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APPLICATION OF A SELECTION THEOREM TO 
HYPERSPACE CONTRACTIBILITY 

D. W. CURTIS 

1. Introduction. For X a metric continuum, 2X denotes the hyper space 
of all nonempty subcompacta, with the topology induced by the Hausdorff 
metric H, and C(X) c 2X the hyperspace of subcontinua. These 
hyperspaces are continua, in fact are arcwise-connected, since there exist 
order arcs between each hyperspace element and the element X. They also 
have trivial shape, i.e., maps of the hyperspaces into ANRs are homotopic 
to constant maps. For a detailed discussion of these and other general 
hyperspace properties, we refer the reader to Nadler's monograph [4]. 

The question of hyperspace contractibility was first considered by 
Wojdyslawski [8], who showed that 2X and C(X) are contractible if X is 
locally connected. Kelley [2] gave a more general condition (now called 
property K) which is sufficient, but not necessary, for hyperspace 
contractibility. The continuum X has property K if for every € > 0 there 
exists S > 0 such that, for every pair of points x, y with d(x, y) < S and 
every subcontinuum M containing JC, there exists a subcontinuum N 
containing y with H(M, N) < e. Kelley also observed that 2X and C(X) 
are contractible if and only if the inclusion map of FX(X) = { {x}:x e X) 
in 2X is homotopic to a constant map. 

Let A(X) c C(C(X) ) denote the space of maximal order arcs in C(X). 
Thus each a e A(X) is an order arc with a singleton as one endpoint and 
X as the other. Let u:C(X) —> [0, 1] be a Whitney map. It is easily seen 
that the continuum A(X) is homeomorphic to the function space of 
co-parametrized segments 

{a:[0, 1] -> C(X)\a(s) c a(t) if s < t, and co(a(t) ) = t for all / } , 

topologized by the sup metric. We will freely identify these spaces, writing 
a{t) = a n co_1(0 for a G A(X) a n d 0 ê / § l . 

Let e:A(X) —» X be the endpoint evaluation map defined by 
e(a) = a(0). Clearly, C(X) is contractible if and only if e has a right 
inverse map f:X —-> A(X). We will show that if there exists a lower 
semi-continuous set-valued function &:X-^ A(X), with <I>(JC) c e~ \x) for 
each x, then there exists a right inverse / for e, and therefore C(X) is 
contractible. Note that while the total inverse function e~] is always upper 
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semi-continuous, it is lower semi-continuous if and only if X has property 
K (see Chapter XVI of [4] ). The inverse m a p / i s obtained by application 
of a general selection theorem which is formulated with respect to a 
convex structure on A(X) in which each e~\x) is a convex set. The 
selection theorem is identical in its formal statement to a theorem of 
Michael [3], but our hypotheses on the convex structure are somewhat less 
restrictive. 

It is tempting to look for a simplified characterization of hyperspace 
contractibility. Call an element a e A(X) admissible if for every e > 0 
there exists 8 > 0 such that, for every x e X with d(x, e(a) ) < 5, there 
exists a' e e~\x) with H(a, a') < e. The existence of an admissible order 
arc over each point of X is an obvious necessary condition for 
contractibility of C(X). However, examples given in Section 6 show 
that this admissibility condition is not sufficient for hyperspace con­
tractibility. 

2. A selection theorem. Let (F, d) be a metric space, and for each 
positive integer n let 

PH= {(',•) e [0, If = 2 h = l } . 

2.1. Definition. A convex structure on (Y, d) is a sequence of subsets 
Mn c Y" and maps kn:Mn X Pn —» F satisfying the following 
conditions: 

1) *„ ( .y , . . . , j ; / „ . . . , / „ ) =>>; 

2) *„(y„.. . , jv, /„. . . , W O , *,.+ „...,*„) 
= * n - i ( ^ i . - - - . ^ , - i . > ' , - + i . - - - ^ n ; 

3) for every c > 0 there exists 5 > 0 such that for every n and 

#»(W;C /)) ,MW);(' i)))< t 

if d(yÉ, y'É) < S for each /'. A subset C c 7 i s convex with respect to this 
convex structure if for each n, Cn c Mw and kn (Cn X Pn) <z C. 

