
Judgment and Decision Making, Vol. 6, No. 8, December 2011, pp. 800–813

A shift in strategy or “error”? Strategy classification overmultiple
stochastic specifications

Clintin P. Davis-Stober∗ Nicholas Brown†

Abstract

We present a classification methodology that jointly assigns to a decision maker a best-fitting decision strategy for
a set of choice data as well as a best-fitting stochastic specification of that decision strategy. Our methodology utilizes
normalized maximum likelihood as a model selection criterion to compare multiple, possibly non-nested, stochastic
specifications of candidate strategies. In addition to single strategy with “error” stochastic specifications, we consider
mixturespecifications, i.e., strategies comprised of a probability distribution over multiple strategies. In this way, our
approach generalizes the classification framework of Bröder and Schiffer (2003a). We apply our methodology to an
existing dataset and find that some decision makers are best fit by a single strategy with varying levels of error, while
others are best described as using a mixture specification over multiple strategies.

Keywords: mixture models, strategy classification, comparative model fit, normalized maximum likelihood, error mod-
els, stochastic specification.

1 Introduction

Within the decision making literature, there exist many
interesting decision theories, both normative and de-
scriptive, that are defineddeterministically. These the-
ories, hereafter termeddecision strategies, are not de-
fined in terms of random variables and therefore do not
explicitly account for fluctuations in choice by a deci-
sion maker (DM). Yet, many researchers have observed
that DMs are not deterministically consistent in their ob-
served choices across repeated comparisons of the same
stimuli set or choice type (e.g., Ballinger & Wilcox, 1997;
Busemeyer, Weg, Barkan, Li, & Ma, 2000; Hey, 2001;
2005; Hey & Orme, 1994). This variability of choice
does not disappear over repeated experimental sessions
for the same subject (e.g., Regenwetter, Dana, & Davis-
Stober, 2011) nor can it be attributed entirely to random
responses and/or learning and experience effects (Hey,
2001; Loomes, Moffatt, & Sugden, 2002).

Many researchers have suggested different methods of
incorporating astochastic specificationto deterministic
decision strategies to accommodate variability of choice.
Perhaps the simplest stochastic specification is to add a
fixed level of “error” to a DM’s responses. This “trem-
bling hand” stochastic specification assumes that a DM
follows a single strategy imperfectly with some probabil-
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ity of incorrectly selecting a choice alternative that is not
truly preferred (Harless & Camerer, 1994). Other spec-
ifications, such as the class of Thurstonian and Fechne-
rian models, treat preference as deterministic and model
choice by adding a random variable representing “noise”
(e.g., Böckenholt, 2006). Another class of stochastic
specifications are those that incorporatemultiple deci-
sion strategies with choice modeled as a sampling process
over a set of strategies (Loomes et al., 2002; Loomes &
Sugden, 1995; Loomes, 2005; Marschak, 1960; Rapoport
& Wallsten, 1972; Rieskamp & Otto, 2006). There are,
of course, many variations and combinations of the above
specifications as well (Loomes et al., 2002). Further com-
plicating matters, the choice of which stochastic specifi-
cation to use is not an innocuous one. Hey (2005) re-
cently argued that different specifications can lead to dif-
ferent conclusions for the same set of decision strategies
and urged that we “should not be silent about noise” when
evaluating decision strategies.1

In this article, we present a new strategy classification
framework that evaluates a set of candidate strategies over
multiple types of stochastic specification. We consider
single strategy with “error” specifications as well as prob-
abilistic mixtures of strategies, and, using modern model
selection criteria, directly compare these different models
to one another retaining the optimalstrategy-specification
pair for a set of observed choice data. Thus, our frame-

1Many other scholars have voiced similar concerns (e.g., Carbone &
Hey, 2000; Hey & Orme, 1994; Rieskamp, 2008; Starmer, 2000),see
also Rieskamp, Busemeyer, and Mellers (2006) for an overview of the
inter-relations between deterministic strategies, measurement axioms,
and the empirical evidence for them.
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work assigns not only the best-fitting strategy(ies) to a
DM’s choices, but also a best-fitting stochastic specifi-
cation. We illustrate our classification framework with
a simulation study that considers three different decision
strategies over four types of stochastic specification. We
also apply our framework to an existing empirical data
set collected to test the transitivity of preference axiom
(Tversky, 1969). Throughout this article we will be con-
cerned with the classification of strategies to DMs using
outcome-based choice data, a perspective often referred
to ascomparative model fitting.2

How can one carry out strategy classification via
choice data? At the most basic level, a researcher could
classify strategies by simply counting the number of
times a strategy was in accordance with the observed
data, thereby ignoring the problem of stochastic specifi-
cation altogether (e.g., Marewski, Gaissmaier, Schooler,
Goldstein, & Gigerenzer, 2010). However, this “accor-
dance rate” approach can lead to significant biases in
strategy classification (Bröder, 2010; Bröder & Schiffer,
2003a; Hilbig, 2010a). Hilbig (2010a; 2010b) demon-
strates how these practices can lead to theoretical con-
foundings and uninterpretable data. Regenwetter et al.
(2009) provides a critique of the related practice of evalu-
ating strategies by modal pair-wise majority (e.g., Brand-
stätter, Gigerenzer, & Hertwig, 2006).

More recent approaches have leveraged statistical
models to carry out strategy classification. Bröder and
Schiffer (2003a) developed a methodology built on a bi-
nomial (multinomial) statistical framework that models
DMs as utilizing a single strategy with some fixed proba-
bility of making an “error”. Under this framework, strat-
egy classification is likelihood-based and is carried out by
calculating and comparing Bayes factor scores (Bröder
& Schiffer, 2003a). This basic approach has been suc-
cessfully applied to memory-based multiattribute choice
(Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003b)
and decision making under risk paradigms (Glöckner &
Betsch, 2008). Glöckner (2009; 2010) generalizes this
approach by incorporating any number of additional mea-
sures, such as decision time and confidence data, into
the likelihood function to allow theories with identical

