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COLLAPSING RIEMANNIAN METRICS 
TO CARNOT-CARATHEODORY METRICS 
AND LAPLACIANS TO SUB-LAPLACIANS 

ZHONG GE 

ABSTRACT. We study the asymptotic behavior of the Laplacian on functions when 
the underlying Riemannian metric is collapsed to a Carnot-Carathéodory metric. We 
obtain a uniform short time asymptotics for the trace of the heat kernel in the case when 
the limit Carnot-Carathéodory metric is almost Heisenberg, the limit of which is the 
result of Beal-Greiner-Stanton, and Stanton-Tartakoff. 

0. Introduction. In this paper we will study the asymptotic behavior of a Laplacian 
when the underlying Riemannian metric is collapsed to a Carnot-Carathéodory metric. 

Let M be a compact manifold with a Riemannian metric g, H a smooth distribution 
on M, HL the distribution orthogonal to H. Write 

where ##, gH± are the restriction of g to //, H1 respectively. Define a one-parameter fam­
ily of Riemannian metrics by setting for A > 0, 

Let d\ be the distance of g\, Ax the Laplacian associated with g\. We are interested in 
the behavior of Ax as À —• oo. Of course, in general A^ can be very wild when À —> oo. 
For example, if H is integrable, i.e. H induces a foliation, then the limit of A^ is just 
the Laplacian along the leave of the foliation, which is not well-posed. Thus we will 
restrict ourselves to the case where H is not integrable; in fact, we require that H satisfies 
Hormander's condition, i.e. H generates TM under the Lie bracket of vector fields. 

We first study the underlying geometry. It turns out that if// satisfies Hormander's 
condition, then the metric space (M, d\) converges to a metric space as À —> oo. The 
limit distance, dc can be described as follows. For x,y G M, let 

dc(x,y) = inf / g//(7,7)<fr . 

where Q//(JC, y) is the space of absolutely continuous paths which are tangent to H almost 
everywhere and join x to y. dc is usually called a Carnot-Carathéodory metric on M. So, 
as À —> oo, the geometry of// will become dominate, as dc only depends on the restriction 
of g to H9gH. 
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We then consider the Laplacian AA. Fukaya [4] observed that AA converges to a 
Hormander's sum of square of vector fields, 

A„ = -£*?, 

where e,- is an orthonormal basis for H. Moreover, Fukaya proved that each eigenvalue 
of A A will converge to those of AH as À —> oo. 

However, we can not expect that the convergence of the eigenvalues to be uniform, 
since the traces of the corresponding heat kernels have different short time asymptotics: 
in the Riemannian case the first term of asymptotics is like t~nl2 • const, where AT is the 
dimension of the manifold, but in the limit case the first term is like t~UHl2 • const, where 
HH is the Hausdorff dimension of the metric space (M, dc), and nn > n. For example, if 
M is a 3-dimensional manifold and H a rank 2 distribution, the asymptotics of the trace 
of the heat kernel of A// is t~2 • const, while that of A^ is r~3/2 • const. 

We will focus on a special case, namely when the limit Carnot-Carathéodory metric 
is almost Heisenberg in the sense of Getzler [10], see the definition in §3.2. In this case 
we obtain a uniform short time asymptotics for the trace of the heat kernel. Our main 
result is 

THEOREM 1. Suppose g H is almost Heisenberg. Denote Tr(exp(—s A\ ) J the trace of 
the heat kernel. Then, for a — X~2 ^ 0, 

(0.1) Tr(exp(-sAA)) = c a(^T2"+ 1 /2 + <r2"+1/2C,,a(s), 

where 

( ° - 2 ) Ca(s)=j2^LJ-Jb{X^ " ~ < ^ > « p f - ^ ^ - J r f r r f K x ) , 

and 

(Cs n, s > a; 

where (3 = 1/2 — In a/2 Ins, b(x, 0) is as in (3.6), C is independent of a G (0, 1]. 

Note that for fixed A ^ 0, then by the principle of stationary phase, the right hand side 
of (0.1) as s —• 0 has a singularity of the form s~n~ll2, thus there is no contradiction; 
while if À —> oo, the right hand side of (0.1) is 

& 

< 

0))-' 

\Cs 

% 

-n+p 

IT y 

, s < 

exp(-

a; 

ar2 

2b(x, 0)5 

V O l ( M )(2^(£(i^))V + ^ 
The latter is just the result of Beals-Greiner-Stanton [1], Stanton-Tartakoff [20]. In gen­
eral, if A25" « 1, then the trace of the heat kernel behaves like that of Aj associated 
with g, while if X2s » 1, then it behaves like that of AH. 