The equi-uniform continuity condition 3) is crucial; this is the convex 
structure analogue of local convexity in a linear space. The above type of 
convex structure is slightly different from the one used by Michael [3]. For 
Y a compactum (which will be the case in our application to the space of 
maximal order arcs), Michael's convex structure satisfies the above 
conditions. However, Michael includes an extra condition which we do 
not require: 

c) ^ ( ( ^ / ) ; (',-)) = K-\ ( ( ^ p . - . ^ z - p ^ + p . - - , ^ ) ; 

(/„...,/,._!,*,. + /, + „ . . . , / „ ) ) if>>, =yl + v 
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This condition is not satisfied by the convex structure which we will define 
on A(X) in Section 4. 

2.2. THEOREM. Let X be paracompact, (Y, d) a metric space with a 
convex structure, and <f>:X—> Y a lower semi-continuous set-valued function, 
with each $(x) a complete (with respect to d), convex subset of Y. Then 0 
admits a continuous selection f.X —» Y. 

As in Michael's proof, fis obtained as the uniform limit of a sequence of 
4>-selections which are not necessarily continuous. For 8 > 0, we say that 
a function g: X —> y is 8-continuous if there exists an open cover °U of X 
such that diam g(U) < 8 for every U e °U. A sequence of 4>-selections 

fn\X —> 7 is inductively constructed such that: 
\)fn is 2""-continuous; 

ii)rf(/„,/n + 1 )<2-» . 
Then / = lim fn is a continuous selection. This construction is 
accomplished by the following lemma (which was suggested by Professor 
Michael as a simplification of the author's original construction). Let 
8 = 8(e) be as provided by condition 3) of Definition 2.1. 

2.3. LEMMA. Let e > 0 and a 8(e)-continuous selection f for 0 be 
given. Then for every y > 0 there exists a y-continuous selection g for $ 
such that d(f g) < c. 

Proof By the 8(€)-continuity hypothesis, there exists for each x E l a n 
open neighborhood U(x) such that f(U(x)) lies in a neighborhood 
V(f(x) ) with diameter less than 8(e). Since O is lower semi-continuous, we 
may assume also that 

$(x') n W(f(x) ) ¥> 6 for each x' G U(X), 

where W(f(x)) c V(f(x) ) is a neighborhood with diameter less 
than 8(y/5). Let {Ua} be a locally finite open refinement of the cover 
{U(x):x e A"}. For each a choose x such that Ua c f/(jc), and set 

^ = P ( / ( * ) ) and Wa = W ( * ) ) . 

Thus 

/ ( t f j U Hi c Fa, 

Ua
 c ^ _ 1 ( ^ ) = {̂  €= X:0(JC) n W; ^ 0}, 

diam Va < 8(e), and 

diam Wa < 8(y/5). 

Let {pa} be a partition of unity on X such that for each a, the 
support 

Xa = c\{x:pa(x) > 0} c Ua. 
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Linearly order the index set A for {pa}, and for each x G X set 

A(x) = {a G ,4:* G Xa) = {<*,,...,<*„}, 

with the ordering inherited from ,4. 
For each x and each a G V4(X), pick j>a(;t) G <I>(x) Pi H^. The desired 

selection g:X —> 7 is then defined by the formula 

£(*) = *„(.&,(*)> • • • > •&„(*); />«,(*). • • • >&„(*) )• 

Clearly, g is a ^-selection. Since for each / = 1,. . . , n,f(x) G f(Ua) and 

>V(*) G ^ . » w e n a v e 

{/(*), ya,(x) } c ^ . and d(f(x), yaj (x) ) < 8(e). 