2There are other perspectives, such as the method ofprocess trac-
ing in which a researcher attempts to infer a DM’s decision strategy by
recording and subsequently analyzing the information search process.
This is done by recording the order and duration of the DM’s visual ex-
amination of the multi-attribute choice stimuli through either software
(Payne Bettman, & Johnson, 1993) or eye-tracking methods (Glöckner
& Herbold, 2011). Structural modelingis a perspective that applies
a multiple regression framework to judgment data with the estimated
“weights” reflecting the best description of a DM’s decisionstrategy
(e.g., Brehmer, 1994; Doherty & Brehmer, 1997; Stewart, 1988). See
also the related “lens-model” paradigm (Brunswik, 1952; Hammond,
Hursch, & Todd, 1964). Bröder (2010) and Glöckner (2009) each pro-
vide a detailed discussion and critique of the process tracing and struc-
tural modeling perspectives.

predictions at the choice level to be distinguished, see
also Bergert and Nosofsky (2007) and Glöckner (2006).
These approaches share the similar assumption that all
DMs utilize the same stochastic specification. To tackle
the problem of DMs following different stochastic speci-
fications, Loomes et al. (2002) adapted a non-nested like-
lihood ratio test (Vuong, 1989) to evaluate a set of can-
didate strategies under various stochastic specifications.
In a comprehensive set of studies, they found that DMs
were best fit by a variety of stochastic specifications with
a mixture specification of strategies consistent with ex-
pected utility yielding an excellent fit to many DMs. The
non-nested likelihood ratio test, however, is an asymp-
totic test that may lack statistical power when applied to
small samples (Genius & Strazzera, 2002). Nor does the
non-nested likelihood ratio test provide an explicit mea-
sure of model complexity.

In this article, we generalize the strategy classifica-
tion framework of Bröder and Schiffer (2003a) by con-
sidering multiple stochastic specifications of decision
strategies, including probabilistic mixtures of multiple
strategies. While many specifications are possible un-
der our framework, we will restrict ourselves to the
three specifications described in Table 1 for the appli-
cations in this article. These specifications were cho-
sen for their theoretical relevance to the Tversky data
set (Section 4) as well as to showcase the generality
of our approach. We apply the latest operationaliza-
tion of the minimum description length principle, nor-
malized maximum likelihood, to carry out model selec-
tion among all strategy-specification pairs (e.g., Myung,
Navarro, & Pitt, 2006). Normalized maximum likeli-
hood is an information-theoretic model selection criteria
which evaluates models based upon the ratio of a model’s
goodness-of-fit to its complexity, adhering to Occam’s ra-
zor by favoring the simplest model that provides a good
account of the data. The normalized maximum likelihood
criteria accurately accounts for the stochastic complexity
of a model and is equally valid for both small and large
samples.

2 Preliminary definitions

Similar to many previous approaches (e.g., Davis-Stober,
2009; Iverson & Falmagne, 1985; Myung, Karabatsos,
& Iverson, 2005), we model stochastic choice between
two choice alternativesa andb as a fixed probability,θab,
i.e., the probability thata is chosen overb. If we model
each paired comparison in a two-alternative forced choice
task as a Bernoulli process then, assuming independence
between trials, a DM’s choice responses follow a bino-
mial distribution. Letnab be the number of times the DM
chosea overb and letNab be the total number of times
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Table 1: Stochastic specifications.

Stochastic specification Description

Low-Error Specification A DM strictly adheres to a single strategy and makes an error with a probability no
greater than some small value, e.g., .03. This small error rate is assumed to be equal
for all choice pairs.

High-Error SpecificationA DM adheres to a single strategy but may commit errors with a single fixed proba-
bility no greater than .20. This error rate is assumed to be equal for all choice pairs
(e.g., Bröder & Schiffer, 2003a; Harless & Camerer, 1994; Glöckner, 2009).

Mixture Specification A specification whereall of the choice variability of a DM is explained by switching
between multiple strategies, i.e., there are no “errors” made by the DM (e.g., Loomes
& Sugden, 1995).

the pair was presented to the DM. LetK be the set of all
distinct choice pairs under consideration.3These assump-
tions give the following likelihood,

L(θ|n) =
∏

(a,b)∈K

(

Nab

nab

)

θ
nab

ab (1 − θab)
Nab−nab , (1)

where0 < θab < 1, ∀(a, b) ∈ K. To further simplify
notation, letθ = (θab)∀(a,b)∈K andn = (nab)∀(a,b)∈K.
Note that (1) can easily be extended to ternary choice by
using a trinomial distribution, and, more generally, tok-
ary choice, wherek ∈ N, using the appropriate multino-
mial distribution.

Let m be the number of distinct decision strategies un-
der consideration. To each candidate strategy we assign
a vector, denotedz, that encodes that strategy’s predic-
tion for each choice pair. Thus, each vectorz is of size
|K| × 1 with coefficients of 1 (predictsa is preferred tob
for the respective choice pair), 0 (predictsb is preferred to
a for the respective choice pair), or .5 (predicts guessing
betweena andb).

We model the different strategy-specification pairs un-
der the common likelihood framework of (1) by placing
a series of systematic constraints upon theθ parameters.
Let Θ denote the parameter space of all possibleθ. By
placing these models under a common likelihood struc-
ture, we are, in a sense, placing these different strategy-
specification pairs on a “common ground” and can carry
out model selection to find the best account of the data.

3In the above definition we consider repeated trials of the same
choice pairs. Equivalently, we could consider multiple presentations
of different choice alternatives that are of the same itemtype, in the
sense of Bröder and Schiffer (2003a) and Glöckner (2009). Inthis case,
the parameternab would represent the number of times a choice alter-
native with cue structure of classa was chosen over one of classb. The
comparison of alternatives between two item classes would constitute
an item type and therefore the setK would be the set of all distinct item
types.

2.1 Single strategy with error specifications

Similar to the formulation in Bröder and Schiffer (2003a)
and Glöckner (2009), we can conceptualize the parame-
ters of the binomial likelihood (1) as representing “error”
terms for individual strategies. Perhaps the simplest such
stochastic specification is to assume a single error rate,ǫ,
that is equally applied to all choice pairs and is estimated
separately for each strategy under consideration. We can
model this stochastic specification under our framework
by requiring that all of the parameters inθ are a simple
function of ǫ and are bounded in a systematic way, such
that if the strategy in question,z, predicts thata is pre-
ferred tob then the probability ofa being chosen overb is
(1-ǫ), i.e.,θab = (1 − ǫ), if b if predicted to be preferred
to a thenθab = ǫ, and so on for all choice pairs. There-
fore, instead of estimating all|K|-many parameters inθ,
we need only estimate a single parameter,ǫ. We handle
strategies that predict guessing between pairs by forcing
the respectiveθab parameter(s) to be equal to .5.

