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A shift in strategy or “error’? Strategy classification oveultiple
stochastic specifications

Clintin P. Davis-Stober Nicholas Browri

Abstract

We present a classification methodology that jointly assigna decision maker a best-fitting decision strategy for
a set of choice data as well as a best-fitting stochastic fag@adn of that decision strategy. Our methodology utize
normalized maximum likelihood as a model selection criterio compare multiple, possibly non-nested, stochastic
specifications of candidate strategies. In addition tolsistrategy with “error” stochastic specifications, we ¢des
mixture specifications, i.e., strategies comprised of a probghiitribution over multiple strategies. In this way, our
approach generalizes the classification framework of Brade Schiffer (2003a). We apply our methodology to an
existing dataset and find that some decision makers are bbgtdisingle strategy with varying levels of error, while
others are best described as using a mixture specificatemmawitiple strategies.
Keywords: mixture models, strategy classification, coratiee model fit, normalized maximum likelihood, error mod-
els, stochastic specification.

1 Introduction ity of incorrectly selecting a choice alternative that i no

truly preferred (Harless & Camerer, 1994). Other spec-
Within the decision making literature, there exist manyfications, such as the class of Thurstonian and Fechne-
interesting decision theories, both normative and deian models, treat preference as deterministic and model
scriptive, that are definedeterministically These the- choice by adding a random variable representing “noise”
ories, hereafter termedecision strategiesare not de- (e.g., Bockenholt, 2006). Another class of stochastic
fined in terms of random variables and therefore do naipecifications are those that incorporateltiple deci-
explicitly account for fluctuations in choice by a deci-sion strategies with choice modeled as a sampling process
sion maker (DM). Yet, many researchers have observewer a set of strategies (Loomes et al., 2002; Loomes &
that DMs are not deterministically consistent in their obSugden, 1995; Loomes, 2005; Marschak, 1960; Rapoport
served choices across repeated comparisons of the sagn@Vallsten, 1972; Rieskamp & Otto, 2006). There are,
stimuli set or choice type (e.g., Ballinger & Wilcox, 1997;of course, many variations and combinations of the above
Busemeyer, Weg, Barkan, Li, & Ma, 2000; Hey, 2001 specifications as well (Loomes et al., 2002). Further com-
2005; Hey & Orme, 1994). This variability of choice plicating matters, the choice of which stochastic specifi-
does not disappear over repeated experimental sessi@asion to use is not an innocuous one. Hey (2005) re-
for the same subject (e.g., Regenwetter, Dana, & Davigently argued that different specifications can lead to dif-
Stober, 2011) nor can it be attributed entirely to randorferent conclusions for the same set of decision strategies
responses and/or learning and experience effects (Hend urged that we “should not be silent about noise” when
2001; Loomes, Moffatt, & Sugden, 2002). evaluating decision strategiés.

Many researchers have suggested different methods ofin this article, we present a new strategy classification
incorporating astochastic specificatioto deterministic framework that evaluates a set of candidate strategies over
decision strategies to accommodate variability of choicenultiple types of stochastic specification. We consider
Perhaps the simplest stochastic specification is to addsiangle strategy with “error” specifications as well as prob-
fixed level of “error” to a DM's responses. This “trem- abilistic mixtures of strategies, and, using modern model
bling hand” stochastic specification assumes that a DMelection criteria, directly compare these different niede
follows a single strategy imperfectly with some probabilto one another retaining the optinsfategy-specification
pair for a set of observed choice data. Thus, our frame-
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work assigns not only the best-fitting strategy(ies) to aredictions at the choice level to be distinguished, see
DM’s choices, but also a best-fitting stochastic specifialso Bergert and Nosofsky (2007) and Glockner (2006).
cation. We illustrate our classification framework withThese approaches share the similar assumption that all
a simulation study that considers three different decisioBMs utilize the same stochastic specification. To tackle
strategies over four types of stochastic specification. Wie problem of DMs following different stochastic speci-
also apply our framework to an existing empirical datdications, Loomes et al. (2002) adapted a non-nested like-
set collected to test the transitivity of preference axionfihood ratio test (Vuong, 1989) to evaluate a set of can-
(Tversky, 1969). Throughout this article we will be con-didate strategies under various stochastic specifications
cerned with the classification of strategies to DMs usingn a comprehensive set of studies, they found that DMs
outcome-based choice data, a perspective often referreére best fit by a variety of stochastic specifications with
to ascomparative model fitting a mixture specification of strategies consistent with ex-
How can one carry out strategy classification vigpected utility yielding an excellent fit to many DMs. The
choice data? At the most basic level, a researcher coutl@n-nested likelihood ratio test, however, is an asymp-
classify strategies by simply counting the number ofotic test that may lack statistical power when applied to
times a strategy was in accordance with the observétnall samples (Genius & Strazzera, 2002). Nor does the
data, thereby ignoring the problem of stochastic speciﬂlon—nested likelihood ratio test provide an explicit mea-
cation altogether (e.g., Marewski, Gaissmaier, Schoolegure of model complexity.
Goldstein, & Gigerenzer, 2010). However, this “accor- In this article, we generalize the strategy classifica-
dance rate” approach can lead to significant biases tion framework of Bréder and Schiffer (2003a) by con-
strategy classification (Bréder, 2010; Bréder & Schiffersidering multiple stochastic specifications of decision
2003a; Hilbig, 2010a). Hilbig (2010a; 2010b) demon-strategies, including probabilistic mixtures of multiple
strates how these practices can lead to theoretical cogtrategies. While many specifications are possible un-
foundings and uninterpretable data. Regenwetter et aler our framework, we will restrict ourselves to the
(2009) provides a critique of the related practice of evaluhree specifications described in Table 1 for the appli-
ating strategies by modal pair-wise majority (e.g., Brandeations in this article. These specifications were cho-
statter, Gigerenzer, & Hertwig, 2006). sen for their theoretical relevance to the Tversky data
More recent approaches have leveraged statisticé®t (Section 4) as well as to showcase the generality
models to carry out strategy classification. Broder anéif our approach. We apply the latest operationaliza-
Schiffer (2003a) developed a methodology built on a bition of the minimum description length principle, nor-
nomial (multinomial) statistical framework that modelsmalized maximum likelihood, to carry out model selec-
DMs as utilizing a single strategy with some fixed probation among all strategy-specification pairs (e.g., Myung,
bility of making an “error”. Under this framework, strat- Navarro, & Pitt, 2006). Normalized maximum likeli-
egy classification is likelihood-based and is carried out bifood is an information-theoretic model selection criteria
calculating and comparing Bayes factor scores (Brod&¥hich evaluates models based upon the ratio of a model's
& Schiffer, 2003a). This basic approach has been sugoodness-of-fitto its complexity, adhering to Occam’s ra-
cessfully applied to memory-based multiattribute choic&or by favoring the simplest model that provides a good
(Broder & Gaissmaier, 2007; Broder & Schiffer, 2003b)account of the data. The normalized maximum likelihood
and decision making under risk paradigms (Gléckner &fiteria accurately accounts for the stochastic complexit
Betsch, 2008). Glockner (2009; 2010) generalizes thigf @ model and is equally valid for both small and large
approach by incorporating any number of additional megamples.
sures, such as decision time and confidence data, into
the likelihood function to allow theories with identical

