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Abstract

Let G be a finite group of even order coprime to 3. If G admits a fixed-point-free automorphism
group isomorphic to the symmetric group on three letters, then we prove that G is soluble.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 05.

A number of authors (for example, [6], [7], [8]) have shown that finite groups
admitting certain fixed-point-free abelian automorphism groups are soluble.
In this paper we show that a finite group G which admits a fixed-point-free
automorphism group isomorphic to §; (the symmetric group on 3 letters) is
soluble if |G| is even and coprime to 3. A similar result for groups of odd
order coprime to 3 has been proved by B. Dolman [1].

The result proved here is a consequence of Glauberman’s characterization
of simple groups of order coprime to 3 [3]. However the proof given in
this paper uses fairly elementary methods and (of course) relies on the fixed-
point-free automorphism group.

Throughout the paper we put

~

Z=(a,7t|a3=7t2= 1,7w7r=a_l)=S3.

Our notation will in general follow Gorenstein’s book [4]. In particular, if
P is a p-group, J(P) = (4|4 C P, A is abelian of maximal order). In
addition, J,(P) = (E|E C P, E is elementary abelian of maximal order) .
The theorem proved in this paper is as follows:

© 1990 Australian Mathematical Society 0263-6115/90 $A2.00 + 0.00
384

https://doi.org/10.1017/51446788700029931 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700029931

[2] Fixed-point-free automorphism group 385

THEOREM. Let G be a finite group of even order coprime to 3. Suppose G
admits a fixed-point-free group of automorphisms L= S,. Then G s soluble
and either

(i) G has a normal 2-complement, or

(i) G =(T x O(G)) - C;(a), where T = O,(G) is a Sylow 2-subgroup of
G.

1. Preliminary results

ProposITION 1 (Burnside, [5, (10.15)]). If the finite group X admits a
fixed-point free automorphism of order 3 then X is nilpotent of class at most
2.

ProrosiTION 2 (Dolman [1]). Let G be a finite group, (|G|, 3) = 1. Sup-
pose G admits a fixed-point-free group of automorphisms ¥ = S;. Then
G contains a unique X-invariant Sylow p-subgroup for all primes p that di-
vide |G|. Further, any X-invariant p-subgroup is contained in this unique
X-invariant Sylow p-subgroup.

PrROOF. Let & = {P|P is a g-invariant Sylow p-subgroup of G}. By [4,
Theorem 6.2.2], ¥ # & and if P, Q € .% then P and Q are conjugate by
some element in C(ag). Clearly C;(o) has odd order as = is fixed-point-
free on Cg(0). Thus || = |Cg(0) : No(P)N Cy(o)| is odd (P € 5). As
n permutes the subgroups of %, n fixes a subgroup of 7.

Suppose P, Q are both X-invariant Sylow p-subgroups of G such that
P = Q" for some x € C.(g). Thus

Q" =P =1n(P)=n(Q") =2(Q) =0Q°

whence x’ € N;(Q). Thus x € N;(Q) as x € C;(g) which has odd order.
The last part now follows from the fact that the normalizer of a X-invariant
p-group is also X-invariant.

If the finite group G has order coprime to 3, SL(2, p) cannot be involved
in G. Hence two consequences of Glauberman’s Z.J-theorem apply for
primes p > 5.

ProrosiTiON 3 [2, Corollaries 2.1, 2.2). Let p be an odd prime which
divides G, G a finite group of order coprime to 3. Let S be a Sylow p-
subgroup of G and N = Ny(Z(J(S))). Then

(i) G/OP(G) = N/O’(N);
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(ii) two subsets of S are conjugate in G if and only if they are conjugate
in N.

The structure of soluble groups of odd order admitting a fixed-point-free
group of automorphisms isomorphic to S; has been determined by E. Shulit.

ProrosITION 4 [10, Corollary 2.1]. Let H be a soluble group of order co-
prime to 6 which admits a fixed-point-free group of automorphisms isomorphic
to Sy. Then H' is nilpotent.

