no genus 3 components. If n = 1, there
are two components. But then one of the components must be genus 3, or genus 2 mapping
with degree 2, violating the hypotheses of 5.7.

5.8

Finally, we show that the general curve ofΞ cannot have any components contracted by the
map. If C → P2 is a stable map, and D is a connected union of contracted components
of C not meeting any other contracted components of C , we say D is a contracted clump.
Note that if a stable map is “smoothable” (i.e., can be deformed to a map from a smooth
curve), then any contracted clump cannot just meet a single, immersed branch—it must
meet either at least two non-contracted branches, or one contracted branch C at a point
p such that the map C → P2 ramifies at p. (More generally, it is also true—although not
immediate—that if a stable map is smoothable, a contracted clump meets the rest of C at
one point p, the image of the germ of C at p is reduced, and the map is unibranch over the
image of p (no other branches of C “interfere” with the picture) then the arithmetic genus
of the clump is at most the δ-invariant of the image of the germ of C at p.)

5.9

Suppose that the general curve of Ξ has at least one contracted component, no genus 2
component mapping with degree 2, and no genus 3 components.

As in 5.7, reduce to the case where the components of the universal curve over Ξ are
distinguishable. Let c be the number of components mapping with positive degree to P2.
Base change further if necessary so the nodes of the universal curve over Ξ are also distin-
guishable.

Construct the family Ξ ′ by (i) taking the closure (in the universal curve over Ξ) of the
generic points of the non-contracted components (essentially discarding the contracted
components), and (ii) for every contracted clump meeting more than two non-contracted
branches, choose two of the branches and glue them together at a node. (To be precise, the
schemes Ξ and Ξ ′ are the same, but the families above them are different.) Then as in 5.8,
the maps in Ξ through a fixed point (resp. tangent to a fixed line) are the same as the maps
in Ξ ′ through a fixed point (resp. tangent to a fixed line). (The gluing described above
was to ensure that a line tangent to a map in Ξ because it passed through the image of a
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contracted clump is also tangent to the corresponding map in Ξ ′ because it passes through
the image of a node.) Thus idim(Ξ) = idim(Ξ ′): the contracted components “do not
contribute to intersection dimension”.

Next, let Ξi (1 ≤ i ≤ c) be the families of maps corresponding to the components of
the universal curve over Ξ ′, so c is the number of non-contracted components in Ξ. Let
di and gi (1 ≤ i ≤ c) be the degree and genus of the maps in Ξi . Let b be the number
of contracted clumps, and h1, . . . , hb their arithmetic genera. Call the nodes on non-
contracted components of the universal curve over Ξ eligible nodes (so each eligible node
lies on at most one contracted clump). Let n be the number of eligible nodes, so

c∑
i=1

(gi − 1) +
b∑

j=1

(h j − 1) + n = 2.

Then

13 = idimΞ = idimΞ ′ ≤
c∑

i=1

idimΞi

≤ 3
c∑

i=1

di +
c∑

i=1

(gi − 1)

≤ 12 + (2− n) +
b∑

j=1

(1− h j),

so

n− 1 ≤
b∑

j=1

(1− h j).(6)

For reasons of stability, a contracted clump with arithmetic genus 0 must have at least 3
eligible nodes. If r is the number of such “genus 0” contracted clumps, then the right side
of (6) is at most r, while the left side is at least 3r − 1, so r = 0.

Hence the right side of (6) is at most zero, so n = 0 or 1. As (by hypothesis of this step)
there is a contracted component, n > 0, so n = 1, and the left side is 0. Hence b = 1
and h1 = 1, so the map must be from a genus 2 curve C1 mapping with degree 4, union a
contracted genus 1 curve C2, meeting at a single point p. By 5.8, the map from C1 is not an
immersion at p. The intersection dimension of the family is the same as that of the family
of maps from C1 (with the contracted component discarded), and if this is 13, then from
Table 1 the general map from C1 must be an immersion, giving a contradiction.

5.10

Finally, we take care of the remaining case from 5.6, if a component C1 of the general
curve has arithmetic genus 2 and maps with degree 2, and there is a contracted clump C2

of arithmetic genus 1 (and at least one more component, for degree reasons). Then the
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genus gi = 2 degree di = 2 map moves in a family of (intersection) dimension at most
(3di + gi − 1) + 1, so the same argument as in the previous step gives

n− 2 ≤
b∑

j=1

(1− h j).

If r is the number of “genus 0 contracted clumps”, then the left side is at least 3r − 1 (as
there is at least one eligible node on the genus 1 contracted clump, and at least 3 on each
genus 0), and the right side is at most r, so r = 0. Hence b = 1 and n = 2, and the other
non-contracted component must be a rational curve C3 mapping with degree 2. The map
from C1 moves in a family of intersection dimension at most 8, and the map from C3 moves
in a family of intersection dimension at most 5, so (as idimΞ = 13) equality holds in both
cases. For a general k-point in Ξ, the image of C3 (a smooth conic) is transverse to the map
of C1 (a line) at two points; let b1 and b2 be these two (smooth, immersed) branches of C3.
Neither branch can be a smooth point of the total curve C1 ∪ C2 ∪ C3, as then the map
wouldn’t be smoothable by the same argument as 5.5 Case ii). Hence one of the branches is
a point attached to C1, and the other is a point of attachment to the collapsed elliptic curve
C2 (and this accounts for both nodes of C1 ∪ C2 ∪ C3). But then this contracted clump
(b2 ∪C2) isn’t smoothable by Section 5.8, giving a contradiction.