2 Preliminary definitions
2There are other perspectives, such as the methquoogss trac-

ing in which a researcher attempts to infer a DM’s decision egaby Similar t . h Davis-Stob
recording and subsequently analyzing the informationckeprocess. iImilar to many previous approaches (e'g" avis-stober,

This is done by recording the order and duration of the DMsmisl ex-  2009; Iverson & Falmagne, 1985; Myung, Karabatsos,
amination of the multi-attribute choice stimuli througftherr software & |verson, 2005), we model stochastic choice between
(Payne Bettman, & Johnson, 1993) or eye-tracking methottickBer 5 chojce alternatives andb as a fixed probability],s,

& Herbold, 2011). Structural modelings a perspective that applies . h bability that, is ch f del

a multiple regression framework to judgment data with théreged 1.e., the .pI’O ability t_ a '.S chosen oveb. _l we mode .
“weights” reflecting the best description of a DM's decisismategy ~€ach paired comparison in a two-alternative forced choice
(«T-g-, ffemlnehdl?% Dozery & B(rfhme(f, 1997:k3fewart,8@9$ze task as a Bernoulli process then, assuming independence
also the related “lens-model” paradigm (Brunswik, 1952jrzond, : ) : AL
Hursch, & Todd, 1964). Broder (2010) and Glockner (2009hgaro- be_twe_en _ma!s’ a DM's choice responses.fO”OW a bino
vide a detailed discussion and critique of the processrtgaand struc-  Mial distribution. Letr,, be the number of times the DM

tural modeling perspectives. chosea overb and letN,;, be the total number of times
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Table 1: Stochastic specifications.

Stochastic specification Description

Low-Error Specification A DM strictly adheres to a single strategy and makes an eritbr avprobability no
greater than some small value, e.g., .03. This small erterisaassumed to be equal
for all choice pairs.

High-Error SpecificationA DM adheres to a single strategy but may commit errors witingls fixed proba-
bility no greater than .20. This error rate is assumed to helefpr all choice pairs
(e.g., Broder & Schiffer, 2003a; Harless & Camerer, 1994ic&her, 2009).

Mixture Specification A specification wherell of the choice variability of a DM is explained by switching

between multiple strategies, i.e., there are no “errorsiertay the DM (e.g., Loomes
& Sugden, 1995).

the pair was presented to the DM. Lgtbe the setof all 2.1  Single strategy with error specifications
distinct choice pairs under consideratiirhese assump-
tions give the following likelihood, Similar to the formulation in Broder and Schiffer (2003a)
and Glockner (2009), we can conceptualize the parame-
Nap N ters of the binomial likelihood (1) as representing “error”
Lomn) = [[ (n )9251’(1 —0a)" """, (1)  terms for individual strategies. Perhaps the simplest such
(apjek N stochastic specification is to assume a single error ¢ate,
that is equally applied to all choice pairs and is estimated
where0 < 6,, < 1, V(a,b) € K. To further simplify ~separately for each strategy under consideration. We can
notation, letd = (eab)v(a_’b)e,c andn = (14 )v(a,n)ek- model this stochastic specification under our framework
Note that (1) can easily be extended to ternary choice B3y requiring that all of the parameterséhare a simple
using a trinomial distribution, and, more generallyito function ofe and are bounded in a systematic way, such

ary choice, wheré < N, using the appropriate multino- that if the strategy in question, predicts that is pre-
mial distribution. ferred tob then the probability ofi being chosen ovéris

Let m be the number of distinct decision strategies un(1€): i-€-,6ay = (1 —¢), if b if predicted to be preferred
der consideration. To each candidate strategy we assi%ﬂwa thend,, = ¢, and so on for all choice pairs. There-

a vector, denoted, that encodes that strategy’s predic0re. instead of estimating &l|-many parameters i,
tion for each choice pair. Thus, each vectois of size W€ need only estimate a single parameteVe handle

IK| % 1 with coefficients of 1 (predicts is preferred td strategies that predict guessing between pairs by forcing

for the respective choice pair), O (preditis preferredto (e respectivé,;, parameter(s) to be equal to .5.

a for the respective choice pair), or .5 (predicts guessing The error termg, is the only parameter that accounts
betweern andb). for the variability in the DM’s responses under this spec-