This paper is organized as follows. We first study the underlying geometry. In § 1 we 
prove that (M,d\) converges to (M,dc) as A —> oo. We propose the so called "partial 
connection", in which the covariant derivative is only defined for vectors tangent to //, 
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as a candidate for the limit of the Levi-Civita connections (cf. § 1.3.). In particular, the 
partial connection is uniquely determined by g H and the splitting TM = / / ® H1. 

In §2 we study the limit of A^. 
In §3 we study the short-time asymptotics of the heat kernel on an almost Heisenberg 

manifold. We will approximate the Laplacian by a left-invariant operator on the Heisen­
berg group at each point. This will yield an integral equation for the heat kernel. Iterating 
the integral equation, we obtain the exact fundamental solution. Much more difficult is 
to obtain uniform estimates for this solution. To do this, we have to introduce a dilation 
depending on A, the limit of which as À —> 1 (resp. À —* oo) is the usual dilation on Rn 

(resp. the Heisenberg dilation). 
Finally we remark that in physics a process such as the limit of the (M, gx) as À —> oo 

is in general called an "adiabatic limit ", while in control theory it is called a "penalty 
limit ". 

This work was supported in part by National Sciences Foundation of China for Young 
Scientists. 

1. The limit of (M,dx). 

1.1 Preliminaries. In this subsection we first recall some preliminary facts about 
Carnot-Carathéodory metrics. 

Let M be a connected manifold. A smooth distribution on M, H satisfies Hôrmander 's 
condition at a given point x G M if there are smooth vector fields v i , . . . , vm with values 
in H (m may depend on JC), such that v\(x), ...,vm(x) are linearly independent and span 
Hx, and TXM is spanned by 

(1 .1 ) V! (x), . . . , Vm(x\ [Vi, V2](x), • • • , K , [v/2, . . . , [V/r_,, Vir] • • •] (x). 

We say that H is s-step bracket generating at x if s is the smallest number such that r in 
(1.1) can be chosen r < s. 

A classical result of Chow says that if H satisfies Hôrmander ' s condition, then any two 
points can be joined by an absolutely continuous path tangent to H almost everywhere. 
Thus, the Carnot-Carathéodory distance dc is finite. 

From now on we assume that H is a smooth distribution and satisfies Hôrmander's 
condition. 

1.2 Limit of Riemannian metrics. 

THEOREM 1.1. As X —> oo, (M, d\) converges to (M, dc) in the sense of Hausdorff. 

PROOF. If the lemma is not true, then there exist {x\ } —> xo, {y\ } —> yo as A —+ oo 
and a positive number ÊQ such that 

\d\(xx,y\)-dc(xx,y\)\ >e0. 

Since d\(x, y) is an increasing function of À for fixed x, y, and d\(x, y) < dc(x, y), we have 

(1.2) dx(xx,y\)- dc(xx,yx) < - e 0 . 
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Suppose 7 A is a minimizing geodesic for gx which joins xx to yx. Embed (M, g) into 
RN isometrically for some N,6:M —> 7? .̂ Let 7/1 ([0,1], RN) be the space of Hl mappings 
with the inner product 

( M = jf( | .*)* 
where (•, •) is the standard inner product on RN. By the weak compactness of the unit ball 
in Hl([0,1], RN\ there is (5 G ^ ( [ 0 , l],RN) such that 

1. 9 o 7A —> /3 uniformly in C° as A —> oo (this implies that (3 can be written as 
(3 — 6 • 7o for some path 7o on M); 

2. 

(1.3) Um((flo7A,V)) = (08,V)), V E ^ ( [0 ,1 ] , / ^ ) . 

In (1.3) take V = f3, then by the Schwartz inequality, 

((/?,/?))< limdA(xA,;yA). 