This completes the proof of Theorem 4.2.

6 Determining Coefficients Using Test Families

We now determine as many of the unknown co-efficients in (4) and (5) as we can easily,
using test families. (Although they will not be used here, other methods, such as pencils—
as in Section 3—and torus actions give test families with which h, i, t , p, h ′, i ′, t ′, p ′ could
be determined.)

Suppose π : C → S is a family of nodal genus 3 curves over a one-dimensional smooth
base. For convenience, let ω := ωC/S. Let L be an ample line bundle on S. Suppose Z is a
union of components of fibers, and that the total space of C is smooth at all points of Z.
Let M = ω(−Z)⊗ π∗Ln. Suppose that for every s ∈ S(k),

h0
(
OCs , ω(−Z)|Cs

)
= 3.(7)

Then π∗M is a rank 3 vector bundle on S (Grauert [Ha, Cor. III.12.9]). Suppose n� 0, so
π∗M is generated by global sections. Then for generally chosen sections, all degeneracy loci
of π∗M are reduced of the expected dimension [F, Example 14.3.2]). Thus three general
sections of H0(C,M) determines a map of nodal curves ρ : C → P2 × S, and this linear
system is base-point free.

6.1

Let I ′ be the (scheme-theoretic) degeneracy locus where the three sections are linearly de-
pendent; I ′ is dimension 0, and (as S is smooth) we will denote the associated (Weil or
Cartier) divisor I ′ as well. Note that I ′ and π(Z) are disjoint. Away from the fibers above
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π(Z) and I ′, ρ is an immersion. For the rest of this section, assume ρ : C → P2 × S is a
family of stable maps whose general curve is smooth (so C has at worst An singularities),
inducing a morphism φ : S → M3(P2, 4)∗. (A priori the family only induces a morphism
S→M3(P2, 4)+, but as S is normal, the morphism lifts to φ.)

Simple calculation using φ∗α = M2 and φ∗β = M · (M + ω) [V2, 3.10] gives

degS φ
∗α = degS(ω2 − 2ωZ + Z2) + 8n degS L,(8)

degS φ
∗β = degS(2ω2 − 3ωZ + Z2) + 12n degS L.(9)

Proposition 6.2 If π∗OC (Z) = OS, and η is the locus of nodes of the family, then

degS φ
∗I = 3n degS(L) +

1

12
degC (ω2 − 6ωZ + 6Z2 + η).

Note that π∗OC (Z) = OS if Z is a positive linear combination of components of fibers
of π, and Z does not contain any fibers of π.

Proof By Proposition 4.9, φ∗I = I ′. As I ′ is a degeneracy locus, by [F, Ch. 14],

I ′ = c1

(
π∗(M)

)
= c1

(
π∗
(
ω(−Z)

))
+ 3 degS(Ln).

From (7) and Serre duality, h0
(
Cs,OC (Z)|Cs

)
= 1 for all s ∈ S(k), so R1π∗

(
ω(−Z)

)
=(

π∗OC (Z)
)∨
= OS (by [HM, Ex. 3.12]).

By Grothendieck-Riemann-Roch,

chπ∗ω(−Z) = chR1π∗ω(−Z) + π∗

((
1− (ω − Z) +

(ω − Z)2

2

)
·

(
1−

ω

2
+
ω2 + η

12

))

= 3 + π∗

(
ω2 + 6ωZ + 6Z2 + η

12

)
,

and the result follows after simple manipulation.

6.3 Calculating i and i ′

Fix a general genus 3 curve C1, and let C = C1 × P1 and S = P1. Apply the set-up above
with Z = 0 and L = OS(1). Then of the divisors appearing in (4) and (5), only α, β, and
I intersect the image of S in M3(P2, 4)∗. From (8), (9), and Prop. 6.2, degS φ

∗α = 8n,
φ∗β = 12n, φ∗I = 3n. Substituting this into (4) and (5) (pulled back to S) yields i = 12
and i ′ = 72.

6.4 Calculating h and h ′

Let ψ : S→M3 be any morphism from a smooth curve S, such that ψ∗h and ψ∗δ0 are non-
empty unions of reduced points and ψ∗δ1 is empty. (One such family is given in [HM,
Ex. (3.166) part 3].) Let C be the pullback of the universal curve to S (so C is smooth).
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Apply the set-up above with Z = 0 and L any degree 1 (ample) divisor on S. Then the
image of S in M3(P2, 4)∗ misses all divisors in (4) and (5) except α, β, I, H, and∆0. From
(8) and (9) and Prop. 6.2, degS φ

∗α = degC ω
2 + 8n, degS φ

∗β = 2 degC ω
2 + 12n, and

12 degS φ
∗I = degC ω

2 + 36n + degS φ
∗∆0. By [HM, pp. 158, 188],

4h = 3π∗ω
2
C̃/M3

− δ0 − 9δ1

as divisors on the stack M3 (where π : C̃ →M3 is the universal curve). Now ψ∗h is a union
of reduced points, and by Section 4.5 ψ∗h = aφ∗H, so a = 1 and ψ∗h = φ∗h. Thus

4 degS φ
∗H = 3 degC ω

2 − degS φ
∗∆0.

Substituting into (4) and (5) yields h = 4 and h ′ = 28.