The following result (also due to Shult), which plays a key role in the proof
of Proposition 4, is used (in this paper) to study soluble groups of even order
admitting X fixed-point-free.

ProroOsSITION 5 [9, Theorem 3.1]. Let p be an odd prime and H the semi-
direct product of the normal subgroup K, of order coprime to p, and {p)
of order p. Suppose H acts faithfully on the elementary abelian q-group
V', where (q,|H|)=1. If C,(p) =1 then [{p), K] =1 unless K has a
non-abelian Sylow 2-subgroup and p is a Fermat prime.

PROPOSITION 6. Let ¥ act fixed-point-free on the finite group G of order
coprime to 3. Then Cg(a) is abelian of odd order and for any subgroup
X C Cg(o) we have Ny(X) = Cyi(X). In particular, if Cp(c) = P for any
Sylow p-subgroup P of G, then G has a normal p-complement.

PRrOOF. Since # acts fixed-point-free on C;(g), C,(0o) is inverted by n
and is therefore abelian of odd order. Let N =[N (X), g],s0 [N,0]=N
as ([N[,3)=1.

By the Three Subgroups Lemma [4, Lemma 2.2.3], [N, 0, X]C[X, N, 0]
[, X, N]=1,whence N C C;(X). As X C C;(g), C;(a) C Cy(X) and
therefore N;(X) = (C(o) N Ny(X)) - N C C,;(X) as required. The final
statement follows from Burnside’s Transfer Theorem [4, Theorem 7.4.3].

PROPOSITION 7. Suppose X acts fixed-point free on the group H =V - U
where V is elementary abelian of order p", p > 5, U is a X-invariant
four group and V = [V, U]. If (u) = Cy(n) then n inverts C,(u), V =

2 2
Cp(u) x Cp(u”) x CV(u'; ) and C, (o) = {vv°v’ |v € C,(u)}. In particular,
ICy ()] = Cyy (w)| = p".

Proor. As [V, U]=V, C,(U) =1 so the decomposition of V' follows
from [4, Theorem 5.3.16]. The three factors have the same order as o per-
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mutes the 3 involutions in U. As [n, u] =1, n normalizes C,(u). Since
n inverts C,(g), m must invert Cp(u) also.

2. Groups of even order

We begin by determining the structure of a soluble group of even order
coprime to 3 which admits X as a fixed-point-free automorphism group.

ProrosSITION 8. Let M be a soluble group of even order coprime to 3 which
has a fixed-point-free group of automorphisms L= S;. Then either

(i) M has a normal 2-complement, or

(i) if T isa Sylow 2-subgroup of M, T<M and M = (TxO(M))-C,,(0).

PROOF. Let S be a Z-invariant Sylow 2-subgroup of O, ,(M) so that
M = N,(S) - O(M). Since o is fixed-point-free on S, C, (o) covers
N, (8)/C,,(S)-S by Proposition 5. Proposition 6 and the fact that C,,(S) C
Oy ,(M) [4, Theorem 5.3.3] yield that S =T.

Suppose now that (i) does not hold, so that M # T-O(M). We must show
that T = O,(M). As X is fixed-point-free on M/O,(M) we may assume
O,(M)=1.

Let x € C,,(6) NN, (T) — O(M) with x” € O(M) for some odd prime
D . Suppose first that [x, Z(T)]=1. Note that [x, T]<T and [{x, T]# 1
because x ¢ O(M) and C,(T) € T -O(M). Hence there exists a Z-
invariant four group E C [x, TINZ(T). As O,(M) = 1, there exists a prime
g with Q = O, (M) and [E, Q] # 1. Let V =[Q/®(Q), E] # 1 (where
®(Q) is the Frattini subgroup of Q). As [x, E]=1 and C,(x) 2 C,(0),
it follows from Proposition 7 that [x, V] =1. Now E<T so V is T-
invariant and V = [V, E] = [V, T]. The three subgroups lemma yields
[T, x, V]=1, which contradicts £ C [T, x].