For x G M, let P*: 7^)/?^ —•> T0X{H^) be the orthogonal projection. Note that Px 

depends continuously on JC. By the splitting TM — H © 7/1, we can write 

(1.4) 7 = (7)*/ + (U/ i , 

where (7)// (resp. (7)//-0 is the projection of 7 to H (resp. H1 ). 
In (1.3) take V such that V(t) = Plo • /3(f). So V(t) = P7o • T0io. We will prove that 

V(t) = 0, which implies that 7o is horizontal. Now using the orthogonal decomposition 
(1.4) and the Schwartz inequality, we have 

((V, V)) < lim [(Pl0 • T0ix(t),Plo • m A ( 0 ) dt 
(1.5) 

= lim / \PlQ.T9("fx)H\2dt + | P , 0 ( 0 T O ( 7 A ) ^ | 2 ^ . 
A—KX> JO JO 

The last term in (1.5) is bounded, as P, 6 are smooth, by 

Co J0 g((7A)//±,(7A)/yi) < C0\-
2dx(xx,yx) -> 0, as A - • oo. 

Since P7A • T0(ix)H = 0, the first term in (1.5) is equal to 

/jC^.-^oXmA)//!2. 

Since 7A —* 7o uniformly in C°, (Py^) — Z\(o) —* 0 as A —> oo, and hence the above 
term converges to zero as A —> oo. So we have V — 0. Thus 7o is horizontal. So 

dc(x,y) < (E(J0))
l/2 < lim£(7A)1/2 - lim dx(xx,yx), 

v / X A-^oo 

where E is the energy functional. This contradicts (1.2). 
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1.3 Partial connection. In this subsection we propose the so-called "partial connection" 
as the limit of the Levi-Civita connection of (M, g\) as A —> oo. 

Let 7Ti : TM —> H be the orthogonal projection corresponding to the decomposition 
TM = H®H±. 

DEFINITION 1.1. We say that a bilinear map 

Hx x C°°(H) -+ HX9 (vo, V) — Dfo V, 

depending smoothly on je G M, is a partial connection if 

Z^(/V)=/D?oV + (v(/)V, feC°°(M); 

D^V2-D^VX -^[Vi,v2], vuv2ec00(Hy, 

(1.6) Vo(VuV2) = (DÇ0VuV2) + (Vl9DÇoV2). 

Now let Z) be the Levi-Civita connection of (M,g). The relation between D and the 
partial connection is given by 

LEMMA 1.2. 77K? bilinear map (v0, V) G //x x C°°(H) —> TTIDVOV G C°°(//) w a 

partial connection. 

PROOF. By a direct computation, we verify that the bilinear map satisfies (1.6). 

LEMMA 1.3. Suppose that X\,..., Xm is an orthonormal basis for H, then for x G M 
fixed there is another orthonormal basis V\,...,Vm for H such that DyVj(x) — 0 and 
Vt(x) = Xi(x). 

PROOF. The proof is the same as in Riemannian geometry. 

COROLLARY 1.4. Given gH and a splitting TM = Z/®//1, then the partial connection 
is uniquely determined. 

PROOF. Let Lfl be the partial connection constructed in Lemma 1.2. We fix a point 
x G M, and let Vt be the orthonormal frame constructed in Lemma 1.3. Now 
7Ti [Vi9 Vj](x) = (Dy.Vj - D% Vi)(x) = 0. Suppose L^ is another partial connection. Write 

m 

(i-7) ô«.V/ = Ei1,-v'' 
1=1 

then at x we have r | = T^. Insert (1.7) into (1.6), then we see that Tf- at x is uniquely 
determined by gc, H1. 

REMARK 1. Thus the partial connection only depends on the Carnot-Carathéodory 
metric gn, and the splitting TM — H ® HL (but not on gH±). 

REMARK 2. There is a corresponding theory of characteristic classes for partial con­
nections, relating the curvature of a partial connection to the global geometry of the 
distribution//, cf. Ge[8]. 

In the end of this section we make a remark on the volume form of g\. Let dv\ be the 
volume form associated with gx. Then by a direct computation, 

dvx = X2kdv. 
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2. Limits of the eigenvalues. 

2.1 Limit of laplacians. Let AA be the Laplacian acting on functions associated with 

g\-
We first specify the limit of AA. 

LEMMA 2.1. The limit of the Laplacian as A —> oo is a second order sub-elliptic 
operator 

(2.1) A* = - £ * ? , 

where ei is an orthonormal frame for H. Moreover, A// is self-adjoint with respect to 

(f,h)o = Jjhdv, 

where dv is the volume form of g. 

PROOF. Let et (resp. bj) be an orthonormal basis for H (resp. HL) with respect to g, 

then 

So the limit is (2.1). The fact that A// is self-adjoint follows from the fact that each AA 

is self-adjoint with respect to 

j{-,-)dvx = X2m j{-,-)dv, 

where m is the rank of H. 