6.5 Calculating t and t ′

Fix a general genus 3 curve C1, and let C be the blow-up of C1 × P1 at a general point with
exceptional divisor E, and let S = P1. Apply the usual set-up with Z = 2E and L = OS(1).
All divisors in (4) and (5) are 0 except α, β, I, and T. Then degS φ

∗α = −1 + 8n and
degS φ

∗β = 12n. Also, degS φ
∗T = 1 by Criterion 4.4. By Proposition 6.2, 12 degS φ

∗I =
36n− 12. Substituting into (4) and (5) yields t = 6 and t ′ = 45.

6.6 Calculating p and p ′

Let ψ : S→M3 be any morphism from a smooth curve S such that ψ∗δ1 is empty and ψ∗δ0

is a union of reduced points plus one point p with multiplicity 2. (For example, double-
cover the base of the family in Section 6.4 ramified at one of the points mapping to δ0, and
at other generally chosen points.) Let C ′ → S be the pullback of the universal curve over
M3, so C ′ is smooth except for an A1-singularity above p. Let b : C → C ′ be the blow-up
of C ′ at the singularity, with exceptional divisor E, so C is smooth and b∗ωC ′/S = ω.

Apply the usual construction, with Z = E, and L a degree 1 (ample) line bundle on S.
The divisors appearing in (4) and (5) intersecting this family are α, β, P, H, I, and ∆0.
One may check that on C , ω · Z = 0 and Z2 = −2, so degS φ

∗α = degC ω
2 − 2 + 8n,

degS φ
∗β = 2 degC ω

2 − 2 + 12n, degS φ
∗P = 1 (by Criterion 4.4), and 12 degS φ

∗I =
36n + degC ω

2 − 12 + degS φ
∗∆0 + 2 (by Proposition 6.2).

From the family C ′ → S (as degS ψ
∗δ0 = degS φ

∗∆0 + 2) we have (as in Section 6.4)

4 degS φ
∗H = 4ψ∗h

= 3 degC ′ ω
2
C ′/S − (degS ψ

∗δ0 + 2)

= 3 degC ω
2 − degS φ

∗∆0 − 2.

Pulling back (4) and (5) to S and solving for p and p ′ yields p = 2 and p ′ = 20.
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6.7 Calculating x and x ′

Let ψ : S → M3 be any morphism from a smooth curve S such that ψ∗δ0 and ψ∗δ1 are
unions of reduced points and ψ∗δ1 is non-empty. Let C be the pullback of the universal
curve to S (so C is smooth). Let m = degS ψ

∗δ1, and let Z be the union of the (m) genus 1
components of fibers. Apply the usual construction with L a degree 1 (ample) line bundle
on S. All divisors in (4) and (5) are 0 except α, β, I, ∆0, H, and X. Simple calculations
yield degC Z2 = −m and degC ωZ = m, so degS φ

∗α = degC ω
2 − 3m + 8n, degS φ

∗β =
2 degC ω

2 − 4m + 12n. By Criterion 4.4, degC φ
∗X = m (so c = 1). By Proposition 6.2,

12 degS φ
∗I = degC ω

2 +degS∆0−11m+36n. As in Section 6.4, 4h = 3π∗ω2
C̃/M3

−δ0−9δ1

on M3, so

4 degS φ
∗H = 3 degC ω

2 − degS φ
∗∆0 − 9m.

Substituting these values into (4) and (5) gives x = 6 and x ′ = 48.

6.8 Aside: Multiplicities of Discriminants

As a consequence, we can compute the multiplicity of the discriminant hypersurface∆ (in
the parameter space P14 of quartics) at various points. Let p be a general point of the locus
in P14 corresponding to the divisor H (respectively I, T, P). Then construct a family of
maps by taking a general pencil through p. If m is the multiplicity of the discriminant at p,
and a is the order of the automorphism group of the limit map, so a = 2 (resp. 4, 3, 2) then
the pencil meets α with degree 1,∆0 with degree (deg∆−m) = 27−m, and H (resp. I, T,
P) with multiplicity 1/a. Then from (4), using h ′ = 28 (resp. i ′ = 72, t ′ = 45, p ′ = 20),
the multiplicity of ∆ at p is m = 14 (resp. 18, 15, 10), recovering examples of Aluffi and
F. Cukierman [AC, Example 3.1].

7 Characteristic Numbers of Boundary Divisors

We next calculate the characteristic numbers of the boundary divisors; the final answers are
given in Table 2. Maple code computing many of the characteristic numbers described here
is available upon request. As Zeuthen had essentially calculated these before [Z, p. 391], see
Section 9, we have a quick check on our numbers.

7.1 Everything But ∆0

The characteristic numbers of the components of the families over each boundary divisor
(involving maps of lower genus and/or degree) are already known. Then using [V2, Sec-
tion 3], we can calculate the characteristic numbers of the boundary divisors. For the sake
of brevity, we will explicitly calculate one characteristic number for each boundary divisor,
and hope that the general method is clear.