Thus 

</(/(*), g(x)) = d(kn(f(x),. . . , / ( * ) ; 

Pai(x),. . . , An(x) ), kn(ya](x),. .. ,ya(x)\ 

pai(x)9. ..,pa(x))) < e. 

We verify that g is y-continuous. Given x ^ X, choose a neighborhood 
N(x) of * disjoint from each Xa not containing x. Thus, ^4(V) c ^4(x) for 
each xf G N(X). By continuity of /c ,̂ we may assume also that 

d(kn(yai(x)9.. . , ^ n (x ) ; /{,,(*), . . . 9pa(x) ), 

*„U,(*). • • - >-M*)î />«,(*'), • • • ,/>«„(*') ) ) < Y/5 
for each x' G N(X). We claim that 

diam g(N(x) ) < y. 

For x' G iV(x) we have 

A(x') = {ajr...,ajJ, 

where 1 =j] < . . . <jm ^ «. We may assume for convenience of notation 
thaty'y = / for each /'. Then 

M-M*'), • • - >yam(x')\ />«,(*'), • • - ,/>«>') ) ) < y/5, 
since 

{.«,,.(*), .«,,(*')} c Wa< and 

diam Ŵ  < 8(y/5) for each / = 1,. . . , m. 

And by the boundary condition 2), 

*m(A,(*). • • • ..&„,(•*); A,**'), • • • >PaJ
x') ) 

= *„(.««,(•*)> • • • . & „ ( * ) ; & , ( * ' ) , • • • >/>«„(•*') )• 
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Thus 

d(g(x%g(x)) <y/5 + y/5 = 2y/5, 

and 

diam g(N(x) ) < y. 

Lemma 2.3 provides both the initial and inductive steps for the 
construction of a sequence {fn} of O-selections satisfying the conditions i) 
and ii). Regarding condition i), we require in fact that each fn be 
8(2_w)-continuous, which leads in turn to the condition that 

d(f„,fn + l) < 2"". 

And clearly, the lemma provides an initial selection f which is 
ô(l/2)-continuous. 

3. Inductively open maps. A surjection g: Y —> X is said to be inductively 
open if there exists a subspace Y0 c Y for which the restriction 
g\ Y0: Y0 —> X is an open surjection [1]. Equivalently, g is inductively open 
if there exists a lower semi-continuous set-valued function ®:X —> Y such 
that 0(.x) c g~ \x) for every x. If so, the union of all such functions is the 
largest function O, and each &(x) is a closed subset of g~\x). 

A surjection g: Y —» X is almost open [1] if for every x ^ X there exists 
y e g _ 1 (x) such that g maps every neighborhood of y onto a 
neighborhood of x, i.e., >> is approximate by points of the fibers g~ \x'), 
for x' sufficiently close to x. Thus, every inductively open surjection is 
almost open. 

For a continuum X, consider the surjection e:A(X) —» X. As previously 
noted, X has property K if and only if e is open. In this section and the 
next, we apply the selection theorem to show that C(X) is contractible if 
and only if e is inductively open. Examples given in Section 6 show that 
this condition is strictly stronger than e being almost open. 

3.1. PROPOSITION. Let (Y, d) be a metric space with a convex structure, X 
a paracompact space, and g.Y'—> X a surjection such that each point-inverse 
g \x) is complete and convex. Then g has a right inverse f:X —> Y if and 
only if g is inductively open. 

Proof If g is inductively open, let $:X —•> y be the largest lower 
semi-continuous set-valued function such that $(x) c g~\x) for every x. 
Then O(x) is closed in g~\x), hence complete, and by continuity of the 
convex structure maps kn, $(x) must also be convex. Thus 4> admits a 
continuous selection/:^—» Y, and / i s a right inverse for g. The converse is 
trivial. 
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4. A convex structure on A(X). The following construction, together 
with (3.1), will complete the proof that C(X) is contractible if and only if 
the evaluation map e:A(X) —» X is inductively open. 