We model the different strategy-specification pairs uni]‘ication. This rai§es the question, how much error is rea-
der the common likelihood framework of (1) by pIacingsonable? Or said another way, what constraints should
a series of systematic constraints upon@hgarameters. V€ _plac_e one? For the applications in this article, we .
Let © denote the parameter space of all possihl@By d|st|ng_U|sh between two cases alth(_)ugh many are possi-
placing these models under a common likelihood stru@-le' FII’S':, Eon5|d]?r a”IfDMht.hat applli? a single strategy
ture, we are, in a sense, placing these different strateg';'?—abneardy errgr- reel as |ohn. Fort sw-erﬁor claS('e,f
specification pairs on a “common ground” and can carryy® PoUNde to be no larger than some small value; for

out model selection to find the best account of the data.2Y" applications we chose an upper bound (¥, and
thus0 < € < .03. Here, the DM is assumed to apply

the single strategyz, either deterministically, or, if he
3In the above definition we consider repeated trials of the&amdoeS make errors they are quite seldom. For the second

choice pairs. Equivalently, we could consider multiplesergations . e L. .
of different choice alternatives that are of the same itgpg in the error specmcatlon, we model DMs who apply a S'ngle

sense of Broder and Schiffer (2003a) and Gléckner (200%hisrcase, ~ Strategy with larger values of error. For thigyh-error

the parameten,;, would represent the number of times a choice altercase, we allowe to vary from 0 to .20 (the DM is ex-
native Wlth cue structure of classwas chos_en over one of cIalss_The pected to make an error a maximum of about one in five
comparison of alternatives between two item classes woordtitute . . e e .
an item type and therefore the $éwould be the set of all distinct item  tri@ls). The latter stochastic specification is better able

types. account for DM’s choices as itis less constrained than the
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former, however it is also less parsimonious as it can fit a The weights,w;, are the corresponding probability
much wider range of possible observations. It is imporweights for the mixture distribution over the many de-
tant to point out that for most applications these boundsision strategies. The set of all such sums (sets of prob-
must be chosen priori and be theoretically motivated. ability weights) corresponds to tlwmnvex hullof the set
It is certainly permissible to make“unrestricted,” i.e., of vectors representing the strategies under consideratio
0 < e < .50, however this will allow extremely large thereby defining a convex polyhedron in the appropri-
error rates and, depending on the context, may not beate geometric space (Ziegler, 1994). If we consider the
realistic assumption. points{zi, zo, ..., z,», } @s embedded within the param-
Within the general likelihood framework of (1), it is eter spac® we obtain a polyhedron such that its interior
possible to model other types of single strategy stochagerresponds to each and every possible probability dis-
tic specifications. One could easily assign independetiibution over the decision strategi§s:, zo, ..., 2m }.
error terms to each choice pair by considering a separatéis polyhedron can be uniquely associated with a set of
and independently estimatedalue for each distind,;,, linear inequality constraints on the parameter sp@ce
denoteds,;. This is similar to the stochastic specificationSaid another way, given a set of strategies to consider as
used by Sopher and Gigliotti (1993) in their analysis oft mixture specification, we can solve for the linear in-
intransitive preference. This “multiple errors” stochast equality constraints on the choice probabiliethat pro-
specification could be easily incorporated and properlyide necessary and sufficient conditions for these choice
evaluated within our framework. probabilities to be represented as a probability distribu-
tion over the strategies under consideration.

. e As an example, assume thét= {(a,b), (¢,d)} with
2.2 Mixtures specifications 0., andf.y4 as the choice probabilities corresponding to

One of the most general frameworks for modeling mulzhe two choice pairs i/C. Consider three decision strate-

tiple strategies is equivalently termed eitheraamdom gles withz, :..[1 .1]’ z2 = [0 0], andzz = [0 1]. The
preference modelLoomes & Sugden, 1995 Marschak,m'_xwre speuﬂcaupn over all .three of these stateg can be
1960) or adistribution-free random utility modefe.g., written as the interior of.theFrlangIeformed by taking the
Davis-Stober, 2009; Falmagne, 1978; Niederée & Heye?’onvex hull of th_ese pomts_ in the paramet_er spacaf
1997; Regenwetter, 1996; Regenwetter & Marley, 2001 Ve were o consider th_e mixture model Of“‘ﬁ’tanqz? .
This stochastic specification models both preference a 1§ convex hull would simply be the line segment joining

choice as probabilistic, with a DM’s observed choices bet_hese two points i®. Figure 1 presents these different

ing governed by a (possibly unknown) probability distri_mixture specifications plotted within the parameter space

bution over a set of strategies. As an example, SUppo along with the respective linear inequality constraints

a DM eats at a restaurant and tends to follow two difgsafunction 0y andd.q. This perspective holds gener-

ferent strategies. On some days, he wants to spend aGLQ/ in that any mixture specification over a finite number
little money as possible and orders the cheapest meal 8 decision sfrategies can be represented as a polyhedron

the menu, at other times he chooses by food quality ald the appropriate (possibly high-dimensional) probabil-
therefore chooses the more expensive dishes. This pMY space (e.9., Davis-Stober, _2009)'_ o _
choices could be well-modeled by a probability distribu- The researcher must specify a priori which strategies
tion over these two strategies (choose by price or foodill be considered as mixture specificatidtisis impor-
quality). tant to point out that under this mixture stochastic spec-

This type of mixture specification has a very nicdfication all choice variability is modeled as substantive
geometric interpretation within our framework. Let"shifts” between different strategies, i.e., there is np “e
{21, 22,...,2m} be the vector representations of a set ofor” or “noise” component. Other types of mixture spec-
m strategies to be considered as a mixture specificatiofications are possible under our framework. One could
i.e., a stochastic specification in which the DM’s choicénodel a mixture-error ‘hybrid’ specification, where the
probabilities are modeled as an arbitrary probability dismixture specification is combined with the low and high-
tribution over them strategies. We can compactly repre-error specifications, by solving for the appropriate con-
sent the set of all probability distributions over a setof Straints on thé parameters.
strategieq z1, 22, . . ., 2, } as the set of all sums,

m 40One could consideall possible mixture specifications, although
Z Wiz (2) the number of specifications to consider farmany strategies quickly
Kt becomes quite larg@™ — 1 (excluding the null mixture specification).
=1 Also, it may not make sense for some sets of strategies torimdsred
m as probabilistic mixtures; the decision of which mixturesconsider
wherew; > 0,Vi € {1,2,...,m}and) ", w; = 1. must ultimately lie with the researcher.
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Figure 1: This figure plots the constraints placed on therpatar spac® for the three-strategy mixture specification
overzi, zo, andzs; as well as the two-strategy mixture specification ox¥gandzs.
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2.3 Maximum likelihood estimation pairs inz such that: is predicted to be preferred tolet