The error term,ǫ, is the only parameter that accounts
for the variability in the DM’s responses under this spec-
ification. This raises the question, how much error is rea-
sonable? Or said another way, what constraints should
we place onǫ? For the applications in this article, we
distinguish between two cases although many are possi-
ble. First, consider a DM that applies a single strategy
in a nearly “error-free” fashion. For thislow-error case,
we boundǫ to be no larger than some small value; for
our applications we chose an upper bound of.03, and
thus0 < ǫ ≤ .03. Here, the DM is assumed to apply
the single strategy,z, either deterministically, or, if he
does make errors they are quite seldom. For the second
“error” specification, we model DMs who apply a single
strategy with larger values of error. For thishigh-error
case, we allowǫ to vary from 0 to .20 (the DM is ex-
pected to make an error a maximum of about one in five
trials). The latter stochastic specification is better ableto
account for DM’s choices as it is less constrained than the
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former, however it is also less parsimonious as it can fit a
much wider range of possible observations. It is impor-
tant to point out that for most applications these bounds
must be chosena priori and be theoretically motivated.
It is certainly permissible to makeǫ “unrestricted,” i.e.,
0 < ǫ ≤ .50, however this will allow extremely large
error rates and, depending on the context, may not be a
realistic assumption.

Within the general likelihood framework of (1), it is
possible to model other types of single strategy stochas-
tic specifications. One could easily assign independent
error terms to each choice pair by considering a separate
and independently estimatedǫ value for each distinctθab,
denotedǫab. This is similar to the stochastic specification
used by Sopher and Gigliotti (1993) in their analysis of
intransitive preference. This “multiple errors” stochastic
specification could be easily incorporated and properly
evaluated within our framework.

2.2 Mixtures specifications

One of the most general frameworks for modeling mul-
tiple strategies is equivalently termed either arandom
preference model(Loomes & Sugden, 1995; Marschak,
1960) or adistribution-free random utility model(e.g.,
Davis-Stober, 2009; Falmagne, 1978; Niederée & Heyer,
1997; Regenwetter, 1996; Regenwetter & Marley, 2001).
This stochastic specification models both preference and
choice as probabilistic, with a DM’s observed choices be-
ing governed by a (possibly unknown) probability distri-
bution over a set of strategies. As an example, suppose
a DM eats at a restaurant and tends to follow two dif-
ferent strategies. On some days, he wants to spend as
little money as possible and orders the cheapest meal on
the menu, at other times he chooses by food quality and
therefore chooses the more expensive dishes. This DM’s
choices could be well-modeled by a probability distribu-
tion over these two strategies (choose by price or food
quality).

This type of mixture specification has a very nice
geometric interpretation within our framework. Let
{z1, z2, . . . , zm} be the vector representations of a set of
m strategies to be considered as a mixture specification,
i.e., a stochastic specification in which the DM’s choice
probabilities are modeled as an arbitrary probability dis-
tribution over them strategies. We can compactly repre-
sent the set of all probability distributions over a set ofm

strategies{z1, z2, . . . , zm} as the set of all sums,

m
∑

i=1

wizi, (2)

wherewi ≥ 0, ∀i ∈ {1, 2, . . . , m} and
∑m

i=1 wi = 1.

The weights,wi, are the corresponding probability
weights for the mixture distribution over them many de-
cision strategies. The set of all such sums (sets of prob-
ability weights) corresponds to theconvex hullof the set
of vectors representing the strategies under consideration,
thereby defining a convex polyhedron in the appropri-
ate geometric space (Ziegler, 1994). If we consider the
points{z1, z2, . . . , zm} as embedded within the param-
eter spaceΘ we obtain a polyhedron such that its interior
corresponds to each and every possible probability dis-
tribution over the decision strategies{z1, z2, . . . , zm}.
This polyhedron can be uniquely associated with a set of
linear inequality constraints on the parameter spaceΘ.
Said another way, given a set of strategies to consider as
a mixture specification, we can solve for the linear in-
equality constraints on the choice probabilitiesθ that pro-
vide necessary and sufficient conditions for these choice
probabilities to be represented as a probability distribu-
tion over the strategies under consideration.

As an example, assume thatK = {(a, b), (c, d)} with
θab andθcd as the choice probabilities corresponding to
the two choice pairs inK. Consider three decision strate-
gies withz1 = [1 1], z2 = [0 0], andz3 = [0 1]. The
mixture specification over all three of these states can be
written as the interior of the triangle formed by taking the
convex hull of these points in the parameter spaceΘ. If
we were to consider the mixture model of justz1 andz2

its convex hull would simply be the line segment joining
these two points inΘ. Figure 1 presents these different
mixture specifications plotted within the parameter space
Θ along with the respective linear inequality constraints
as a function ofθab andθcd. This perspective holds gener-
ally in that any mixture specification over a finite number
of decision strategies can be represented as a polyhedron
in the appropriate (possibly high-dimensional) probabil-
ity space (e.g., Davis-Stober, 2009).

The researcher must specify a priori which strategies
will be considered as mixture specifications.4It is impor-
tant to point out that under this mixture stochastic spec-
ification all choice variability is modeled as substantive
“shifts” between different strategies, i.e., there is no “er-
ror” or “noise” component. Other types of mixture spec-
ifications are possible under our framework. One could
model a mixture-error ‘hybrid’ specification, where the
mixture specification is combined with the low and high-
error specifications, by solving for the appropriate con-
straints on theθ parameters.

4One could considerall possible mixture specifications, although
the number of specifications to consider form-many strategies quickly
becomes quite large,2m − 1 (excluding the null mixture specification).
Also, it may not make sense for some sets of strategies to be considered
as probabilistic mixtures; the decision of which mixtures to consider
must ultimately lie with the researcher.
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Figure 1: This figure plots the constraints placed on the parameter spaceΘ for the three-strategy mixture specification
overz1, z2, andz3; as well as the two-strategy mixture specification overz1 andz2.