4.1 PROPOSITION. For every continuum X, there exists a convex structure 
on the space A(X) of maximal order arcs in C(X) such that each 
point-inverse e (x) is a convex subset. 

Proof. Consider a,, . . . , an G e~\x), for some x G X, and (/,, . . . , //;) 
G PtV and suppose first that each tt > 0. Let 

r, = /./(/. + . . . 4- /„), X^i^n. 

We define 

kn(a]9...,an', * , , . . . , / „ ) = a, 

where 

a = {a,(T,) U . . . U a , - , ^ , - , ) U aÉ(t): 

1 S / S /i, 0 ^ / â Tf.} c C(X). 

Since a,(0) = {*} and a„(T„) = an(\) = X, and since a G C(C(X)) 
has the linear ordering property that for each M, N ^ a, either M a N 
or N c Af, a is an order arc in C(X) between {x } and X. In the case that 
ti = 0 for some /', / ^ ( a p . . . , a w ; / , , . . . , tn) is defined by the boundary 
condition 2. It is easily seen that {kn} satisfies all the conditions for a 
convex structure. 

5. Fiber functions. In this section we consider certain types of 
set-valued functions from X to C(X), and their relationship to hyperspace 
contractibility. 

5.1 Definition. A fiber function for a continuum X is a set-valued 
function F:X -» C(X) such that 

{ {*}, * } c F(JC) c {M G C( I ) :x G M} for each x G X 

Let r denote the tota/ fiber function, defined by 

r(.x) = {M G C(X):x G M}. 

An element M of T(x) is admissible at x if for every c > 0 there exists 
8 > 0 such that, for each^ G X with d(x, y) < 8, there exists TV G 7X>>) 
with H(M, N) < €. Let yl denote the admissible fiber function, defined 
by 

^ ( * ) = {^ G T(x):M is admissible at JC}. 

And let L denote the largest lower semi-continuous fiber function. Thus for 
each x, L(x) c A(x) c r (x ) . The fibers T(x), A(x), and L(x) are 
compact, and are closed under unions. The function T is always upper 
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semi-continuous, but lower semi-continuous only if X has property K. In 
general, A is neither upper nor lower semi-continuous, and L is not upper 
semi-continuous. 

5.2. Definitions. A fiber function F is path-connected if each fiber F(x) is 
path-connected. We say F is monotone-connected if, for each element M of 
a fiber F(x), there exists a path in F(x) Pi C(M) between {x} and M. A 
monotone-connected, lower semi-continuous fiber function is called a 
c-function. 

Rhee [6] observed that if X admits a continuous c-function, then C(X) is 
contractible (and conversely), and he asked whether the continuity 
hypothesis is essential. The following result shows that it is not. 

5.3 PROPOSITION. The evaluation map e:A(X) —» X is inductively open if 
and only if X admits a c-function. 

Proof Suppose that X admits a c-function, and let K:X —> C(X) denote 
the largest c-function. We show first that K has the same closure 
properties as L, i.e., each fiber K(x) is compact and is closed under 
unions. Define a fiber function K by 

K(x) = {Mx U M2\MV M2 G K(x) } . 

Clearly, K is lower semi-continuous. Consider an element M, U M2 of 
K(x). Let 

fé:I -> K(x) n C(Mt) 

be a path between {x} and Mf-, i = 1, 2. Then g:I —» C(Ar), defined by 

g (0 = / , ( / ) U M2, 

is a path in A^(JC) Pi C(MX U M2) between M2 and M, U M2. Adjoining 
g t o / 2 , we obtain a path in AT(x) n C(M] U M2) between {x} and 
Mj U M2. Thus, K is also monotone-connected. Hence, K = K and each 
fiber AT(x) is closed under finite unions. 