2.2 Limits of the eigenvalues. We will need the weighted Sobolev space Hl
w, which is 

the completion of C°°(M) under the norm 

LEMMA 2.2. Let 

Mi (A) < /12(A) < • • •, MI < M2 < M3 < • • • 

be r/ze eigenvalues of /\\, A// respectively. Then, each /x/(A) w a decreasing function of 
X, converges to /i; as À —> oo. 

PROOF. This is essentially Fukaya's result [4]. We will give a slightly different proof. 
We first prove that /i/(A) is decreasing. Let Ai > A2, and/1,/2,..., be the eigenvectors 

ofAAl, 
AAly;- = Mi(A,)/;-. 

By the max-min principle, 

,* , • (AAl/,/)o 
/iife+i(Ai)= m m — . 

f±fhi<k (f,f)0 
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Since A^ < AAo, so 

f±fhi<k (f,f)0 

Hence 

M^i(A2) = max mm y — > fik+\(X\) 

where V runs over all ^-dimensional subspace in H\,. 
Next we prove that /x,-(A) converges to /i, for some 7. Let lim^oo /x,(A) = #,. Nor­

malize the eigenvector,/(A), such that its L2-norm is one. Then its weighted Sobolev's 
Hx

w norm is bounded by a constant. So a subsequence of //(A) converges to a function x 
weakly in H]

w (strongly in L? ). Now, for any smooth function g, 

0=((AA-/i l-(A))/;-(A),g)o 

= (/(A), (AA - /x,-(A))g)o - (x, (AH - ai)g)0 = « A * - at)x, )g)0. 

So 
Afjx — a[X 

in the sense of distribution. By sub-elliptic estimates, xi is smooth, so x{ is an eigenvector 
of AT/. 

It remains to prove that for any e > 0, /x/(A) < /x/ + e for A big enough. Again, this 
can be proved by the min-max principle as above. 

3. Uniform short time asymptotics of heat kernels. Let g H be almost Heisenberg. 
We will approximate AA at any point by a left-invariant operator on the Heisenberg 
group in a neighborhood of that point. So we will first study the sub-Laplacian on the 
Heisenberg group. 

3.1 The case of Heisenberg group. Let Nn — R2n x R be the (In + l)-dimensional 
Heisenberg group; the multiplication is 

(Z\,t\)(Z2,tl) = (Zl + Z2J\ +t2+2zJjnZ2), 

where (z, t) G R2n x R, and 

Let hn be its Lie algebra, h*n the dual of/z„. The distribution// is the left-translation of the 
subspace {(&, 0)} C hn. Then the algebra of left-invariant pseudo-differential operators 
on Nn can be identified with the algebra of smooth functions on /**, and there is a calculus 
of differential operators on Nn, cf. Beals etal.[l]. However, we will not use this calculus 
here. Instead, we will use the method of [20]. 

Sometimes it is convenient to consider Nn as a homogeneous bundle 

(3.1) R-tNn^C, (zj)->z, 
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with a left invariant connection TM = H © Z/1, obtained from the decomposition hn = 
{(fo,0)} ® {(0,<5f)} at 0. On Nn there is a family of left-invariant Riemannian metrics. 
At (0,0,0) E Nn this metric can be written as 

gA = (&1)2 + .-- + (fe2„)2 + A20O2. 

The limit Carnot-Carathéodory metric g^H is, 

(3.2) gNH = T,foi-WnZÙ6t)2. 

This is just the horizontal lift of the metric on Cn via the connection TM = H © H1. 

Let Tr be the Heisenberg dilation on Nn x [0, oo) (cf [1], [20]) 

(3.3) Tr((zj),a) = ((rz,rlt),r2a)9 

and let R+ denote the interval [0, oo). 

DEFINITION 3.1. A smooth function/: Nn x R+ —> R is weighted homogeneous of 
degree k iff o Tr = r*f. A smooth function g: Nn x R+ x R+ —> R is almost weighted 
homogeneous of degree k if there is another smooth function,^ :NnxR+xR+ —> R such 
that 

g((rz, ?t), ?s, ?a) = r*/i ((z, 0, s, a, r). 

DEFINITION 3.2. A differential operator La on Nn ( with parameter a £ R+) is almost 
weighted homogeneous of degree / if for every almost homogeneous/ of degree l\, La(f) 
is almost homogeneous of degree l\ — I. 