2.3 Maximum likelihood estimation

To carry out model estimation for the strategy(ies)-
specification pairs, we define themaximum likelihood es-
timator in the standard way,

θ̂ := max
θ∈Θ

L(θ|n), (3)

where the parameter spaceΘ is constrained according to
the strategy-specification pair being considered.

If the stochastic specification is either the low or high-
error case thenθ is constrained to be a function of the
single parameter,ǫ, oriented according to the decision
strategy being considered,z, and bounded accordingly.
For the low and high-error specifications, (3) has a sim-
ple closed-form solution (e.g., Bröder & Schiffer, 2003a)
with the parameterǫ estimated as follows,

ǫ̂ =

∑

(a,b)∈K,zab 6=.5 |Nab ∗ zab − nab|
∑

(a,b)∈K,zab 6=.5 Nab

, (4)

wherezab is the coefficient inz that corresponds to the
pair(a, b). Note that the sums are only taken over the ele-
ments ofz that do not predict guessing. For the low-error
specification, let̂θab = (1 − min{ǫ̂, .03}) for all choice

pairs inz such thata is predicted to be preferred tob, let
θ̂ab = min{ǫ̂, .03} for all choice pairs such thatb is pre-
dicted to be preferred toa, and letθ̂ab = .5 if the strategy
represented byz predicts guessing betweena andb. For
the high error specification, we proceed exactly the same
way replacing.03 with .20, i.e., if a is predicted to be
preferred tob thenθ̂ab = (1 − min{ǫ̂, .20}) and so on. It
is routine to show that this estimation method yields the
solution to (3) for the low and high-error specifications
for any choice ofz.

For the mixture case, assume that the choice probabili-
ties ofΘ are constrained such that they represent the mix-
ture specification (polyhedron) over the strategies under
consideration. The solution to (3) for the mixture cases
can then be carried out using standard constrained opti-
mization algorithms.5For all of the stochastic specifica-
tions described above, the constraints placed on theθ pa-
rameters form a closed, convex set, thus the maximum
likelihood estimator always exists and is unique (Davis-
Stober, 2009).

5For the applications presented here, we used theMatlab© opti-
mization toolbox.
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3 Normalized maximum likelihood

How can we place the different strategy-specification
pairs on an “equal footing” in order to carry out model
selection and classification? Unfortunately, traditional
model selection methods, such as the Akaike Informa-
tion Criteria (AIC) (Akaike, 1973) and the Bayesian In-
formation Criterion (BIC) (Schwarz, 1978), are not ap-
propriate in this situation. Conceptually, the problem lies
in the fact that the complexity penalty terms of both the
AIC and BIC are simple functions of the number of pa-
rameters and thus cannot fully measure the parametric
complexity of the stochastic specifications we consider.
Within our framework, all pairs comprised of the low-
error and high-error specifications would have exactly the
same complexity (penalty) term for either the AIC or BIC
as both cases have only the single free parameter,ǫ. Yet,
the high-error case is able to accommodate a much wider
range of data and, in fact, contains the low-error spec-
ification as a (greatly constrained) special case! If we
consider mixture specifications, the AIC and BIC mea-
sures further break down as different mixture specifica-
tions may have the same “number” of parameters, but
different linear inequality constraints onθ will be able
to accommodate data in vastly different ways.

To solve this problem, we will make an appeal to the
minimum description length principle(Rissanen, 1978).
In contrast to many other methods, such as the Bayes fac-
tor, the minimum description length principle doesnot
require the assumption of a “true” data generating distri-
bution or process. As argued by Rissanen (2005), this
property is a major strength of the minimum description
length perspective, especially in cases where determining
or estimating a “true” data generating model is difficult
or impossible due to a lack of sample size or fundamen-
tal understanding of the phenomenon being observed.
Rather, in accordance with Occam’s razor, the minimum
description length principle states that the best model of a
set of data is the one that leads to the most efficient com-
pression of the data. (Grünwald (2005) provides an in-
depth introduction and overview.) Several model selec-
tion criteria are derived from the minimum-description-
length principle. The most general such derivation is the
normalized maximum likelihood(NML) criteria (Barron,
Rissanen, & Yu, 1998; Rissanen, 2001) and is defined as
follows,

NML =
L(θ̂|n)

∑

x∈X
L(θ̂|x)

, (5)

whereL(θ̂|n) is the maximized likelihood for the ob-
served datan andX is the sample space of the model,
i.e., the set of all possible data values. For the case of
continuous data, the summation operator in the denom-
inator is replaced by an integral. The NML criteria (5)

can be described as a ratio of a model’s goodness-of-fit
to its complexity with larger values indicating a superior
model. The denominator in (5) is defined as the sum of
maximized likelihoods forall possible data points, not
just the data that were observed. In this way, the de-
nominator accurately measures the stochastic complexity
of a model, incorporating both the size of the parameter
space as well as functional complexity (Myung, Navarro,
& Pitt, 2006). For example, consider two models that pro-
vide an equally good fit to a set of observed data. If one of
these models fit well manymoredata points than the other
the denominator term in (5) for that model would be quite
large and thus,ceteris paribus, the simpler model would
be preferred. See Myung, Navarro and Pitt (2006) for a
tutorial on the NML criteria.

To obtain an NML value for a strategy-specification
pair within our framework, we first obtain the maximum
likelihood estimate for the observed data,n, via (3) and
then use this value to calculateL(θ̂|n). This forms the
numerator of (5). We then carry out this process for all
possible data points in the sample space corresponding to
(1) for fixed values ofNab. Taking the sum over all of
these maximized likelihood terms gives the denominator
in (5). We then carry out this process for each strategy-
specification pair. Finally, we compare all NML values,
selecting the strategy-specification pair with thelargest
NML value. To summarize, our methodology proceeds
as follows:

1. Given a set of candidate strategies, assign each strat-
egy its corresponding prediction vector,zi, and de-
cide which stochastic specifications to consider for
eachzi (or set ofzi in the case of mixture specifi-
cations).

2. Given a set of observed choice data,n, calculate
NML values forall strategy-specification pairs un-
der consideration (including mixture specifications).