Similarly, define a fiber function K by K(x) = K(x), Again, K is low­
er semi-continuous. Consider an element M of K(x). Then M = lim Mf-, 
for some sequence {Aff-} in AT(JC). L e t / : / —» AT(JC) n C(Mt) be a path 
between {x} = ^.(0) and M/ = /-( l) , / = 1 , 2 , . . . . Define paths g; by 

Since K(x) is closed under finite unions, each gt(t) is an element of 
K(x). Thus, each gt is a path in K{x) n C(Mt) between {x} and M7, with 
image ^(7) an order-arc. By compactness of C(C(X) ), there is a 
convergent subsequence of {gt(I) } whose limit is an order-arc in K{x) 
between {x } and M. Thus, AT is also monotone-connected. Hence, K = K 
and each fiber K{x) is compact. This shows also that there exist order arcs 
in K{x) between {x} and elements of K(x). 
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We now define the required set-valued function $:X —> A(A") by 
setting 

4>(;c) = {a:a is an order arc in K(x) between {x} and X). 

Given a e $(X) and e > 0, choose points Mx = {x}, M2, . . . , Mk = Xoi 
a, with Mt c M / + 1 and #(MZ, M / + 1 ) < e/2 for each /. By the lower 
semi-continuity of K, there exists a neighborhood F of x such that for each 
y e F, the fiber AT(j>) has elements A^ = { y } , . . . , A^ = X with 

//(M,, JVf.) < e/2 for each /. 

Replacing each N(by N{ U . . . U Nt, we may assume that Nf c Nl + ] for 
each i. By the previous paragraph, there exists for each 1 < k an order-arc 
/?,- in AX.y) between {y} and Af/+1. Then 

j8 = {#,. U JV:JV G £., / = 1, , A:—1> 

is an order-arc in K(y) between {y} and X, i.e., /? e ®(y)> It is easily 
verified that H(a, /?) < e. Thus $ is lower semi-continuous, and e is 
inductively open. 

The converse is immediate. If $:X —» A(X) is a lower semi-continuous 
set-valued function with each 4>(x) c e~\x), then the fiber function 
F:X-> C(X) defined by 

F(x) = {M e a:a G $(JC) } 

is monotone-connected and lower semi-continuous. 

5.4. THEOREM. For X a continuum, there exist the following implications 
between properties of the fiber functions T, A, and L, the evaluation map e, 
and hyper space contractibility: 

T = L ^ e open ^ X has property K 

II 
L monotone-connected 

II 
X admits a c-function ^ e inductively open 4& C(X) contractible 

II 
L path-connected 

A path-connected Ç} e almost open. 

Furthermore, none of the downward implications is reversible. 
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Proof. Note that since the fibers L(x) and A (x) are closed under unions, 
the existence of a path between {JC } and X in either of these fibers will 
imply that the fiber is path-connected. Now suppose there exists a 
path-connected, lower semi-continuous fiber function F. Then for each x 
there is a path in F(x) c L(x) between {x} and X, thus L(x) is 
path-connected. Similarly, if L(x) c A(x) is path-connected, then so is 
A(x). 

Suppose A is path-connected. For x e X l e t / : / —* A(x) be a path 
between {*} = /(0) and X = / ( l ) . Define a path g:/ —> r (x ) by 

g (0 = U{/(j):0 ^ 5 ^ / } . 

The image g(7) is an order-arc between {x} and A", and the closure 
properties of the fiber A(x) imply that g(I) c ^4(x). Then the proof of 
(5.3) shows that g(I) is an admissible order-arc, thus e is almost open. 

The remaining implications are either obvious or have already been 
established. The counterexamples in the next section will show that the 
downward implications are not reversible. 

6. Counterexamples. 

6.1. Example [2]. The continuum shown in Figure 1 does not have 
property AT, but the fiber function L is monotone-connected. The 
admissible fiber function A is lower semi-continuous, thus L = A. 
The fiber A(p) is a proper subset of the total fiber T(p). 

\w 
Figure 1 

6.2. Example. The non-planar continuum in Figure 2 admits a 
c-function, but L is not monotone-connected. L = A, and the fiber A(p) 
contains the bottom limit arc, but does not contain any proper 
nondegenerate subarc. 