For example, d/dzt is of degree 1, and 3 /3ns of degree 2. 
Consider the A-Laplacian on Nn 

and the sub-Laplacian 

Both operators are homogeneous of weight 2, if in (3.3) we take a = A"2. 
The kernel ps

H of the heat equation 

OS 
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Since d/dt commutes with A#, so the heat kernel of A\ is the convolution 

«^-(gM1 /*)^)**,. 
By abusing notations, we rewrite the above formula as 

Using the fact that the Fourier transformation of exp(—t2 /2) is TT1 /2exp(-;2 /2) , we have 

(„)^teft„).(ïLr7(^)'«p(4-?-^^)*. 
It is easy to see that the fundamental solution is weighted homogeneous. 

3.2 Almost Heisenberg manifolds. We say that g H (the restriction of g to //) is almost 
Heisenberg if//is a contact distribution, and at any point we can choose local coordinates 
{xuyi, t} such that in these coordinates, 

gH = Y,{dxi - 2yi dtf + {dyi + 2xi dtf + 0(1), 

where 0{ 1 ) denotes a term of higher order. 
An equivalent definition is as follows. 
Recall that if H satisfies Hormander's condition, then we can define a simply con­

nected nilpotent group at each point. Given a point x e M, the Lie algebra of this nilpo-
tent group is given by 

/ / ,e ( / / 1 / / / ) J C ©(/ / 2 / / / 1 ) x 0. . . 

with the induced Lie bracket, where 

H{ = H+[H,H],H2 = Hi + [HUH],.... 

In particular, if H is a contact distribution, then the nilpotent group at each point is just 

the Heisenberg group. 
The nilpotent group at x is called the tangent cone to M at x. Note that on the tangent 

cone there is a left-invariant Carnot-Carathéodory metric, induced from gH on HXo. Then, 
gH is almost Heisenberg iff the induced Carnot-Carathèodory metric on every tangent 
cone is isometric to the canonical metric (3.2). 

From now on we assume that gn is almost Heisenberg. 
Let U be a neighborhood of xo in M. We say that a smooth map 0: U x U —> Nn is an 

admissible coordinate system if one denotes Qx = G(x, )forx£U, then 
1. ©jc is a diffeomorphism, and maps i to 0 G iV„. 
2. 7^0* maps the induced metric on the tangent cone at xo to g^H on Nn {cf. (3.2)) 

isometrically. 
3. Sx maps the leave of the foliation of H1 onto the fibers of the homogeneous fiber 

bundle Nn->Cn. 
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LEMMA 3.1. Admissible coordinates system exist. 

PROOF. A similar construction is given in [20]. We will give an intrinsic construc­
tion. 

We identify the Lie algebra of the tangent cone at x G M with 

Let exp: Hx 0 H^ —* N be the exponential map of the Heisenberg group, then exp is 
a diffeomorphism and maps every affine space {77} + H^, r\ G ft, to a fiber of the 
homogeneous fiber bundle N—• Cn. 

Next we will use the exponential map for the Carnot-Carathéodory metric {cf. [6]) 

exp^: TXM —> M, 

where we have identified TXM with T^M using g. expx is a local diffeomorphism. At 0 G 
TXM, Texpx maps the tangent space to the subspace H^ C TXM to H^. Moreover, at x, 
the map Texp o(Texpx)~

l : TXM —» 7VV is an isometry between the Carnot-Carathéodory 
metrics. Now modify cxpx to a map Ox such that T<&x agrees with Texpx at 0, O* maps 
every affine subspace {77} + H^ to a leaf of the foliation induced by Z/1, and depends 
smoothly on x. Now define Ox = exp o(Ox)_1, then it satisfies the requirement. 

REMARK. Under admissible coordinates, the metric g\ can be written as 

(3.6) (®*xg\)(y) = gHiy) e \2b{x,y) (dt)\ yeN, 

where Sxg\ denotes the induced metric on Nn, 

gH = gNH + 0(l)(y). 

Here g^H is as in (3.2), and (9(1 )(v) denotes a quadratic form whose entries are almost 
homogeneous functions of degree 1. 

3.3 Fundamental solutions. As a corollary of (3.6), we have 

LEMMA 3.2. If G is an admissible coordinate system, then for fixed xy 

AA(f ° e ; ' ) = Axbu.oJ + //, / e c°°(yv„ x [o,oo)), / e c°°(M), 

where b(x,0) is the positive function in (3.6), Axb(x,0) Is the left-invariant Laplacian on 
Nny L is an almost homogeneous differential operator of degree 1. 