3. Select the strategy-specification pair with thelargest
value of NML.

Calculation of the denominator term in (5) can be com-
putationally difficult. All possible data points can be enu-
merated when both the number of choice pairs inK and
theNab terms are relatively small, thereby allowing a di-
rect computation of the NML terms. For cases when this
is not feasible, estimation of the denominator of (5) can
be carried out via Monte Carlo sampling (Preacher, Cai,
& MacCallum, 2007). It is important to note that, as the
values ofNab and/or the number of choice pairs inK in-
crease, the larger the sample space becomes and therefore
the more Monte Carlo random samples that are needed
to estimate (5). We used 10,000 samples per strategy-
specification pair for the empirical example in this arti-
cle (Section 4). When using Monte Carlo sampling, it
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Table 2: Decision strategies.

Strategy Description

Take The Best (TTB)Take The Best is a non-compensatory lexicographic decisionstrategy in which the DM
chooses between choice alternatives by only considering the cue with the the highest
validity, if this cue does not distinguish between the alternatives the cue with the next
highest validity is considered, and so on (Gigerenzer & Goldstein, 1996).

Dawes Rule (DR) Dawes Rule is a compensatory unit-weighting decision strategy in which, for the bi-
nary cue case, a DM simply adds up the number of present cues and selects the choice
alternative with the largest sum. If two alternatives have the same number of present
cues then the DM guesses (Dawes, 1979).

Franklin’s Rule (FR) Franklin’s Rule is a variation of DR with the exception that the cues are weighted
by their respective validities and then summed with the DM preferring the alternative
with the largest sum (Gigerenzer & Goldstein, 1999).

is often easier to estimate the average maximized likeli-
hood value over the sample space and use this value in
lieu of the sum in the denominator of (5) (Preacher et al.,
2007). This substitution will leave the model ordering un-
changed. Throughout this article, we report NML values
by taking the natural logarithm of (5).

4 Simulated data example

In this section, we illustrate our methodology with a set of
candidate strategies and choice alternatives adapted from
Bröder and Schiffer (2003a). We consider the following
three decision strategies: Take The Best (TTB) (Gigeren-
zer & Goldstein, 1996), Dawes Rule (DR) (Dawes,
1979), and Franklin’s Rule (FR) (Gigerenzer & Gold-
stein, 1999), see Table 2 for descriptions. We consider
four choice alternatives each comprised of four binary
cues with corresponding validities (denotedv).6These
choice alternatives are displayed in Table 3 where “+”
or “–” denote the presence or absence, respectively, of a
given cue for that choice alternative. We consider two
paired comparisons of these four choice alternatives, i.e.,
|K| = 2 and each choice pair is labeled “Type I” and
“Type II” respectively. Table 3 lists the predictions made
by these strategies for both choice pairs. We will encode
a prediction of alternativea preferred overb as “1” and
b preferred overa as “0”. Therefore,z1 = [1 1] is the
vector representation of TTB,z2 = [0 0] is the vector
representation of DR, andz3 = [0 1] is the vector repre-
sentation of FR. Again, these decision strategies and cues
are chosen for purely illustrative purposes. Our frame-
work can accommodate any decision strategy that makes
predictions on binary (ork-ary) choice data.

6We treat the validities in Table 3 purely as correlations between the
predictor and dependent variables of interest. These values should not
necessarily be interpreted as conditional probabilities,e.g., as defined

Table 3: Choice alternatives and decision strategy predic-
tions

Type I Type II

Cue Validites a b c d

Cue 1 (v =.8) + – + –

Cue 2 (v = .7) – + + +

Cue 3 (v = .6) – + – +

Cue 4 (v = .1) – – – +

Strategies

TTB a c

DR b d

FR b c

To illustrate how our methodology maps candidate
strategy-specification pairs to individual DMs, we simu-
lated data from 25 hypothetical DMs whose “true” choice
probabilities,θ, were uniformly distributed over all pos-
sible choice probabilities. We carried out our method-
ology on the three decision strategies considering: both
low and high-error specifications for each strategy, all
two-strategy mixture specifications, and the single mix-
ture specification over all three strategies. We assumed
that each choice type was presented a total of 30 times
each. Table 4 lists the NML values for each strategy-
specification pair over the 25 simulated data sets. The
optimal NML values are in bold. Due to the relatively
small sample space, we were able to completely enu-
merate all possible data points and calculate the NML
values exactly. Each data set yielded a unique optimal
strategy-specification pair, although several NML values
were close in value for some data sets indicating several

by Gigerenzer, Hoffrage, and Kleinbölting (1991).
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Figure 2: Classification of the 25 simulated data points under all stochastic specifications for the TTB, DR, and FR
strategies.

“good” alternative models. The complexity terms (de-
nominator in (5)) for the single strategy error specifica-
tions were approximately .56, both low and high-error
specifications differing in the fifth decimal place. The
complexity terms for the two-strategy mixture specifica-
tions were 2.015 for both{z1, z2} and {z1, z3}, and
were 2.014 for{z3, z3}. The three-strategy mixture had
a complexity of 3.05. The rawMatlab© code we used
for this example is available as supplementary online ma-
terial (http://journal.sjdm.org/vol6.8.html).

Figure 2 plots the observed choice proportions of the
simulated data and labels each point according to the
best-fitting strategy-specification pair for those data. The
mixture polyhedron(s) are plotted in this space to give the
reader a sense of the geometry of the different specifica-
tions. It is interesting to note that the amount of choice
variability as well as the relative location of the data in-
fluence which strategy-specification pair yields the opti-
mal NML value. The structure of the choice variability
also plays a large role in determining which stochastic
specification best accounts for the data. If the variabil-
ity is roughly equal across paired comparisons then two-
strategy mixture and single state error specifications per-
form well. If the choice variability is not uniform across
paired comparisons then the three-strategy mixture spec-

ification tends to perform well.

To illustrate the differences between using NML as
compared to traditional model selection criteria, we cal-
culated BIC values for each strategy-specification pair
over all 25 simulated data sets.7Table 5 lists these
BIC values with optimal values listed in bold, non-
unique optimal values are in bold and underlined. The
NML and BIC criteria select the same optimal strategy-
specification pair for 76% of the simulated data sets.
They disagree, however, in two systematic ways. First,
several simulated data points are classified as two-
strategy mixtures according to BIC, whereas NML clas-
sifies them as being best explained via a three-strategy
mixture specification. This discrepancy comes from BIC
“over-penalizing” the three-strategy mixture by only con-
sidering the number of parameters (two in this case) and
not taking into account the constraints on that space, as
NML does. Said another way, BIC penalizes the three-
strategy mixture model as if its parameter space spanned
the entire unit square as opposed to spanning only half of
it—see Figures 1 and 2. Second, three of the simulated
data sets select multiple optimal strategy-specification
pairs. In all three cases, a high-error and two-strategy
mixture specification have identical optimal BIC values
and therefore cannot be distinguished, see Table 5. This
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Table 4: NML values for simulated Data.