On [Z, pp. 390–391], Zeuthen computes the characteristic numbers of the boundary
divisors when a = 2, b = 11 as sums, without further explanation. Although his method
of computing the summands is different, his summands agree with the summands com-
puted by this method. (See Section 9 for a comparison, a glossary of notation, and further
discussion.) The interested reader can use this method and use Zeuthen’s sums as a check.
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a γa∆0 γaH γaI γaT
13 27 0 0 0
12 162 0 0 0
11 972 0 0 0
10 5832 0 0 0
9 34992 0 0 0
8 209952 0 0 0
7 1256352 0 0 0
6 7453872 0 0 0
5 43393596 4096 0 0
4 242612208 110592 0 54τ
3 1268876232 1635840 0 103320 + 1170τ
2 5919651072 14805120 16ι 1523720 + 10120τ
1 23328812592 90549360 288ι 8651280 + 40920τ
0 74651593680 403572312 2535ι 0

a γaP γaQ γaX γaY
13 0 0 0 0
12 0 0 0 0
11 0 0 0 0
10 0 0 0 0
9 0 0 0 0
8 0 0 0 0
7 168 0 0 0
6 4536 72 0 0
5 69860 1972 0 150
4 716688 24210 4032 2700
3 5332320 177300 105840 19170
2 29220576 842160 1164240 59400
1 115886232 2561724 7609140 0
0 308287980 4487769 33648615 0

Table 2: Characteristic numbers of boundary divisors (γa = α
aβ13−a for brevity)
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7.2 The Divisor H

We count the double covers of conics ramified at 8 points, passing through a fixed general
point, and tangent to 12 fixed general lines. The double cover is tangent to a line if

(i) a branch point lies on the line, or
(ii) the image curve is tangent to the line (which will give a multiplicity of 2, for the choice

of the two branches to be tangent to the line).

Thus the characteristic number is a sum over non-negative integers a, b with a + b = 12
(where a of the 12 lines are tangent in the sense of (i) and b are tangent in the sense of (ii)).
Of the b lines, there are 4−a pairs such that the conic passes through the intersection of that
pair (thus fixing the conic, up to a finite number of choices). The double cover branches at
those 4− a points, plus at one point of the conic’s intersection with each of the remaining
b − 2(4 − a) lines; this accounts for all 8 = (4 − a) +

(
b − 2(4 − a)

)
ramifications. The

number of such maps is a product of several terms:

•
(12

a

)
from the choice of the a lines,

• b!
(4−a)! 24−a(b−2(4−a))! from the choice of the (4− a) pairs of lines,

• 2b−2(4−a) from the choice of intersection of the b− 2(4− a) lines with the conic, and
• the number of conics tangent to a general lines and through 5− a general points (i.e., a

characteristic number of plane conics).

The multiplicity with which each such map appears is also a product of terms:

• 1
2 from the automorphism of the stable map,

• 2 from the choice of pre-image of the fixed point, and
• 2a from the choice of tangent point to the a lines.

Adding these products for 0 ≤ a ≤ 4 gives αβ12[H] = 90549360.

7.3 The Divisor X

Note that the general map in X has an automorphism group of order 2 (from the genus 1
component). The divisor on X corresponding to maps tangent to a line ` has three compo-
nents. The first (resp. second) is where the genus 1 (resp. genus 2) double cover branches
over `, but not at a node of the source curve; this divisor appears with multiplicity 1. The
third divisor is the locus where the node of the source curve maps to the line, and this
divisor appears with multiplicity 3 (by [V2, Theorem 3.1]): two from the node, plus one
because the genus one component ramifies simply over a general line through the node.

We now count the maps in X passing through a fixed point and tangent to 12 fixed
general lines (with appropriate multiplicities). There are seven cases to consider. For con-
venience, let `1 be the image of the genus 1 component, and `2 the image of the genus 2
component (so `1 and `2 are lines).

The first case is if none of the 12 lines pass through the image of the node `1 ∩ `2, `1

passes through the fixed point, and `1 also passes through the intersection p of a pair of the
12 lines (thus fixing the choice of `1). The line `2 passes through the pairwise intersection
of two pairs of lines (fixing `2). The genus 2 cover branches at those two points, plus where
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`2 intersects 4 other of the 12 lines. The genus 1 curve branches at `1 ∩ `2, the point p, and
where `1 intersects 2 other of the 12 lines. Note that we have partitioned the 12 lines into 2
(whose intersection is on `1), 2 (where the genus 1 cover also branches), 2 × 2 (in 2 pairs,
whose intersections are on `2, and 4 (where the genus 2 cover also branches).

The degree of this locus is a product of several terms:

• 1
2 from the automorphism group of the map

• 2 from the choice of pre-image of the fixed point on the double cover
• 1

2

( 12
2,2,4,2,2

)
from the choice of partition of the 12 lines.

Hence this case contributes 623700.
The remaining cases are similar, and are listed in Table 3. The 1

2 from the automorphisms
of the map and the 2 from the choice of pre-image of the fixed point always cancel, and are
omitted in the table. The total of the contributions is αβ12[X] = 7609140.

7.4 The Divisor Y

The image of a curve in Y has a point that looks like an “asterisk”. The divisor of maps
in Y corresponding to maps tangent to a line ` includes the locus where the genus 3 curve
branches over ` (with multiplicity 1), and the locus where the asterisk lies on ` (with mul-
tiplicity 4: two from each of the nodes of the source curve mapping to `, by [V2, Theo-
rem 3.1]).

We count the maps in Y through 2 general points and tangent to 11 general lines. The
two genus 0 components must each pass through one of the fixed points. If m is the image
of the genus 3 component, then m must pass through two intersections of pairs of the 11
lines (and there are 1

2

( 11
2,2,7

)
= 1980 ways of choosing these two pairs). Of these two points

plus the 7 intersections of m with the remaining lines, the genus 3 double cover must branch
at 8 of them, and the asterisk must be at the ninth (contributing a multiplicity of 4 or 16,
depending on the number of lines through the asterisk). Hence the characteristic number is
α2β11[Y ] = 1980(2×16 + 7×4) = 59400. (A similar calculation appeared in Section 3.4.)