Let u(x, y, s, a) be the fundamental solution of 

ds x 

(3.7) u(x,y,0,a) = 8(x - y)\ 

where A^ means that the partial differentiation is only for the x variable. 
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Suppose M is covered by a finite number of admissible coordinate systems £//, M = 
(J Ui, 0j: : £// x Ut —+ Nn, fa a partition of unity of the open cover. Let c(x) = b~{

 /2(JC, 0). 
Define 

(3.8) pa(x,y,s) = J^faPcWafaQifayXs), 

where pC(X)a is the fundamental solution to the heat equation d/ds — Â^(x 0)A
 o n Nn, given 

by (3.5). 
Then, multiplying (3.7) by (3.8), using the integration by parts, we have 

(3.9) 

ua(x,y,s) =pa(x,y,s) + jT J^lua(x,yi,s-si), ^ +&%jpa(y\,y,si)\ dv(yi)dsx. 

Now, for fixed a, by the arguments of [15], if a ^ 0 (or that of [20] if a = 0), the 
fundamental solution*/ satisfies (3.9). 

Given two functions/(x, y, s, a), g(x, v, s, a), denote 

if t g)(x, y,s)= I I f(x, y\,s-si )g(y\ ,y,si) dv(y\ )dsu 
JO JM 

where dv(y\) means that the integration is only for the y\ variables. Define inductively 

q(x,y9s,a) = ( T - + A^J/?a(x,.y,s), 

qk = q]qk-\ *r = 2.3 

Then, from (3.9), the fundamental solution u(x,y, s, a) can be written as (formally) 

(3.10) Ua=Pa + T,(-l)kPa1(qk. 

Again for fixed a, by the same arguments in [15] for a ^ 0 (or [20] for a = 0), one 
can show that (3.10) is convergent and thus is the fundamental solution. What is more 
difficult is to obtain a uniform estimate for the series (3.10), which we will do next. 

3.4 Uniform estimates. In this subsection we will obtain uniform estimates for the series 
(3.10). 

First we will introduce a new dilation. First recall that if a ^ 0, the Laplacian can be 
approximated by an operator with constant coefficients, i.e. an invariant operator on the 
abelian group/?'2, and the appropriate dilation is a-(x)—> {ax) (cf. McKean-Singer [15]); 
whereas for a = 0, the sub-Laplacian can be approximated by a left-invariant operator 
on the Heisenberg group, and here the appropriate dilation is the Heisenberg dilation on 
Nn, cf. Stanton-Tartakoff [20]. However, to find a uniform estimate both dilations are 
no longer sufficient, so we will introduce a new dilation depending on a, the limits of 
which as a/s —• oo and a/s —» 0 will be the abelian dilation and the Heisenberg dilation 
respectively. W.o.l.g. we assume that a < l, s < 1. 

The new dilation Tw: Nn —» Nn is defined as 

(3.1D rwfc /)=(;^^; a f * 
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where 
1 In a 

0=- + ̂ r—, a>s. 
2 2\ns 

Note that \/2<9<l if a>s. If a = 1, then the dilation is that in Stanton-
Tartakoff [20]; while if a = 0, then it is that in McKean-Singer [15]. 

We say that a function/(y, $, a) on 7V„ x Q, considered as a smooth function of y with 
parameters a,s E Q (may not depend continuously on a, s), is uniformly fast decreasing 
with respect to (s, « ) G Q if for every (a, /:) E Z2n+1 xZ+, there is a constant C independent 
of 0, a) e Q, such that 

\da
yf{y,a)\<C\y\-k. 

LEMMA 3.3. The function 

g(z, U s, a) 

= f J(2r/ sh2r)nexp(-flr2 /2^)exp(-^r- ( E ^ , |z/|2)r/ th2r)dr, a < s, 
~~ \ Jexp(-^2 / 3-1r2 /2)exp(-/r0exp(- E Z V T / t h 2 ^ r ) ( 2 / r / sh2/r) , ? Jr, « > s; 

where 0=1—6, is uniformly fast decreasing with respect to {s, a) G [0, oo)2. 