We may now suppose that [x, Z(T)] # 1. Let F C Q (Z(T)) be a
minimal X(x)-invariant subgroup with [F, x] = F. As O,(M) = 1 there
exists a prime g with [Q, F]# 1 where Q = 0,(M). Let V be a minimal
Z({x)F-invariant subgroup of [F, Q/®(Q)]# 1.

If W is a minimal F-invariant subgroup of ¥ then W has |{g)}||(x)]| =
3|(x)| conjugates under the action of (o) x (x) by [4, Theorem 3.4.3]. This
implies however that there exists w € C,(6) — C,(x), against the fact that
C;(0) € Cy4(x) . This completes the proof of the proposition.

PROPOSITION 9. Suppose the dihedral group D = (n, x|x* = nt =1, nxn
=x"", p anodd prime) acts on the 2-group T of order 2" with Cr(x)=1.
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For any chief factor V = S/R of TD contained in T we have C,(n) =
Cy(m)R/R. Further, C (n)=2"".

Proor. By a result of Suzuki [4, page 328], any involution in ©R inverts
an element of odd order in DR. As C,(x) = 1, it follows from Sylow’s the-
orem that all involutions in 7R are conjugate in DR and hence in (7, R).

Now let s € S— R with [n,s]€ R. Then s™'zns = nr for some re R.
We know that zznr so there exists £ € R with st € Cg(n). Thus Cp(x)
covers C, (m) as asserted.

The final conclusion follows by induction on the length of a chief series for
DT and the fact that |C,(n)| = 2% it V| = 2* (note that V' is elementary
and C,(x)=1).

We conclude this section with a result on finite groups with Sylow 2-
subgroups of class at most 2.

ProvposITION 10. Suppose the finite group G has Sylow 2-subgroup T of
class at most 2. If Ny(Z(T)) = No(T) =T - Cy(T) then either

(i) G has a normal 2-complement, or

(ii) T contains a normal subgroup S with T[S cyclic and N (S)/C4(S)S
has a non-trivial normal 2-complement. Further if (|G|, 3) =1 then J,(T) C
S.

PROOF. Let Z = Z(T). We have that N;(Z) = Ny(T) =T x O(C4(T)).
If Z is weakly closed in 7" then Grun’s theorem [4, Theorem 7.5.2] states
that Ny(Z)NT=G'NT. Thus T'=TNOG)-G andas T' C Z, the
Frattini argument yields NG(T') = CG(T') . It follows that O’ (G)-G' hasa
normal 2-complement by Burnside’s transfer theorem, and (i) holds.

We now assume that Z is not weakly closed in 7 and choose S of
maximal order such that

Z#Z-Z°CS=TNT® forge G- Ny(T).

As (Z,Z%)C S and T' C Z wehave S<(T, T?). Put N = N,(S) and
C = C4(S) - S and note that C(S) = Z(S) x O(C4(T)). If he N— N4 (T)
then Z # Z-Z" €S € TnT". The maximality of |S| forces TNT" = §.
We use the bar convention for N/C and we have that 7 is an abelian T.L
Sylow 2-subgroup of N. Now N has one class of involutions [4, Theorem
9.1.4] and by Burnside’s Lemma [4, Theorem 7.1.1] all involutions of T are
conjugate in Ni(T). As Ng(T) =T it follows that T is cyclicand N has
a non-trivial normal 2-complement. Finally, if (7) = Q,(T), 7 inverts an
element 7 of or odd order at least 5 (if 3 does not divide |N|). As Z C Z(S),
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C(Z(S)) = S x O(C4x(T)) = C. Thus R,(Z(S)): C()NRQ,(Z(S))| = 4 and
J(T)CS.