= min{¢, .03} for all choice pairs such thatis pre-

ed to be preferred to, and letd,, = .5 if the strategy

represented by predicts guessing betweerandb. For

the high error specification, we proceed exactly the same

3) way replacing.03 yvith .20, i.e., if a is predicted to be
preferred td thend,, = (1 — min{é, .20}) and so on. It

. . : is routine to show that this estimation method yields the
where the parameter spa€eis constrained according to . : T
solution to (3) for the low and high-error specifications

the strategy-specification pair being considered. .
. e ., for any choice ot.

If the stochastic specification is either the low or high-
error case the is constrained to be a function of the For the mixture case, assume that the choice probabili-
single parameter, oriented according to the decisionties of® are constrained such that they represent the mix-
strategy being considered, and bounded accordingly. ture specification (polyhedron) over the strategies under
For the low and high-error specifications, (3) has a simeonsideration. The solution to (3) for the mixture cases
ple closed-form solution (e.g., Bréder & Schiffer, 2003aan then be carried out using standard constrained opti-
with the parameter estimated as follows, mization algorithms$For all of the stochastic specifica-
tions described above, the constraints placed o8 tha-
rameters form a closed, convex set, thus the maximum
likelihood estimator always exists and is unique (Davis-

Stober, 2009).
wherez,;, is the coefficient inz that corresponds to the

pair (a, b). Note that the sums are only taken over the ele-
ments ofz that do not predict guessing. For the low-error sgy the appiications presented here, we useditherlab® opti-
specification, let,, = (1 — min{é,.03}) for all choice  mization toolbox

L R
To carry out model estimation for the strategy(les)a‘ilgt
specification pairs, we define theaximum likelihood es-
timatorin the standard way,

6 := max L(8|n),
0coO

o Zanorps Nt zw—nal
Z(ayb)GlC,zab;éﬁ Nab ’
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3 Normalized maximum likelihood can be described as a ratio of a model’s goodness-of-fit
to its complexity with larger values indicating a superior
How can we place the different strategy-specificatiomodel. The denominator in (5) is defined as the sum of
pairs on an “equal footing” in order to carry out modelmaximized likelihoods forall possible data points, not
selection and classification? Unfortunately, traditionglust the data that were observed. In this way, the de-
model selection methods, such as the Akaike Informaominator accurately measures the stochastic complexity
tion Criteria (AIC) (Akaike, 1973) and the Bayesian In-of a model, incorporating both the size of the parameter
formation Criterion (BIC) (Schwarz, 1978), are not apspace as well as functional complexity (Myung, Navarro,
propriate in this situation. Conceptually, the problers lie & Pitt, 2006). For example, consider two models that pro-
in the fact that the complexity penalty terms of both thevzide an equally good fit to a set of observed data. If one of
AIC and BIC are simple functions of the number of pathese models fit well manyoredata points than the other
rameters and thus cannot fully measure the paramettize denominator termin (5) for that model would be quite
complexity of the stochastic specifications we considetarge and thus;eteris paribusthe simpler model would
Within our framework, all pairs comprised of the low-be preferred. See Myung, Navarro and Pitt (2006) for a
error and high-error specifications would have exactly theitorial on the NML criteria.
same complexity (penalty) term for either the AIC or BIC To obtain an NML value for a strategy-specification
as both cases have only the single free paramet&®et, pair within our framework, we first obtain the maximum
the high-error case is able to accommodate a much widkkelihood estimate for the observed data,via (3) and
range of data and, in fact, contains the low-error spe¢hen use this value to calculafgf|n). This forms the
ification as a (greatly constrained) special case! If waumerator of (5). We then carry out this process for all
consider mixture specifications, the AIC and BIC meapossible data points in the sample space corresponding to
sures further break down as different mixture specificgd) for fixed values ofN,,. Taking the sum over all of
tions may have the same “number” of parameters, btihese maximized likelihood terms gives the denominator
different linear inequality constraints ghwill be able in (5). We then carry out this process for each strategy-
to accommodate data in vastly different ways. specification pair. Finally, we compare all NML values,
To solve this problem, we will make an appeal to theselecting the strategy-specification pair with thegest
minimum description length principiRissanen, 1978). NML value. To summarize, our methodology proceeds
In contrast to many other methods, such as the Bayes fas follows:
tor, the minimum description length principle doest
require the assumption of a “true” data generating distri-
bution or process. As argued by Rissanen (2005), this
property is a major strength of the minimum description
length perspective, especially in cases where determining
or estimating a “true” data generating model is difficult
or impossible due to a lack of sample size or fundamen-2, Given a set of observed choice data, calculate
tal understanding of the phenomenon being observed. NML values forall strategy-specification pairs un-
Rather, in accordance with Occam’s razor, the minimum  der consideration (including mixture specifications).
description length principle states that the best model of a o o
set of data is the one that leads to the most efficient com-3: Select the strategy-specification pair with kigest
pression of the data. (Grunwald (2005) provides an in-  value of NML.

depth introduction and overview.) Several model selec- ~g|culation of the denominator term in (5) can be com-

tion criteria are derived from the minimum'description'putationallydiﬁicult. All possible data points can be enu-

length principle._The m_ost_general suc_h d_erivation is thgyerated when both the number of choice pairkiand
normalized maximum likelihoo@ML) criteria (Barron, e v, terms are relatively small, thereby allowing a di-
Rissanen, & Yu, 1998; Rissanen, 2001) and is defined asct computation of the NML terms. For cases when this
follows, X is not feasible, estimation of the denominator of (5) can
NML — L(O|n) be carried out via Monte Carlo sampling (Preacher, Cai,
=" (5) .
Seex L(Olz) & MacCallum, 2007). It is important to note that, as the
values ofN,;, and/or the number of choice pairsAhin-
whereL(é|n) is the maximized likelihood for the ob- crease, the larger the sample space becomes and therefore
served datax and X is the sample space of the modelthe more Monte Carlo random samples that are needed
i.e., the set of all possible data values. For the case tf estimate (5). We used 10,000 samples per strategy-
continuous data, the summation operator in the denorapecification pair for the empirical example in this arti-
inator is replaced by an integral. The NML criteria (5)cle (Section 4). When using Monte Carlo sampling, it

1. Given a set of candidate strategies, assign each strat-
egy its corresponding prediction vectes, and de-

cide which stochastic specifications to consider for
eachz; (or set ofz; in the case of mixture specifi-
cations).
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Table 2: Decision strategies.