PROOF. We rewrite 

(3.12) g(z, t,s,a) = / exp(—irt)g\{r,z,s,a)dr 

where 

= { (r/ sh2rf exp(-T2fl/2^)exp(-(E2^1 |Z*|2)T/ th2r), « < s\ 
gl{T,z,s,a) J exp(-^ 2 / 3 - 1 r 2 /2)exp(-Ez 2^r / th2s0r)(2s0r/ sh /2 r ) n , a > 5 

Since 2/3—1 < 0, exp(—S20~1T2 /2) is a uniformly fast decreasing function of r as 
long as a > s G [0,1]. On the other hand, if a < s, the function [rj sh(2r)) is fast 
decreasing uniformly with respect to a, s. So g\ is uniformly fast decreasing with respect 
to a, s G [0,1], i.e. for any /, m > 0, 

|3^i(T,s,a)|<c(i + M)-'B(i + E k 
|2 

Using integration by parts in (3.12) repeatedly, we prove the lemma. 
Note that the fundmental solution on Nn, p can be rewritten as (c(x) = b~xl2(x, 0)) 

cx^ -((A ,iï J(27r)-»-1
S-"-1(go7>1/2 i l l)(z,0, a<s; 

(3.13) „((*,,),,.«<*)) = j ( 2 r » - l s - f l - 1 % o 7 ; ; , M i ) ) f c ( ) i fl>,; 
which inspires the following definition (compare Stanton-Tartakoff [20]). 

DEFINITION 3.3. We say a function/(;c,_y, s,a): M x M x R+ x /?+ —> R is of type 
(/, m) if there are uniformly fast decreasing functions g\j, g2j,..., on Nn and functions 
/?/ with support in Ui respectively such that 
(3. 14) 

f f £i E,>o s-n-2«l+M2(gjti o 7>I/2 ! ! o 0,)(x,y)^ (.*,y), « < 5; 
/(*, v,s,a) I ^ E ^ ^ _ n _ 1 + / 3 + ( m + 7 ) , ( ^ Q r ^ i / 2 ̂ w 0 e^y^y), a > , 

where r5_i/2 9a is the dilation (3.11) on Nn. 
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LEMMA 3.4. p(x, y, s, a) is of type (2, 0). 

PROOF. This follows from Lemma 3.3 and (3.13). 

REMARK 1. Let M be the Heisenberg groupe , 0A] the map x —> x—x\. If k(x, y, s, a) 
is of type (/,ra), then dk(x,y,s,a)/dzt (where x = (zi,... ,Z2«,0) is of type (/ — 1, 
m—l/20), dk(x, y, s,a)/dtis of type (/—2, m — 1 ), zik(x, y, s,a)is of type (/ +1, m +1 / 20), 
tk(x, y, s, a) is of type (/ + 2, m + 1). Note that if a >s, a can be written as 

so ak(x, y, s, a) is of type (/ + 2, m + 2 — I/O). 

LEMMA 3.5. Ifk(x, y, s, a) is of type (/, m), then 

i,i < \Cs~n-2+ll2, a<s; 
1 1 - j Cs~"-{+P+md, a>s, 

j\k\dv(x) < Cs~l+l/2, a < s 
Csm0, a>s, 

where C is independent ofs, a. 

PROOF. By a direct computation. 

LEMMA 3.6. (3/3s + Ax
x)p(x,y,s,a) is of type 

1'mi4-u-^-2)'-
PROOF. By Lemma 3.2, 

^ - A A )P = L • k o eA, 

where k is of type (2,0), and Lisa sum of operators of the form 

i_ A i i A A A î ii 
dzt' Zidf yidzY Zitdz/ ZiZjZkW 'dzY "'dt2' OZjdt2 

over the coefficients of smooth functions. The action of L on k, L(k) is of type (l,m), 
where m is the smallest one among the following numbers 

1 1 
ÏÔ92§~ 

- 1, 
1 1 

~2~0'2~0~ 

, 3 ^ t 
_ 1 2 1 -' 20 ' 

1 
_ _ 

6' 

1 
29' 

It turns out that the smallest one is among 1/(20) —1,1 — 1/0,3/(20) — 2. 
As a corollary 
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COROLLARY 3.7. We have the following estimates 

d 
(3.15) \q(x,y,s,a[ 

(3.16) 

ds 
+ Ax

x)p(x,y,s,a) < { Cs~n-3/2, a<s,a^s\ 

/ \q(x,y,s, a)\dv(x) < 
JM 

c 
ïïTr 

where C is independent ofs, a. 