7.5 The Divisor P

We count the maps in P tangent to 13 fixed general lines. For convenience, let c denote the
image of the rational component (a conic), and ` the image of the genus 2 component (a
line). Note that there are two stable maps with the same c and ` and given branch points
of the double cover of ` (coming from the choice of which branch of the cover the conic is
glued to). This will contribute a factor of 2 to each of our calculations below.

We consider the cases where x of the lines pass through one of the nodes of the image,
and y lines pass through the other (0 ≤ x ≤ y ≤ 2). Our results are summarized in
Tables 4 and 5.

If x = y = 0, then the conic c must be tangent to 5 of the lines (fixing c), and the line `
must pass through 2 intersections of pairs of lines (fixing `); the double cover branches at
these 2 points, and also where ` intersects the 4 remaining lines. There are 1

2

( 13
5,4,2,2

)
ways of

partitioning the lines in this way, giving (along with the factor of 2 described above) a total
of 540540. If (x, y) = (0, 2) or (2, 2), the argument is similar. These three cases are the first
three columns of Table 4.
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number of lines
through node

0 0 2 2

point condition
on cover of genus

1 2 1 2

number of pairwise
intersections of lines
lines `1
passes through

1 2 0 1

number of other
lines where genus
1 cover branches

2 1 3 2

number of pairwise
intersections of
lines `2
passes through

2 1 1 0

number of other
lines where genus
2 cover branches

4 5 5 6

multiplicity from
lines through node

1 1 9 9

number of parti-
tions of 12 lines

1
2

( 12
2,2,4,2,2

) 1
2

( 12
1,2,2,5,2

) ( 12
2,5,3,2

) ( 12
2,2,2,6

)

total contribution
(product of
previous two rows)

623700 249480 1496880 748440

number of lines
through node

1 1 1 1

point condition
on cover of genus

1 1 2 2

number of pairwise
intersections of lines
lines `1
passes through

1 0 2 1

number of other
lines where genus
1 cover branches

2 3 1 2

number of pairwise
intersections of
lines `2
passes through

1 2 0 1

number of other
lines where genus
2 cover branches

5 4 6 5

multiplicity from
lines through node

3 3 3 3

number of parti-
tions of 12 lines

( 12
1,2,2,5,2

)
1
2

( 12
1,3,4,2,2

)
1
2

( 12
1,1,2,2,6

) ( 12
1,2,2,5,2

)

total contribution
(product of
previous two rows)

1496880 1247400 249480 1496880

Table 3: Calculating the characteristic number αβ12[X] of X
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m 5×
c

5×
`

m
c

`

4×

4×

Conic c fixed first Line ` fixed first

Figure 6: Calculating characteristic numbers of P: the case (x, y) = (0, 1)

If (x, y) = (0, 1) (so an intersection of c and ` is required to lie on some line m), there
are two possibilities, described pictorially in Figure 6. First, c could be tangent to five of
the lines; ` would pass through one of the two intersections of c with m, and the pairwise
intersection of another pair of the lines; the cover of ` branches at the latter point, and the
intersection of ` with the remaining 5 lines. There are

( 13
1,5,5,2

)
= 216216 ways of partition-

ing the lines in such a way, and the other factors involved are 2 (from the 2 stable maps with
the same `, c, and branch points), 2 (from the choice of intersection of c with m), and 2 (the
multiplicity from the line m through the node) for a total of 1729728. In this case, we say
that the conic c was fixed first by the conditions (and then the choice of ` was determined
using c).

Second, if the line ` is fixed first, the argument is similar (see the fifth column of Table 4
and the second half of Figure 6).

The case (x, y) = (1, 2) breaks into two analogous subcases as well (first two columns
of Table 5).

If (x, y) = (1, 1), then the line can be fixed first before choosing the conic (third column
of Table 5), or the conic can be fixed first (fourth column), but there is one additional case
(the last column). Let m1 and m2 be the two lines such that c and ` are to intersect once
on each line. The conic c is required to be tangent to 4 of the other lines, and the line ` is
required to pass through the intersection of 2 others. (The double cover of ` is required to
branch there, and at the intersection of ` with the remaining 5 lines.) The number of ways
of partitioning the lines in this way is

( 13
2,4,2,5

)
= 540540. The four tangent lines restrict c to

move in a one-parameter family, and the requirement on ` restricts ` to a one-parameter
family. How often in this (combined) two-parameter family do c and ` intersect at two
distinct points, one on m1 and one on m2? This straightforward enumerative question was
addressed (in much more generality) in [V1]; we sketch a solution here. Let n1 and n2 be
two P1’s with fixed isomorphisms ni

∼= mi . Consider the surface n1×n2. Let P be the point
on the surface corresponding to the point m1 ∩ m2 in each factor. As c moves in its one-
parameter family, it sweeps out a path in n1 × n2 corresponding to pairs of points on m1

and m2; this path is in class (4, 4)—for a fixed general point on m2 ∈ P2, there are 2 conics
c tangent to the 4 lines and passing through the point, and each of those conics intersects
m1 in 2 points, and similarly with the roles of m1 and m2 reversed. The curve c passes
through P with multiplicity 2 (by a similar argument). As l moves in a one-parameter
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(x,y) (0,0) (0,2) (2,2) (0,1) (0,1)
component fixed
first

c `

number of lines
tangent to c

5 4 3 5 4

number of pairwise
intersections of lines
lines `
passes through

2 1 0 1 2

number of other
lines where genus
2 cover branches

4 5 6 5 4

number of choices
for conic c

1 2 4 1 2

number of choices
for line `

1 1 1 2 1

multiplicity from
lines through nodes

1 4 16 2 2

number of parti-
tions of 13 lines

1
2

( 13
5,4,2,2

) ( 13
2,4,2,5

)
1
2

( 13
2,2,3,6

) ( 13
1,5,5,2

)
1
2

( 13
1,4,4,2,2

)

total contribution
(2× product of
previous 4 rows)