Sim. Data z1 (low) z1 (high) z2 (low) z2 (high) z3 (low) z3 (high) {z1, z2} { z1, z3} { z2, z3} { z1, z2, z3}
{11,20} –74.25 –41.92 –109.01 –55.78 –102.05 –53.01 –112.05 –103.19 –42.26 −39.92

{2,22} –36.01 –26.45 –84.67 –46.08 –126.39 –62.72 –35.04 –75.73 –41.08 −25.86

{0,13} –60.34 –36.38 –46.44 –30.83 –164.62 –77.96−21.23 –142.22 –32.06 –21.64
{21,3} –168.10 –79.35 –84.67 –46.08 –126.39 —62.72 –185.02–240.80 −41.08 –41.50
{11,27} –49.91 –32.22 –133.34 –65.49 –77.72 –43.31 –102.99–45.67 –40.13 −30.58

{19,10} –136.82 –66.87 –102.05 –53.01 –109.01 –55.78 –181.32 –191.81 −42.26 –42.67
{19,23} –91.63 –48.85 –147.24 –71.03 –63.82 –37.76 –174.90–78.45 –37.35 −37.13

{9,9} –105.53 –54.40 –63.82 –37.76 –147.24 –71.03 –94.08 –199.17 −37.35 –37.77
{18,5} –150.72 –72.42 –81.20 –44.69 –129.86 –64.10 –168.39–226.23 −40.64 –41.05
{13,27} –56.87 –34.99 –140.29 –68.26 –70.77 –40.53 –119.62–46.15 –38.89 −31.39

{9,27} –42.96 –29.44 –126.39 –62.72 –84.67 –46.08 –86.71 –44.73 –41.08 −29.19

{16,30} –56.87 –34.99 –161.15 –76.58 –49.91 –32.22 –134.19−21.43 –33.30 –21.85
{28,23} –122.91 –61.33 –178.53 –83.51 –32.53−24.78 –254.83 –67.53 –26.06 –26.48
{10,2} –133.34 –65.49 –42.96 −29.44 –168.10 –79.35 –92.34 –249.88 –30.72 –31.14
{0,17} –46.44 –30.83 –60.34 –36.38 –150.72 –72.42−21.23 –109.74 –36.46 –21.64
{10,30} –36.01 –26.45 –140.29 –68.26 –70.77 –40.53 –85.01−19.80 –38.89 –20.21
{20,15} –122.91 –61.33 –122.91 –61.33 –88.15 –47.47 –191.81 –146.52 −41.45 –41.87
{26,26} –105.53 –54.40 –182.00 –84.90 –29.06−22.98 –231.37 –46.64 –24.26 –24.67
{28,1} –199.39 –91.83 –102.05 –53.01 –109.01 –55.78 –241.32 –249.08 −42.26 –42.67
{10,29} –39.48 –28.00 –136.82 –66.87 –74.25 –41.92 –89.66 –28.47 –39.55 −24.59

{19,27} –77.72 –43.31 –161.15 –76.58 –49.91 –32.22 –170.02–45.67 –33.30 −30.58

{23,17} –126.39 –62.72 –140.29 –68.26 –70.77 –40.53 –210.34 –125.92 −38.89 –39.31
{12,16} –91.63 –48.85 –98.58 –51.63 –112.48 –57.17 –122.29–139.95 –42.16 −42.03

{21,9} –147.24 –71.03 –105.53 –54.40 –105.53 –54.40 –199.17 –199.17 −42.29 –42.70
{17,25} –77.72 –43.31 –147.24 –71.03 –63.82 –37.76 –155.97–63.85 –37.35 −35.16

Table 5: BIC values for simulated Data

Sim. Data z1 (low) z1 (high) z2 (low) z2 (high) z3 (low) z3 (high) {z1, z2} { z1, z3} { z2, z3} { z1, z2, z3}
{11,20} 153.75 89.10 223.27 116.82 209.36 111.28 226.79 209.07 87.21 85.81

{2,22} 77.27 58.16 174.60 97.41 258.03 130.68 72.77 154.15 84.86 57.68

{0,13} 125.94 78.01 98.13 66.92 334.50 161.1845.15 287.13 66.81 49.25
{21,3} 341.45 163.96 174.60 97.41 258.03 130.68 372.74 484.30 84.86 88.95
{11,27} 105.08 69.69 271.93 136.23 160.70 91.87 208.67 94.03 82.95 67.12

{19,10} 278.89 139.00 209.36 111.28 223.27 116.82 365.34 386.32 87.21 91.30
{19,23} 188.51 102.96 299.74 147.32 132.89 80.78 352.49 159.58 77.40 80.21
{9,9} 216.32 114.05 132.89 80.78 299.74 147.32 190.85 401.04 77.40 81.49
{18,5} 306.69 150.09 167.65 94.64 264.98 133.46 339.48 455.14 83.98 88.07
{13,27} 118.94 75.23 285.84 141.78 146.79 86.32 241.94 95.00 80.48 68.75

{9,27} 91.18 64.14 258.03 130.68 174.60 97.41 176.12 92.14 84.86 64.35
{16,30} 118.98 75.23 327.55 158.41 105.08 69.69 271.0845.56 69.29 49.65
{28,23} 251.08 127.91 362.31 172.27 70.32 54.82 512.35 137.76 54.82 58.91
{10,2} 271.93 136.23 91.18 64.14 341.45 163.96 187.36 502.46 64.14 68.24
{0,17} 98.13 66.92 125.94 78.01 306.69 150.0945.15 222.17 75.62 49.25
{10,30} 77.27 58.16 285.84 141.78 146.79 86.32 172.7142.29 80.48 46.39
{20,15} 251.08 127.91 251.08 127.91 181.55 100.19 386.32 295.73 85.60 89.69
{26,26} 216.32 114.05 369.26 175.05 63.37 51.22 465.44 95.97 51.22 55.31
{28,1} 404.02 188.91 209.36 111.28 223.27 116.82 485.32 500.86 87.21 91.30
{10,29} 84.22 61.26 278.89 139.00 153.75 89.10 182.01 59.6481.79 55.15