Strategy Description

Take The Best (TTB)lake The Best is a non-compensatory lexicographic deciraregy in which the DM
chooses between choice alternatives by only considermguk with the the highest
validity, if this cue does not distinguish between the alégives the cue with the next
highest validity is considered, and so on (Gigerenzer & Gieldh, 1996).

Dawes Rule (DR) Dawes Rule is a compensatory unit-weighting decisionegsain which, for the bi-
nary cue case, a DM simply adds up the number of present cdesséects the choice
alternative with the largest sum. If two alternatives hdweame number of present
cues then the DM guesses (Dawes, 1979).

Franklin’s Rule (FR) Franklin’s Rule is a variation of DR with the exception thaétcues are weighted
by their respective validities and then summed with the Difgrring the alternative
with the largest sum (Gigerenzer & Goldstein, 1999).

is often easier to estimate the average maximized likel
hood value over the sample space and use this value

J\:ﬁb|e 3: Choice alternatives and decision strategy predic-
lieu of the sum in the denominator of (5) (Preacher et alj[!ons

2007). This substitution will leave the model ordering un- Type | Type ll

changed. Throughout this article, we report NML values Cue Validites ab cd

by taking the natural logarithm of (5). Cuel(v=8) +- _
Cue2(v=.7) -+ ++

4 Simulated data example Cue3(v=.6) -+ -+
Cued(v=.1) —- -+

In this section, we illustrate our methodology with a set of Strategies

candidate strategies and choice alternatives adapted from )

Bréder and Schiffer (2003a). We consider the following a ¢

three decision strategies: Take The Best (TTB) (Gigeren- DR b d

zer & Goldstein, 1996), Dawes Rule (DR) (Dawes, FR b

1979), and Franklin's Rule (FR) (Gigerenzer & Gold-
stein, 1999), see Table 2 for descriptions. We consider

four choice alternatives each comprised of four binary T4 ijustrate how our methodology maps candidate
cues with corresponding validities (denote}i®These strategy-specification pairs to individual DMs, we simu-
choice alternatives are displayed in Table 3 where “+te( data from 25 hypothetical DMs whose “true” choice
or “=" denote the presence or absence, respectively, ofRopabilities,d, were uniformly distributed over all pos-
given cue for that choice alternative. We consider tWajjpje choice probabilities. We carried out our method-
paired comparisons of these four choice alternatives, i.&ogy on the three decision strategies considering: both
K| = 2 and each choice pair is labeled “Type I" andjoy and high-error specifications for each strategy, all
“Type II" respectively. Table 3 lists the predictions madeyyo-strategy mixture specifications, and the single mix-
by these strategies for both choice pairs. We will encodgyre specification over all three strategies. We assumed
a prediction of alternative preferred oveb as “1” and  that each choice type was presented a total of 30 times
b preferred over as “0". Thereforez, = [1 1]isthe gach. Table 4 lists the NML values for each strategy-
vector representation of TTB; = [0 0] is the vector  gpecification pair over the 25 simulated data sets. The
representation of DR, angh = [0 1] is the vector repre- ontimal NML values are in bold. Due to the relatively
sentation of FR. Again, these decision strategies and cug$,a)| sample space, we were able to completely enu-
are chosen for purely illustrative purposes. Our frameyerate all possible data points and calculate the NML
work can accommodate any decision strategy that makggjyes exactly. Each data set yielded a unique optimal
predictions on binary (ok-ary) choice data. strategy-specification pair, although several NML values
were close in value for some data sets indicating several

SWe treat the validities in Table 3 purely as correlationsveen the
predictor and dependent variables of interest. These vabeuld not
necessarily be interpreted as conditional probabiliteg,, as defined by Gigerenzer, Hoffrage, and Kleinbdlting (1991).
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Figure 2: Classification of the 25 simulated data points wadlestochastic specifications for the TTB, DR, and FR
strategies.
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Proportion of times “a” is chosen over “b” for type I

“good” alternative models. The complexity terms (dedfication tends to perform well.
nominator in () f(_)r the single strategy error S.peC'flca To illustrate the differences between using NML as

tions were approximately .56, both low and high-error o . oS
. e ) . compared to traditional model selection criteria, we cal-
specifications differing in the fifth decimal place. The o )
culated BIC values for each strategy-specification pair

complexity terms for the two-strategy mixture specifica- . :
tions were 2.015 for botHzy, z»} and {z1, z}, and over all 25 simulated data s€ffable 5 lists these

Were 2014 o=} T hee-stegy e hag B 108 W plnel vales et 1 bt non
a complexity of 3.05. The raw/atlab® code we used q P '

for this example is available as supplementary online mngL_a_md.BIC cqtena Se'f(:t the same optimal strategy-
terial (http://journal.sjdm.org/vol6.8.html). specification pair for 76% of the simulated data sets.