3. Proof of the theorem

For the rest of the paper, G will denote a finite group of even order co-
prime to 3, and X a group of fixed-point-free automorphisms of G . Further
we let G be a minimal counterexample to the theorem. If G is soluble, the
theorem follows from Proposition 8. Thus G is a non-soluble group and
therefore all proper X-invariant subgroups of G are soluble.

LeEMMA 1. The group G is simple.

PrROOF. If N<G and N is Z-invariant, ¥ is fixed-point-free on G/N.
Thus as G is a minimal counterexample, so N =1 and G = G, x G, x
--- x Gy , the G; non-abelian simple groups which are transitively permuted
by Z. If o normalizes G, for some i, then C(g)NG; # 1 by Proposition
1. As n inverts C;(g), n normalizes G, so G = G, as required. If o
permutes G,, G,, G, then C(a)NG, x G, x G; = G, is non-abelian. This
contradicts Proposition 6, and the lemma is proved.

NoTATION. T will denote the (unique) X-invariant Sylow 2-subgroup of
G and M = N4(T). Also Z =Q,(Z(T)).

By Proposition 8, M is a maximal Z-invariant subgroup of G and N(Z)
=M also.

The theorem will be proved by determining the structure of M and using
this to deduce that C,(n) has a normal 2-complement.

LEMMA 2. (i) We have M = (T x O(M))-C,, (o) and T x O(M)# M.

(i) If H is a maximal Z-invariant subgroup of G, H # M, then H has
a normal 2-complement.

(iii) If U is any Z-invariant four group in T then C,(U)C M.

PROOF. (1) By Proposition 8, M = (7" x O(M)) - C,,(c). As T has class
at most 2 (Proposition 1), G is simple (Lemma 1) and M = N (J,(T))
(M is maximal XZ-invariant), Proposition 10 yields that M # T - C(T) =
T x O(M). (Note that C(T) = Z(T) x O(C4(T)) by Burnside’s transfer
theorem. As T<M, O(M)=0O(C,4(T)) andso T-Cy(T)=T x O(M).)

(ii) This follows from Proposition 8.

(iii) Suppose that C,(U) C H # M where H is a maximal Z-invariant
subgroup of G. Let R = HNT 2 C,(U) so that H = R- O(H) (by
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(i))). If U € Z, take A to be maximal abelian in R with UZ(T) C 4.
Then A< T and in any case there exists 4 € SCN(T) with A< R. Bya
result of Thompson [4, Theorem 8.5.2), O(H)NM C O(M) andso HNM =
Rx(O(M)NH) . Since N;(Z)= M and CO(H)(U) ¢ M wehave U # Z and
also [Z, CO(H)(U)] # 1. Hence there exists 1 #y € C;(a)N[Z, CO(H)(U)]
(by Proposition 1).

As Cy(0) € T x O(M) and C,(o) € Cy(y) we have that Co(y) € H.
By definition, y ¢ M so C,(y) € M either.

Let L be a maximal Z-invariant subgroup of G containing Cg(y). As
[U,Cy(0)]#1 and UC L wehave 1 # [LNT, C,,(d)] CLNT. This
contradicts (ii); namely that L has a normal 2-complement. The lemma is
proved.

NoTATION. Let & = {p|p prime, p divides |[M: T x O(M)|}. For p €
&, P, denotes the Z-invariant Sylow p-subgroup of M ; P, = PNO(M); P
denotes the X-invariant Sylow p-subgroup of G'. Note that & # & (Lemma
2(i)) and P, C P (Proposition 2).

LEMMA 3. Let pe P . Then

(i) Py =P, CPl(a) is abelian,

(ii) P, is not a Sylow p-subgroup of G; thatis, P, # P;

(iti) if Py# 1 then Z(P) is cyclic and Z(P)* C Cp(0) = Fy.