{19,27} 160.70 91.87 327.55 158.41 105.08 69.69 342.74 94.03 69.29 67.12

{23,17} 258.03 130.68 285.84 141.78 146.79 86.32 423.36 254.54 80.48 84.57
{12,16} 188.51 102.96 202.41 108.51 230.22 119.59 247.27 282.59 87.01 90.02
{21,9} 299.74 147.32 216.32 114.05 216.32 114.05 401.04 401.04 87.27 91.37
{17,25} 160.70 91.87 299.74 147.32 132.89 80.78 314.64 130.40 77.40 76.28
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problem arises because these two specifications produce
identical maximized likelihood values, and, since the BIC
criteria considers them equally complex (single param-
eter models), they are penalized equally. Normalized
maximum likelihood, on the other hand, correctly de-
termines that the two-strategy mixture specifications are
more complex and thus makes the correct classification.

4.1 Tversky intransitivity Data

We applied our methodology to the Tversky (1969) Ex-
periment 1 intransitivity of preference data set. The Ap-
pendix contains a detailed description of Tversky’s ex-
perimental method as well as the results of our statistical
analysis. In summary, we analyzed eight subjects while
considering three decision strategies, two transitive and
one intransitive. We considered seven possible strategy-
specification pairs, including both low and high “error”
specifications (ǫ ≤ .03 andǫ ≤ .20) as well as a mix-
ture specification. We found that Subjects 1 and 6 were
best fit by an intransitive strategy with a high-error spec-
ification, while the remaining subjects were best fit by a
mixture specification over transitive strategies. We con-
clude that evidence for intransitivity of preference is rel-
atively weak. Our conclusions generally support several
previous re-analyses and replications of this experimen-
tal paradigm (Birnbaum, 2010; Birnbaum & Gutierrez,
2007; Birnbaum & LaCroix, 2008; Iverson & Falmagne,
1985; Regenwetter et al., 2011). Due to the number
of choice alternatives under consideration, we estimated
these NML values via Monte Carlo simulation.

5 Discussion

In this article, we presented an outcome-based strategy
classification methodology that assigns to a DM a best-
fitting strategy-specification pair given a set of choice
data. Our methodology allows for the evaluation of many
stochastic specifications, including probabilistic mixtures
of strategies. This methodology is based upon a binomial
(multinomial) random variable framework and uses nor-
malized maximum likelihood as a model selection crite-
ria. This methodology generalizes the basic approach of
Bröder and Schiffer (2003a) to multiple stochastic spec-
ifications using a different model selection criteria. We
illustrated our approach using data from a well-known
choice experiment and found that some DMs were best fit
by a single strategy with “error” specification while oth-
ers were best fit by a probabilistic mixture over multiple
strategies.

7For completeness, we also calculated AIC values for these data.
The results from that analysis were nearly identical to those of the BIC
analysis.

While we focused on deterministic decision strate-
gies, this perspective could be applied more generally
to stochasticdecision theories. Here we refer to theo-
ries which explicitly account for choice variability via
random variables, stochastic processes, etc. One could
simply apply the same NML criteria to any stochas-
tic decision theory that could be estimated via choice
data and carry out model selection in a similar fashion.
These stochastic theories would not require an additional
stochastic specification per se, although multiple stochas-
tic theories could be combined via a mixture process.

For most applications of our framework to real-world
data, it is critical to determine the set of strategies and
types of stochastic specificationsa priori. This leads
to two natural questions. First, what decision strate-
gies are reasonable? Fiedler (2010) recently pointed out
that, given enough strategies, one could model nearly any
decision process. Under our framework, considering a
large number of strategies is not necessarily a problem,
nor is considering a mixture specification over a large
number of strategies as this very complex model would
be sufficiently penalized for its ability to accommodate
many data sets. However, as with any model selection
framework, it is critical that strategies of interest are put
up against legitimate competitor candidate strategies and
stochastic specifications—not “straw models” to be triv-
ially rejected. Second, what stochastic specifications are
reasonable? This will depend upon both the types of de-
cision strategies that the researcher is interested in eval-
uating as well as the experimental paradigm itself. For
example, a researcher may be justified in selecting very
large error bounds on single-strategy specifications for
an experiment that involves presenting “noisy” unidimen-
sional information to a subject.

There are currently two major limitations of our ap-
proach. First, similar to Bröder and Schiffer (2003a),
we require all strategies to make distinct predictions, al-
though one could differentiate strategies that made iden-
tical predictions based on stochastic specification if theo-
retically warrented. In this respect, increasing the number
of distinct choice pairs can often assist in distinguishing
between strategies as this allows more opportunities for
different strategies to disagree. Glöckner (2009; 2010)
overcomes this limitation within a maximum likelihood
classification framework by incorporating additional de-
pendent variables such as decision time and confidence
data. Second, calculation of the NML criteria can be
very computationally demanding. For large values of|K|
and/orNab, our method estimates the denominator of the
NML value via Monte Carlo estimation, which is well-
known to have relatively slow convergence rates and does
not easily scale up to very high dimensional data. Future
work could explore more efficient methods of estimation.
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This methodology is well-suited to evaluate how the
nature of variability of choice changes over time. It would
be possible to consider choice data collected over multi-
ple time points. Given a set of choice data at each time
point, our methodology could be used to determine if the
best-fitting stochastic specificationtype, as well as strat-
egy, changes over time. Earlier approaches have found
that random “error” tends to dissipate over time with
“substantive” shifts of preference, via mixture specifi-
cations, remaining (Loomes et al., 2002). Future work
could also investigate how our methodology compares
with other methods of strategy classification, including
“accordance rate” methods.
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6 Appendix

In this section, we apply our methodology to a previously
published data set examining the fundamental choice ax-
iom, transitivity of preference(Tversky, 1969). A DM
is said to betransitive in his or her preferences, if, and
only if, for any three choice alternatives(a, b, c), if the
DM prefersa to b, and prefersb to c, then the DM must
prefera to c. Transitivity of preference is a necessary as-
sumption for a wide range of normative, prescriptive, and
descriptive decision theories (see e.g., Luce, 2000).