They disagree, however, in two systematic ways. First,
Figure 2 plots the observed choice proportions of theeveral simulated data points are classified as two-
simulated data and labels each point according to tterategy mixtures according to BIC, whereas NML clas-
best-fitting strategy-specification pair for those datae Thsifies them as being best explained via a three-strategy
mixture polyhedron(s) are plotted in this space to give thmixture specification. This discrepancy comes from BIC
reader a sense of the geometry of the different specificacaver-penalizing” the three-strategy mixture by only con-
tions. It is interesting to note that the amount of choicaidering the number of parameters (two in this case) and
variability as well as the relative location of the data inot taking into account the constraints on that space, as
fluence which strategy-specification pair yields the optiNML does. Said another way, BIC penalizes the three-
mal NML value. The structure of the choice variability strategy mixture model as if its parameter space spanned
also plays a large role in determining which stochastithe entire unit square as opposed to spanning only half of
specification best accounts for the data. If the variabiit—see Figures 1 and 2. Second, three of the simulated
ity is roughly equal across paired comparisons then twatata sets select multiple optimal strategy-specification
strategy mixture and single state error specifications pepairs. In all three cases, a high-error and two-strategy
form well. If the choice variability is not uniform across mixture specification have identical optimal BIC values
paired comparisons then the three-strategy mixture spesnd therefore cannot be distinguished, see Table 5. This
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Table 4: NML values for simulated Data.

Sim. Data z1 (low) z; (high) zs (low) z. (high) z3 (low) zs3 (high) {z1, z2} {21, 23} { 22,23} {21, 22, 23}

{11,20y -74.25 4192 -109.01 -55.78 -102.05 -53.01 -H20103.19 -42.26 —39.92
{2,22} -36.01 -26.45 -84.67 -46.08 -126.39 -62.72 -35.0457¥ -41.08 —25.86
{0,13} -60.34 -36.38 -46.44 -30.83 -164.62 -77.9621.23 -142.22 -32.06 -21.64
{21,3} -168.10 -79.35 -84.67 —46.08 -126.39 —62.72 -185.0240.80 —41.08 —41.50
{11,27} -49.91 -32.22 -133.34 -65.49 -77.72 -43.31 -102.995.67 -40.13 —30.58
{19,10} -136.82 -66.87 -102.05 -53.01 -109.01 -55.78 -3B1-191.81 —42.26 —-42.67
{19,23} —91.63 -48.85 -147.24 -71.03 -63.82 -37.76 -174.908.45 -37.35 —37.13
{9,9¢ -105.53 -5440 -63.82 -37.76 -147.24 -71.03 -94.08994V —-37.35 -37.77
{18,5} -150.72 -72.42 -81.20 -44.69 -129.86 -64.10 -168-3226.23 —40.64 —-41.05
{13,27} -56.87 -34.99 -140.29 -68.26 -70.77 -40.53 -119.626.15 -38.89 —31.39
{9,27} -42.96 -29.44 -126.39 -62.72 -84.67 -46.08 -86.714.7% -41.08 —29.19
{16,30} -56.87 -34.99 -161.15 -76.58 -49.91 -32.22 -134121.43 -33.30 —21.85
{28,23} -12291 -61.33 -178.53 -83.51 -32.53-24.78 -254.83 -67.53 -26.06 —26.48
{10,2} -133.34 -65.49 -42.96-—-29.44 -168.10 -79.35 -92.34 -249.88 -30.72 -31.14
{0,17} -46.44 -30.83 -60.34 -36.38 -150.72 -72.4221.23 -109.74 -36.46 -21.64
{10,30} -36.01 -26.45 -140.29 -68.26 -70.77 —40.53 -85.6119.80 -38.89 -20.21
{20,15} -122.91 -61.33 -122.91 -61.33 -88.15 -47.47 -191.8146.52 —41.45 -41.87
{26,26} -105.53 -54.40 -182.00 -84.90 -29.06-22.98 -231.37 -46.64 -24.26 —24.67
{28,1} -199.39 -91.83 -102.05 -53.01 -109.01 -55.78 —-Z241.3249.08 —42.26 —-42.67
{10,29} -39.48 -28.00 -136.82 -66.87 -74.25 4192 -89.6628.47 -39.55 —24.59
{19,27y —77.72 -43.31 -161.15 -76.58 -49.91 -32.22 -170.645.67 -33.30 —30.58
{23,17} -126.39 -62.72 -140.29 -68.26 -70.77 -40.53 -210.3125.92 —38.89 -39.31
{12,216} -91.63 -48.85 -98.58 -51.63 -112.48 -57.17 -122.2939.95 -42.16 —42.03
{21,9} -147.24 -71.03 -105.53 -54.40 -105.53 -54.40 -1P94199.17 —42.29 -42.70
{17,25} —77.72 -43.31 -147.24 -71.03 -63.82 -37.76 -155.963.85 -37.35 —35.16
Table 5: BIC values for simulated Data
Sim. Data z1 (low) z; (high) zs (low) z2 (high) zs (low) zj3 (high) {z1, z2} {21, 23} {22, 23} {21, 22, 23}
{11,20} 153.75 89.10 223.27 116.82 209.36 111.28 226.79 .@®09 87.21 85.81
{2,22} 77.27 58.16 17460 97.41  258.03 130.68 72.77  154.154.88 57.68
{0,13} 12594 78.01 98.13 66.92 33450 161.1845.15 287.13 66.81 49.25
{21,3} 34145 163.96 17460 97.41 258.03 130.68 372.74 3MB4. 84.86 88.95
{11,273 105.08 69.69 27193 136.23 160.70 91.87 208.67 34.0 82.95 67.12
{19,120} 278.89 139.00 209.36 111.28 223.27 116.82 365.34 6.3B 87.21 91.30
{19,23} 188.51 102.96 299.74 147.32 132.89 80.78 352.49 .59 77.40 80.21
{9,9} 216.32 11405 13289 80.78 299.74 147.32 190.85 4D1.077.40 81.49
{18,5} 306.69 150.09 167.65 94.64 264.98 133.46 339.48 Ub5. 83.98 88.07
{13,27} 118.94 75.23 285.84 141.78 146.79 86.32 241.94 (5.0 80.48 68.75
{9,27} 91.18 64.14 258.03 130.68 174.60 97.41 176.12  92.14 84.86 64.35
{16,30} 118.98 75.23 327.55 15841 105.08 69.69 271.085.56  69.29 49.65
{28,23} 251.08 127.91 362.31 172.27 70.32 54.82 51235 137.76 54.82 58.91
{10,2} 271.93 136.23 91.18 64.14 341.45 163.96 187.36 502.46 64.14 68.24
{0,17} 98.13 66.92 12594 78.01 306.69 150.0945.15 222.17  75.62 49.25
{10,30}y 77.27 58.16 285.84 141.78 146.79  86.32 172.742.29  80.48 46.39
{20,15} 251.08 127.91 251.08 127.91 18155 100.19 386.32 5.7 85.60 89.69
{26,26} 216.32 114.05 369.26 175.05 63.37 51.22 465.44 9597 51.22 55.31
{28,1} 404.02 188.91 209.36 111.28 223.27 116.82 485.32 .0 87.21 91.30
{10,29} 84.22 61.26 278.89 139.00 153.75 89.10 182.01 59.6431.79 55.15
{19,273 160.70 91.87 327.55 15841 105.08 69.69 342.74 4.0 69.29 67.12
{23,17} 258.03 130.68 285.84 141.78 146.79 86.32 423.36 .52%64 80.48 84.57
{12,16} 188.51 102.96 202.41 108.51 230.22 119.59 247.27 2.5 87.01 90.02
{21,9} 299.74 147.32 216.32 114.05 216.32 114.05 401.04 .0W1 87.27 91.37
{17,25} 160.70 91.87 299.74 147.32 132.89 80.78 314.64 4BO. 77.40 76.28
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problem arises because these two specifications producaVhile we focused on deterministic decision strate-
identical maximized likelihood values, and, since the BlQjies, this perspective could be applied more generally
criteria considers them equally complex (single parante stochasticdecision theories. Here we refer to theo-
eter models), they are penalized equally. Normalizedes which explicitly account for choice variability via
maximum likelihood, on the other hand, correctly derandom variables, stochastic processes, etc. One could
termines that the two-strategy mixture specifications ar@mply apply the same NML criteria to any stochas-
more complex and thus makes the correct classificatiortic decision theory that could be estimated via choice
data and carry out model selection in a similar fashion.
These stochastic theories would not require an additional
stochastic specification per se, although multiple stochas
We applied our methodology to the Tversky (1969) Extic theories could be combined via a mixture process.