PROOF. We will check 

mO >-1/2, for/ 
20 ^ - ^ l - 2 -

Now this follows from the inequality 1/2 < 0 < 1. Hence g is of type (1 , -1 /26/ ) , so 

(3.15) and (3.16) follow from Lemma 3.4 and Lemma 3.5. 

We will denote qk(x,y, s, a) by qk
a(x,y, s). From the above estimates we have 

LEMMA 3.8. (1) 

(3.17) 

(2) 

\»<Mi<^rM,2-l> \\<la(X>y>ShV(Mx) -: r ( * } 

(3. 18) \\qa(x,y,s)\\Loo(MxXM) < Aks-n-kl2~5l2+^ a<s,a^s; 
Aks-n-kl2-5!2, a>s; 

where for k > 2n + 3, 

Here A is independent of a. 

(3) 

Ak = 
T(k/2-n- 1)' 

(3.19) "«-^-K-it^t^i < 
LP°(MxM) 

Cs2-n~{/2+P, a<s,a^s\ 

Csl-n-l'\ a>s: 

where C is independent ofs, a. 

PROOF. (3.17) can be proved by the same method as in [20], so we will only prove 

(3.18) and (3.19). 

First we prove (3.18) by induction on k. The case k — 1 is given in Corollary 3.7. 

Suppose (3.18) is true for/: — 1. Now, if a > s, 

(3.20) 
qa(x,y,s) = l£q(x,yus-si)q (y\,y,s{)ds\ 

JO JM 

+ / / . I^i^yus - s{)q
k~](yuy,s\)dsi 

Js/2 J M 
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Now 
, / 2 

Jo JM<iOc>yi>s-si>a)<i (y\,y,s\)dsi 

< 
rs/2 
/ / \\q(x,yuS-Si,a)\\Loo{MxM)\\q- (yuy,s\,t 

JO JM 
\\v{M^)ds\ 

rs/2 
<Ak^cf (s-slr

n-3/2^s i t /2 -3 /2 
1 ds\ 

1/2, 
<Ak_xCs-n-2+k'2+Pjo ' {l-sù-»-*'2^ 

<AkCs-n^2+k'2+P/2, 

ak/2~3/2 
°1 ds\ 

and 

L L * ^ 1 ' ^ 5 1 ^ {(yuy,si)ds] 
Js/2 JM 

< jsl2jMh^y^s-s\)\\v{Myx)h
k l(yuy,s\)\\L°°(M: xM)ds\ 

<Ak-XC ••L 
-n-3/2+0 

's/2'1 (S - Sl)k/2-3/2 

>/2, 

dsi 

t / 2 - 3 / 2 <Ak_xCs-n-2+k'2+P jQ ' (1 - s , ) - " - 3 ^ ^ 

<A*a-"-2+*/2+/72, 
so by (3.20), 

I f (q(x,yus - sùqk-X(yuy,sx)ds{\<CAks-n-1+kl2+V. 
\J0 JM I 

Similarly we can prove (3.18) for a <s. Now we prove (3.19) for s < a. 

pa(x,y[ys-si)Y,qi(yuy^i)dvylds] 
J0 j>k 

ds\ 

Pa t E (-iyv 
L°°(MxM) L°°(MxM) 

SO 

s/2 fV2 

dsi 
L°°(MxM) 

* / 2 . 
^UllLUMv,)^, «*! 

-70 j>k 

</ , / 2 c(5- J l r - - 2 ^E^ / 2 " l J r^ / : 

< c//2~n_1/2+/3 

and 

/ pa(x9yus-si)^2^(y\,y,si)dvyids 
h/2 & 

L°°{MxM) 

< I ln\\Pa(x,yi,S - Si)\\Li(M ^iWtyi^ 
Jsl2 j>k 

< C i S * / 2 -# i - l / 2+^ 

https://doi.org/10.4153/CJM-1993-028-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-028-6


552 ZHONG GE 

So (3.19) follows in this case. Similarly we can prove (3.19) for s > a. 

PROOF OF THEOREM 1. This follows directly from Lemma 3.8. 

3.5 Open problem. Let p\ be the Wiener measure associated with gx. What is the 
asymptotic behavior of p\ as \ —^ oo? One might conjecture that the following is true: 
let Q(JCO, 0 (resp. Q//(JCO, 0) be the space of continuous paths (resp. horizontal paths) 
starting from JCO, then 

^A(Q(*o, •) - &H(XO, •)) —• 0 as A —> oo, 

in a weak sense. 
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