540540 8648640 23063040 1729728 10810800

Table 4: Calculating the characteristic number β13[P] of P, part 1

family, it sweeps out a path of pairs of points as well, and this path is in class (1, 1), passing
through P with multiplicity 1. These paths intersect with multiplicity 8, and it can be
checked that the paths intersect at P with multiplicity 2 (corresponding to when both c and
l pass through m1 ∩ m2). Away from P, the two paths intersect at 6 points. Hence there
are 6 configurations where c and l are in the one-parameter families described above, and
intersect at two distinct points, one on m1 and one on m2. Thus the factors contributing
in this case are thus 6, 540540 (from the choice of lines), 2 (the factor described at the
beginning of this note), and 4 (the multiplicity from the two lines passing through the two
nodes), giving a product of 25945920.

The sum of these ten numbers is the characteristic number β13[P] = 308287980.

7.6 The Divisor Q

We count the maps in Q tangent to 13 fixed general lines. This case is very similar to the case
P above. For convenience, let c denote the image of the rational component (a conic), and
` the image of the genus 3 component (a line). The divisor on Q corresponding to maps
tangent to a line m has 3 components. The first is the locus where the conic c is tangent
to m. The second is the locus where the double cover of ` branches over m, but not at
the node of the source curve. (Both of these components appear with multiplicity 1.) The
third is the locus where the node of the source curve maps to m. This component appears
with multiplicity 3 for the same reason as in the case X above: two from the node, plus one
because the double cover of ` ramifies simply over a general line through the image of the
node.

We consider the cases where 0, 1, and 2 lines pass through the image of the node. In
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(x,y) (1,2) (1,2) (1,1) (1,1) (1,1)
component fixed
first

c ` c ` neither

number of lines
tangent to c

4 3 5 3 4

number of pairwise
intersections of lines
lines `
passes through

0 1 0 2 1

number of other
lines where genus
2 cover branches

6 5 6 4 5

number of choices
for conic c

2 4 1 4 *

number of choices
for line `

2 1 4 1 *

multiplicity from
lines through nodes

8 8 4 4 4

number of parti-
tions of 13 lines

( 13
1,2,4,6

) ( 13
1,2,3,2,5

) ( 13
2,5,6

)
1
2

( 13
2,2,2,4,3

) ( 13
2,4,2,5

)

total contribution
(2× product of
previous 4 rows)

11531520 138378240 1153152 86486400 25945920

Table 5: Calculating the characteristic number β13[P] of P, part 2

each of these cases, the conditions can immediately fix (up to a finite number of choices)
one of the two components c or ` (and then the choice of that component along with the
remaining conditions fix the other component, up to a finite number of choices). These
possibilities are summarized in the first six columns of Table 6. (The multiplicity of 1/2
in the last row comes from the fact that the general map in Q has automorphism group of
order 2.)

The one remaining case is the final column of the table. In this case, the conic c is tangent
to 4 of the lines, restricting c to a one-dimensional family. The line ` passes through the
intersection of a pair of the lines (and the double cover is required to branch there, as well
as where ` meets 6 more lines), restricting ` to a pencil. The line ` and the conic c are
required to intersect on the remaining line (call it m), and be tangent there. We determine
how often this happens.

Consider the surface S = P(TP2 |m), i.e., the P1-bundle over m corresponding to the
ordered pair (point p on m, line through p). This surface is the rational ruled surface
F1 = P

(
Om ⊕ Om(1)

)
with Picard group freely generated by the class E corresponding to

ordered pairs (any point p, m), and F corresponding to ordered pairs (a fixed point p0, line
through p0), with E2 = −1, E · F = 1, F2 = 0. Define the class C = E + F, so C2 = 1; if p1

is a fixed point of P2 \m, C is the class of the set (any point p, line pp1).
As ` moves in a pencil, it describes a curve B1 in S corresponding to (point ` ∩ m,

`); this is in class C . As c moves in a one-parameter family, it describes a curve B2 in S
corresponding to (point p on c ∩m, tangent line to c at p). As there are two conics tangent
to 4 fixed general lines through a fixed point p0 ∈ m, B2 · F = 2. As there is one curve
tangent to 4 fixed general lines and tangent to m, B2 · E = 1. Hence B2 is in class C + 2F, so
B1 · B2 = C · (C + 2F) = 3. (Of course, one must check that, for general choice of the lines,
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number of lines
through node

0 0 2 2 1 1 1

component fixed
first

c ` c ` c ` neither

number of lines
tangent to c

5 4 4 3 5 3 4

number of pairwise
intersections of lines
lines `
passes through

1 2 0 1 0 2 1

number of other
lines where genus
3 cover branches

6 5 7 6 7 5 6

number of choices
for conic c

1 1 2 1 1 1 *

number of choices
for line `

2 1 1 1 2 1 *

multiplicity from
lines through node

1 1 9 9 3 3 3

number of parti-
tions of 13 lines

( 13
5,2,6

)
1
2

( 13
4,2,2,5

) ( 13
2,4,7

) ( 13
2,3,2,6

) ( 13
1,5,7

)
1
2

( 13
1,3,2,2,5

) ( 13
1,4,2,6

)

total contribution
( 1

2× product of
previous 4 rows)

36036 135135 231660 1621620 30888 1621620 810810

Table 6: Calculating the characteristic number β13[Q] of Q

all of these intersections are transverse.)
In conclusion, there are 3 ordered pairs (c, l) tangent at a point of m. Multiplying this by

3 (the multiplicity arising from the line m passing through the image of the node),
( 13

1,4,2,6

)
(from the ways of partitioning the 13 lines), and 1

2 (from the automorphism group of the
general map in X), we see that this case contributes 810810.