periment 1 intransitivity of preference data set. The Ap- For most applications of our framework to real-world

pendix contains a detailed description of Tversky's ®Xdata, it is critical to determine the set of strategies and

perllme_ntall method as well as tre rzsu_ltsh?f og_rsttat|str|1c_ Ipes of stochastic specificatioaspriori. This leads
analysis. ‘In summary, we analyzed eight SUbJects Wnilgy v natural qguestions. First, what decision strate-

con;idering Fhree decisior_w strategies, two tr_ansitive aMles are reasonable? Fiedler (2010) recently pointed out
one intransitive. We_ cons_ldered seven pOSS|_bIe strate iat, given enough strategies, one could model nearly any
specification palirs, including both low and high "eITor” jacision process. Under our framework, considering a

speC|f|cat_|Qns§( < .03 ande < .20) as well as a mix- large number of strategies is not necessarily a problem,
ture specification. We found that Subjects 1 and 6 werg

best fit b int itive strat ith 2 hiah or is considering a mixture specification over a large
pest it by an intransilive strategy with a igh-error SPecq ey of strategies as this very complex model would
ification, while the remaining subjects were best fit by

) o o . Be sufficiently penalized for its ability to accommodate
mixture specification over transitive strategies. We Co%any data sets. However, as with any model selection
clude that evidence for intransitivity of preference is relframework, it is critical that strategies of interest aré pu

atlvgly weak. Our conclusmng geperally su.pport sgver%Ip against legitimate competitor candidate strategies and
previous _re—ana!yses and repllca'u_ons of this experimen;, - siic specifications—not “straw models” to be triv-
tzagop;lrgdlgbm (ngt:_al::m, _20218(') 8I§|Irnbaum ;FGIUt'erreZ'ially rejected. Second, what stochastic specifications are
19853 Rl’m aum t a tro:x, 2011’ veDrsont tha magnE’reasonable? This will depend upon both the types of de-
» negenwetier et a., ).' ue 1o the NUmbeligion strategies that the researcher is interested in eval
of choice alternatives under consideration, we eSt'mat‘ﬂjating as well as the experimental paradigm itself. For
these NML values via Monte Carlo simulation. example, a researcher may be justified in selecting very
large error bounds on single-strategy specifications for
5 Discussion an exp_erlmenchatmvoIves. presenting “noisy” unidimen-
sional information to a subject.

In this article, we presented an outcome-based strategyThere are currently two major limitations of our ap-
classification methodology that assigns to a DM a besproach. First, similar to Bréder and Schiffer (2003a),
fitting strategy-specification pair given a set of choicgve require all strategies to make distinct predictions, al-
data. Our methodology allows for the evaluation of manyhough one could differentiate strategies that made iden-
stochastic specifications, including probabilistic mnet!  tical predictions based on stochastic specification if theo
of strategies. This methodology is based upon a binomigétically warrented. In this respect, increasing the numbe
(multinomial) random variable framework and uses noroef distinct choice pairs can often assist in distinguishing
malized maximum likelihood as a model selection critebetween strategies as this allows more opportunities for
ria. This methodology generalizes the basic approach dffferent strategies to disagree. Gldckner (2009; 2010)
Broder and Schiffer (2003a) to multiple stochastic speavercomes this limitation within a maximum likelihood
ifications using a different model selection criteria. Weclassification framework by incorporating additional de-
illustrated our approach using data from a well-knowrpendent variables such as decision time and confidence
choice experiment and found that some DMs were best fitata. Second, calculation of the NML criteria can be
by a single strategy with “error” specification while oth-very computationally demanding. For large valuegof
ers were best fit by a probabilistic mixture over multipleand/orN,;, our method estimates the denominator of the
strategies. NML value via Monte Carlo estimation, which is well-
"For completeness, we also calculated AIC values for thete da known to have relatively slow convergence rates and does

The results from that analysis were nearly identical toghafsthe Bic ~ NOt €asily scale up to very h_igh dimensional dat?-- Fu_ture
analysis. work could explore more efficient methods of estimation.