6.3. Example. The non-planar continuum in Figure 3 does not admit a 
c-function, but L is path-connected. Again, L = A. The fiber A(p) 
contains all subarcs of the bottom limit arc containing/?, and every path in 
A(p) from {p} io X must go through these subarcs, but none of the 
nondegenerate subarcs can be approximated by elements of monotone-
connected admissible fibers over the points pr 
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limit arc 
limit arc 
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6.4. Example. For the continuum in Figure 4, A is path-connected, but L 
is not. The limit continua in this example are the triods with branch points 
a t P\-> P2> - • • > together with the bottom limit arc containing p. (The 
sequence of triods converges to this arc.) Paths from {pt} in the fibers 
A(pt) are obtained only by expanding southwest from/?,, whereas paths 
from {p} in A(p) are obtained only by expanding east from/?. Thus, {/?} 
is a component of L(p). 

Figure 4 

6.5. Example. [2]. For the continuum in Figure 5, A is not path-
connected. The element {p} is a component of A(p). 

Figure 5 

Rhee [6] called a continuum X admissible if, for some Whitney map <o on 
C(X), every admissible fiber A(x) intersects every Whitney level u~](t). 
He observed that this condition, which is not satisfied by the Kelley 
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example 6.5, is necessary for hyperspace contractibility, and asked 
whether it is sufficient. Since a continuum is admissible if its admissible 
fiber function is path-connected, the examples 6.3 and 6.4 show that 
admissibility is not a sufficient condition for hyperspace contractibility. 

7. Maps preserving hyperspace contractibility. Wardle [7] has shown 
that confluent images of continua with property K also have property K. 
However, hyperspace contractibility is not preserved by confluent maps, 
or even by monotone maps. For example, let Si9 i = 1, 2, be disjoint copies 
of the sin(l/jc)-continuum, and let J be an arc meeting each St at an 
endpoint of its limit arc. Take Y = Sx U J U S2, and let q: Y —> YIJ be 
the quotient map. Then C(Y) is contractible, but C(Y/J) is not. 

Nadler [4] has shown that hyperspace contractibility is preserved by 
open surjections, and Nishiura and Rhee [5] have observed that it is 
preserved by maps with right homotopy inverses. Using the selection 
theorem, we may extend these results to a larger class of maps which 
includes all inductively open surjections. 

7.1 PROPOSITION. Let g:Y —> X be a map between continua, and suppose 
there exists a lower semi-continuous set-valued function $>:X —» Y such that 
g o <b:X —» X is a single-valued function (therefore continuous) which is 
homotopic to \dx. Then if C(Y) is contractible, so is C(X). 

Proof Let g:A(Y) -» A(X) be the induced map. Since C(Y) is 
contractible, there exists a right inverse a:Y —* A(Y) for the evaluation 
map 

eY:A(Y)^Y. 

Then g O a O $ : I ^ A(X) is a lower semi-continuous set-valued function 
such that for each x e X, 

goao^(x) c e~\gO<ï>(x)). 

Let B.X —» A(^) be the largest lower semi-continuous set-valued function 
such that 

B(x) c e%](g O $(JC) ) for each JC. 

Each B(x) must be compact and convex with respect to the convex 
structure on A(X). By (2.2), B admits a continuous selection fi:X'—» A(X). 
Let h:X X [0, l ] ^ Z b e a homotopy with 

h(x, 0) = x and h(x, 1) = g O O(JC) for each x. 

Then considering the elements of A(X) to be co-parametrized segments, we 
may define a homotopy 

H:X X [0, 1] -> C(X), 

https://doi.org/10.4153/CJM-1985-040-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-040-7


HYPERSPACE CONTRACTIBILITY 759 

with H(x, 0) = {x} and H(x, 1) = X for each JC, as follows: 

H(x t)= f{h(x92t)}9 0 ^ i l / 2 
K ' ' \j8(jt)(2f - 1), 1/2 ^ / g 1. 

Thus C(X) is contractible. 
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