Adding up the seven subtotals gives the characteristic number β13[Q] = 4487769.

7.7 The Divisor I

We count the maps in I tangent to 13 fixed general lines. Let ` be the image of one such
map in I. Such maps are in one of two forms.

The line ` could pass through the intersection of two pairs of the 13 lines. The quadruple
cover must ramify at those 2 points, as well as the points of intersection of ` with the
remaining 9 lines. (This specifies the canonical quadruple cover, up to a finite number of
choices.) This number is ι by definition (see Section 4.6). There are 1

2

( 13
2,2,9

)
= 2145 ways

of partitioning the 13 lines in this case.
On the other hand, the line ` could pass through the intersection of a pair of the 13 lines

(restricting ` to a pencil), and intersect the remaining 11 lines in distinct points; the cover
is required to branch at these 12 points, and be a canonical map. This describes a one-
parameter family C in M0,12 intersecting ∆I transversely at

(11
2

)
= 55 points, and missing

the divisors in S (see Section 4.6 for notation). Hence the number of points in I in this
family is C ·

(
ι

11∆I

)
= 5ι. The number of ways of partitioning the 13 lines is

(13
2

)
.

https://doi.org/10.4153/CJM-1999-048-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-048-1


1116 Ravi Vakil

Thus the characteristic number β13[I] is

(
2145 + 5

(
13

2

))
ι = 2535ι.

7.8 The Divisor T

This case is similar to the previous one. We count the maps in T tangent to 9 fixed general
lines and passing through 4 fixed points. Let ` be the image of the genus 3 triple cover, and
let m be the image of the genus 0 component (` and m are both lines). Then ` must pass
through 2 of the 4 points, and m must pass through the other 2 (so there are 6 ways of par-
titioning the points between the components). The 2 points on ` contribute a multiplicity
of 3 each (from the 3 possible choices of pre-image of the point in the triple cover). The
triple cover must branch where ` meets the 9 lines, and the node of the source curve must
map to `∩m, so by Section 4.7 there are τ points of T satisfying these conditions. Thus the
characteristic number α4β9[T] is 6× 32 × τ = 54τ .

7.9 Characteristic Numbers of ∆0

To calculate the characteristic numbers of∆0, we need to calculate

Na the number of degree 4 maps of smooth genus 2 curves through a fixed general points,
and tangent to 13− a fixed general lines (the characteristic numbers of genus 2 quar-
tics),

NL
a the number of degree 4 maps of smooth genus 2 curves through a fixed general points,

and tangent to 12 − a fixed general lines, and with the node of the image lying on
another fixed general line, and

N p
a the number of degree 4 maps of smooth genus 2 curves through a fixed general points,

and tangent to 11 − a fixed general lines, and with the node of the image at a fixed
general point.

Then, by [V2, Theorem 3.15],

degαaβ13−a[∆0] = Na + 2

(
13− a

1

)
NL

a + 4

(
13− a

2

)
N p

a .

(The 2 and 4 come from the multiplicity from the node, and the binomial coefficients come
from the choice of the 13 − a lines passing through the node.) The values of Na, NL

a , and
N p

a appear in [S, p. 187 (Section IV)].

In [GP], T. Graber and R. Pandharipande give recursions for the characteristic numbers
of genus 2 plane curves in P2, and compute Na, verifying Zeuthen’s degree 4 numbers
Na. Their method also works for the numbers NL

a and N p
a ([G], although they have not

explicitly verified Zeuthen’s degree 4 numbers for NL
a and N p

a ).
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a degαaβ14−a[M3(P2, 4)∗]
14 1
13 6
12 36
11 216
10 1296
9 7776
8 46656
7 279600
6 1668096
5 9840040
4 56481396
3 308389896
2 1530345504
1 6533946576
0 23011191144

Table 7: Characteristic numbers of smooth plane quartics

8 Linear Algebra

By Section 6, equations (4) and (5) can be rewritten

6α = β + 4H + 12I + 6T + 2P + qQ + 6X + yY(10)

27α = ∆0 + 28H + 72I + 45T + 20P + q ′Q + 48X + y ′Y(11)

(modulo enumeratively irrelevant divisors). Intersecting these relations with αaβ13−a (0 ≤
a ≤ 13) and using Table 2 yields 28 equations linear in the unknowns q, q ′, y, y ′, ι, τ , and
the characteristic numbers degαaβ13−a[M3(P2, 4)∗]. (Clearly degα14[M3(P2, 4)∗] = 1:
there is one quartic through 14 general points.) Solving these equations (with the aid of
Maple) yields q = 6, q ′ = 64, y = 4, y ′ = 46, ι = 451440, τ = 1552, and the characteristic
numbers of smooth quartics:

Theorem 8.1 The characteristic number numbers of smooth plane quartics are as given in
Table 7.

These numbers confirm Zeuthen’s predictions [S, p. 187], [Z, p. 391], and the first ten
confirm the calculations of Aluffi [A2] and van Gastel [vG]. For unusual consequences of
ι = 451440, see [V3].