4.1 Tversky intransitivity Data
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This methodology is well-suited to evaluate how theBrdoder, A. (2010). Outcome-based strategy classifica-
nature of variability of choice changes overtime. Itwould tion. In A. Gléckner & C. Witteman (Eds.Founda-
be possible to consider choice data collected over multi- tions for tracing intuition: Challenges and methods
ple time points. Given a set of choice data at each time (pp. 61-82). New York: Psychology Press.
point, our methodology could be used to determine if th8roder, A., & Gaissmaier, W. (2007). Sequential process-
best-fitting stochastic specificatitype as well as strat-  ing of cues in memory-based multiattribute decisions.
egy, changes over time. Earlier approaches have foundPsychonomic Bulletin and Review,, B85-900.
that random “error” tends to dissipate over time withBroder, A., & Schiffer, S. (2003a). Bayesian strategy as-
“substantive” shifts of preference, via mixture specifi- sessment in multi-attribute decision makingpurnal
cations, remaining (Loomes et al., 2002). Future work of Behavioral Decision Making, 1893-213.
could also investigate how our methodology compare8roder, A., & Schiffer, S. (2003b). Take the best ver-
with other methods of strategy classification, including sus simultaneous feature matching: Probabilistic infer-

“accordance rate” methods. ences from memory and effects of representation for-
mat. Journal of Experimental Psychology: General,
132,277-293.
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Table 6: Tversky’s (1969) Experiment | Gamble Set

a b c d e

(85.00, %) ($4.75, %) ($4.50, ;) ($4.25,42) ($4.00, 53)

Table 7: NML values for Tversky (1969) Data.

21 (low) z; (high) z» (low) z» (high) z3 (low) zs (high) z1, 2o (MiX)

Subj. 1 -178.50 -71.4737 -303.64 -116.14 -88.12130.26 —54.2994
Subj. 2 -213.26 -81.20 -220.21 -82.30 -195.88 -76.51-44.53
Subj. 3 -95.07 -33.47 -355.78 -137.16 -81.17 -30.23-26.89
Subj. 4 -272.39 -103.91 -150.69 -54.58 -206.34 -77.38-36.23
Subj. 5 -161.12 -60.07 -286.26 -109.03 -185.45 -70.87-39.14
Subj. 6 —-77.75 -26.83 -348.86 -133.82 -32.54-8.48 -22.71
Subj. 7 -175.02 —-66.37 -265.40 -100.38 -185.45 -70.10-43.44
Subj. 8 -102.02 -37.20 -341.88 -130.87 -157.64 -60.23-31.01

son and Falmagne (1985) with only 1 participant viothe high error stochastic specification. It is not surpgsin
lating transitivity. Regenwetter, Dana, and Davis-Stobehat the high error specification was the best fit for these
(2011) recently developed a mixture model over prefeisubjects given their relatively large amounts of choice
ence states consistent with transitive strategies andifousariability. The remaining subjects were best fit by the
good empirical support for this model within this choicemixture specification over the strategiesandz,. Said
paradigm. This raises the question, could the other “eanother way, these subjects were best fit by a model in
ror” stories we described fit some DMs from Tversky’swhich all choice variability is explained by a probabilsti
data as well as a mixture specification, or better? mixture of the transitive strategies andz,. Note that

In our analysis of the Tversky data, we will Consioleronly tWQ subjects were best fit by an.intransitive strat-
three candidate strategies and carry out our methodolo ?’ This supports the general COI’]C|liISIOI’IS of Iversobn and
on a total of seven strategy(ies)-specification pairs. L taOngnI; (1b985)’ Redgean_etter et2%67(20113,§|mb aum
z1 be the strategy where a DM prefers the five gamble@ ), Birnbaum and Gutierrez ( ), and Birmnbaum

solely by largest probability, for these particular gans;bleanOI LaCroix (_2008)' For an alternative p_erspective, See
this is equivalent to choosing by expected value. 2get the re-analysis by Karabatsos (2006) using a Bayesian

be the strategy where the DM prefers the five gambl onparametric methodolqu. Itis also interestir_lg to npte
solely by largest payoff, this corresponds to a revers at the strategy of choosing solely by payoff, either with

ranking of the gambles comparedg. Finally, let z; !ow or high error, is soundly rejected for all eight sub-

correspond to the strategy where the DM prefers the garJr?-Cts' )
In agreement with Regenwetter et al. (2011), we con-

bles according to the particular lexicographic semiorder

strategy described by Tversky where all paired compar?—IUde that intransitivity of preferer_me is not well sup-
son predictions are the samezswith the exception that Ported by these data and that a mixture model approach

the DM prefers choice alternativeto a. To carry out our pr_ovides a better f.it' This analysis contrasts somewhat
methodology, we will consider the low (< .03) and with recent Bayesian analyse_s _of these same data that
high-error ¢ < .20) specifications for all three stra’[egiesfounOI support for Tversky's original conclusions (Kara-
as well as the mixture specification of and z,. Ta- batsos, 2006; 'V'Y‘%”g’ Karabatsos, & Iverson, 2005)'
ble 7 presents all seven estimated NML values for eadioWever. the key difference may be that these Bayesian
of the eight subjects in Tversky’s (1969) Experiment Ite_sts focuse_d on tgstmg weal_<_sto_chas_t|c trgnsnwny and
study. The maximum values of NML for each subject ar(g'd not consider mixture specifications in their analyses.
indicated in bold. These NML values were estimated via

Monte Carlo simulation with 10,000 simulated points per

strategy/specification pair.

Our re-analysis finds that only two subjects (Subjects
1 and 6) are best fit by the intransitive strategywith
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