In a landmark paper, Tversky (1969) used alexico-
graphic semiorderdecision rule to construct an experi-
mental procedure designed to elicit intransitive choices
from his participants. A lexicographic semiorder is a gen-
eralization of a semiorder, a mathematical structure first
developed by Luce (1956) to model DMs’ preferences
in the context of just noticeable differences among stim-
uli. Davis-Stober (2010) presents a series of relationships
between semiorders and lexicographic semiorders within
the context of “Dyck paths”, mathematical structures
used in coding theory. Under a lexicographic semiorder
decision rule, a DM examines pairs of attributes of choice
alternatives sequentially, preferring an alternative if,and
only if, the difference between a set of attributes exceeds
a pre-determined “threshold.” Tversky used this non-
compensatory decision rule to design the five gambles8

displayed in Table 6.
For his experiment, Tversky displayed the payoffs of

these gambles numerically, with the probabilities dis-
played graphically as a shaded circle with the volume of
the shaded region representing the probability of a win.
The key idea is that gambles with similar probabilities
of a win, called “adjacent” gambles, such as gamblesa

andb, are perceptually more difficult to distinguish, thus
leading the DM to choose by payoff amount. However,
when the DM examines gambles that are “far” apart with
regard to probability of a win, such asa ande, the DM
would choose by probability. This decision-making pro-
cess would then yield intransitive preferences, e.g.,a pre-
ferred tob, b preferred toc, c preferred tod, d preferred
to e, bute preferred toa.

Tversky (1969) pre-selected 8 out of 18 participants to
undergo this experimental design (Experiment I) based
on their propensity to make intransitive choices during a
short pre-experiment session. Tversky presented all pair-
wise choices of these five gambles a total of twenty times
each to all subjects. Tversky concluded that Subjects 1–6
significantly violated transitivity, operationalized as weak
stochastic transitivity, atα = .05. This finding was later
overturned by a careful re-analysis of the data by Iver-

8A gamble or lotteryx = ($X; p), is read as a simple two-branch
gamble where a dollar amount$X is won with probabilityp, $0 dollars
won with probability1 − p.
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Table 6: Tversky’s (1969) Experiment I Gamble Set

a b c d e

($5.00, 7
24 ) ($4.75, 8

24 ) ($4.50, 9
24 ) ($4.25, 10

24 ) ($4.00, 11
24 )

Table 7: NML values for Tversky (1969) Data.

z1 (low) z1 (high) z2 (low) z2 (high) z3 (low) z3 (high) z1, z2 (mix)

Subj. 1 –178.50 –71.4737 –303.64 –116.14 –88.1214-30.26 –54.2994

Subj. 2 –213.26 –81.20 –220.21 –82.30 –195.88 –76.51-44.53

Subj. 3 –95.07 –33.47 –355.78 –137.16 –81.17 –30.23-26.89
Subj. 4 –272.39 –103.91 –150.69 –54.58 –206.34 –77.38-36.23

Subj. 5 –161.12 –60.07 –286.26 –109.03 –185.45 –70.87-39.14

Subj. 6 –77.75 –26.83 –348.86 –133.82 –32.54-8.48 –22.71

Subj. 7 –175.02 –66.37 –265.40 –100.38 –185.45 –70.10-43.44

Subj. 8 –102.02 –37.20 –341.88 –130.87 –157.64 –60.23-31.01

son and Falmagne (1985) with only 1 participant vio-
lating transitivity. Regenwetter, Dana, and Davis-Stober
(2011) recently developed a mixture model over prefer-
ence states consistent with transitive strategies and found
good empirical support for this model within this choice
paradigm. This raises the question, could the other “er-
ror” stories we described fit some DMs from Tversky’s
data as well as a mixture specification, or better?

In our analysis of the Tversky data, we will consider
three candidate strategies and carry out our methodology
on a total of seven strategy(ies)-specification pairs. Let
z1 be the strategy where a DM prefers the five gambles
solely by largest probability, for these particular gambles
this is equivalent to choosing by expected value. Letz2

be the strategy where the DM prefers the five gambles
solely by largest payoff, this corresponds to a reverse
ranking of the gambles compared toz1. Finally, let z3

correspond to the strategy where the DM prefers the gam-
bles according to the particular lexicographic semiorder
strategy described by Tversky where all paired compari-
son predictions are the same asz1 with the exception that
the DM prefers choice alternativee to a. To carry out our
methodology, we will consider the low (ǫ ≤ .03) and
high-error (ǫ ≤ .20) specifications for all three strategies
as well as the mixture specification ofz1 and z2. Ta-
ble 7 presents all seven estimated NML values for each
of the eight subjects in Tversky’s (1969) Experiment I
study. The maximum values of NML for each subject are
indicated in bold. These NML values were estimated via
Monte Carlo simulation with 10,000 simulated points per
strategy/specification pair.

Our re-analysis finds that only two subjects (Subjects
1 and 6) are best fit by the intransitive strategyz3 with

the high error stochastic specification. It is not surprising
that the high error specification was the best fit for these
subjects given their relatively large amounts of choice
variability. The remaining subjects were best fit by the
mixture specification over the strategiesz1 andz2. Said
another way, these subjects were best fit by a model in
which all choice variability is explained by a probabilistic
mixture of the transitive strategiesz1 andz2. Note that
only two subjects were best fit by an intransitive strat-
egy. This supports the general conclusions of Iverson and
Falmagne (1985), Regenwetter et al. (2011), Birnbaum
(2010), Birnbaum and Gutierrez (2007), and Birnbaum
and LaCroix (2008). For an alternative perspective, see
the re-analysis by Karabatsos (2006) using a Bayesian
nonparametric methodology. It is also interesting to note
that the strategy of choosing solely by payoff, either with
low or high error, is soundly rejected for all eight sub-
jects.

In agreement with Regenwetter et al. (2011), we con-
clude that intransitivity of preference is not well sup-
ported by these data and that a mixture model approach
provides a better fit. This analysis contrasts somewhat
with recent Bayesian analyses of these same data that
found support for Tversky’s original conclusions (Kara-
batsos, 2006; Myung, Karabatsos, & Iverson, 2005).
However, the key difference may be that these Bayesian
tests focused on testing weak stochastic transitivity and
did not consider mixture specifications in their analyses.
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