Theorem 8.2 Modulo enumeratively irrelevant divisors,

6α = β + 4H + 12I + 6T + 2P + 6Q + 6X + 4Y

27α = ∆0 + 28H + 72I + 45T + 20P + 64Q + 48X + 46Y.
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Notation here α β ∆0 H I T P Q X Y
Zeuthen’s notation µ µ ′ α ϑ ν λ ξ η κ ζ

Table 8: Notation for analogous divisors on compactifications ofM

9 Comparison with Zeuthen’s Method

Zeuthen’s long article [Z] is devoted to the goal of calculating the characteristic numbers of
smooth plane quartics. His approach has many similarities to this one. Here is a summary
based on the author’s understanding of [S, pp. 184–7] and the french summary to [Z], and
suggestions by P. Aluffi.

Zeuthen’s aim appears to be to give a general blueprint for all degrees, and then illustrate
it with cubics and quartics.

Note that the dual of a smooth plane quartic has degree 12. The parameter space of
smooth plane quartics is naturally a dimension 14 locally closed subvariety M of P14×P90

(where the k-points correspond to (smooth quartic C , dual to C); for Zeuthen k = C of
course). Let M be the closure of M in P14 × P90.

Not surprisingly, M has boundary divisors corresponding to the enumeratively relevant
divisors given in Theorem 4.2. A dictionary between our notation and Zeuthen’s is given
in Table 8.

Zeuthen’s description of points on the boundary of M can be interpreted in modern
language. For example, a general point on ϑ (our H) corresponding to a double cover
of a conic branched at eight points is described as twice the class of a conic with eight
“sommets” (in [S] in German, “Rangpunkte”) on the conic. The projection of this point in
P14 is the square of the equation of the conic, and the projection of this point in P90 is the
square of the equation of the dual conic, times the equations of the eight lines in the dual
plane corresponding to the lines through the 8 sommets. In our language, this corresponds
to the fact that lines through the branch points should count for single tangencies.

Similarly, a general point of ξ (our P) is described as having double sommets at the
nodes, corresponding to the fact that lines through nodes count for two simple tangencies.
A general point of η (our Q) has a triple sommet at the singular point (analogous to the
multiplicity of 3 in Section 7.6), and the same is true of κ (our X, analogous to the mul-
tiplicity of 3 in Section 7.3). A general point of ζ (our Y ) has a quadruple sommet at the
singular point (analogous to the multiplicity of 4 in Section 7.4).

Using these multiplicities, Zeuthen appears to calculate the characteristic numbers of
the boundary divisors in the same way as described here. However, rather than having two
unknowns ι and τ (from the divisors I and T), he has five unknowns H = τ , I = 3280,
K = 5τ + 1640, L = ι, and M = 6ι corresponding to various enumerative problems (from
the analogous divisors ν and λ).

Zeuthen gives equations analogous to Theorem 8.2 [Z, p. 389]:

µ ′ = 6µ− 2ξ − 3η − 4ζ − 3κ− 6λ− 12ν − 2ϑ(12)

α = 27µ− 20ξ − 32η − 46ζ − 24κ− 45λ− 72ν − 14ϑ.(13)

The coefficients of η, κ, and ϑ (corresponding to Q, X, and H) are half the analogous
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coefficients in Theorem 8.2, because the isotropy group of the generic point of those divi-
sors on M3(P2, 4)∗ is Z/2 (the general such map has an automorphism group of order 2).
Zeuthen’s characteristic numbers differ from those in Table 2 for the same reason. (Thus
equations (12) and (13) can be interpreted as equality on the coarse moduli scheme of
M3(P2, 4)∗, modulo enumeratively irrelevant divisors.)

It is not clear to the author how Zeuthen obtained the co-efficients in (12) and (13),
which is the crux of the calculation. He certainly does not provide details of what he con-
sidered routine calculations. P. Aluffi has pointed out the following intriguing passage [Z,
p. XI, Section 26 of the summary]:

Ayant trouvé . . . les ordres des distances et des angles infiniment petits qui séparerent
les points et les tangents des courbes singulières de ceux de leurs courbes voisines,
nous pouvons faire usage de cette règle pour déterminer directement les coefficients
des formules . . . .

Aluffi suggests that he may have determined co-efficients by computing angles (or orders
of vanishing of angles), and the detailed figures at the end of the article seem to corroborate
this.

9.1

There is one small (but interesting) point where Zeuthen is not correct (without throwing
off his calculation). One of his unknowns corresponds to the number of solutions to the
following problem [Z, Section 70]: given a line in the plane and 11 general sommets on the
line, how many choices of a twelfth sommet are there so the resulting configuration lies in
ν ⊂ P14 × P90 (corresponding to our I)? In more modern language, given 11 points on
a line, how many choices are there for a twelfth so there is a canonical cover (of genus 3,
degree 4) branched at those 12 points? This is a (slightly) different question from that
asked in Section 4.6: given 11 general points on a line, how many canonical covers are there
branched at those 11 points?

In fact, for each general genus 3, degree 4 canonical cover, there are 119 other canonical
maps branched at the same points! In other words, the natural rational map from the
(11-dimensional) space of smooth genus 3 canonical covers of a line L, to its image in
Sym12 L ∼= P12 is not birational, as one would naively expect, but of degree 120! (This is
because the corresponding divisor in Sym12 L is very unusual. This divisor will be discussed
further in [V3].) Zeuthen gives the answer to his question as 451440 points. The actual
answer is 3762 points, each with multiplicity 120.
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