PROOF. (i) If P| # 1 then N (P;) C M (as T C Ny(P)) and [P, T] #
1). Thus P, = P, a Sylow p-subgroup of G. Now N, (Z(J(P)))nP C
P, # P, so by Proposition 3(i) and Lemma 1, N, (Z(J(P))) = N ¢ M . Since
[TNN, Pl=1 (Lemma 2(ii)) and O(N) C F(N) (Proposition 4), we must
have P =0O,(N } by Proposition 3(i). However 1 # P<{M , N) = G against
Lemma 1. Thus P, is abelian and P, = POCPl(a) by Proposition 8(ii).

(i) If B, =1, the assertion follows from Proposition 6. Suppose P, = P,
and P, # 1. Using the same argument as in (i), we see that Proposition
3(1) forces P = O (H), where H is the maximal Z-invariant subgroup of
G containing Ny (Z(J(P))). As C,(FP,) € M we have that F(O(H)) C
M and therefore O(H)N M « O(H) (Proposition 4). Since [TNH, P] =
1, a transfer theorem [4, Theorem 7.4.4) implies that [O(H), P} = P; in
particular O(H) ¢ M. Now [O(H)NM,P]1<«(O(H), T) = G so that
Ny (P)=C)(P).

Let P, = Cp(m) and note that P, C Py C O(M). By the Frattini argument
Ng(P,) = C4(P,) - (Ng(T)NNG(P)) = Ci(P,) Ny (P,). As P C C, (P,) we
have, in the same way, that N (P,) = C4(P,) - C,,(P,) - N, (P) = C;(P,) -
Ny (P)=Cg(P,) - Cy(P) = Cgx(P)) .
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From above, [O(H), P] = P, whereas [Co( H)(a) , P] C P, because C (o)
is abelian and P=F,C, (o). We apply the bar convention to O(H)/ Coum(P)-
Therefore we have a X-invariant subgroup X = Z , X Z, for some prime
g #p with [X, 0] = X . There exists x € Cy ;) (n) with ¥ € X and clearly
X € Ny (P,). We complete the proof by showing that [x, P J# 1.

Let P be a minimal XX-invariant subgroup of [P, X]# 1. Suppose that
Cp(X) # 1. Then P= CP(Y)XCP(BC’“)XCP(Y"Z). Since 7 inverts an element
X, in X and X, is fixed-point-free on C;(X), there exists y € Cp(X)NC(n)
(clearly = normalizes C;(X)). However 1 # yy"y"2 € Cp(o) and as =
inverts C,(0), y"=y~", a contradiction. Thus C 5(X) = Cp(x) = 1. Since
[P,X]=P, [P,0] #1 so Cs(n) # 1. We have that [x, P, N P] # 1 as
required.

(iii) Let P” # 1 be any Z-invariant subgroup of P,. As [T, P,] C N;(P")
and | # [T, P] € T, Lemma 2(ii) forces NG(P*) C M. From P #
P it follows that Z(P)* C P, — P, and as Z(P) is Z-invariant, Z(P) C
Co(c). Suppose that Q (Z(P)) 2 (a,, by) . Without loss we may assume
that [Cr(ay), byl # 1. Now Cg(ay) 2 P so Cylay) € H# M, H a
maximal Z-invariant subgroup of G. However 1 # [Cy(q,), b,] C Cr(a,)
means that H does not have a normal 2-complement. This contradiction
(of Lemma 2(ii)) completes the proof of (iii).

NoTATION. For p € & let Q (Z(P)) = (a,) if Py # 1 and if P, =1
take a; to be an element of order p in P,.

LEMMA 4. For p € & we have P, = (a)x F,, for some element a € CP] (o)
with Q, ({(a)) = (a,) .

ProOOF. Since Z(P)NFy=1 and P, = POCPl(a) , it is enough to show that
P,/ P, is cyclic. Suppose to the contrary; so we may choose b € C, P, (g)-P,,

b’ € P, and Cp(b) # 1. The argument given in the proof of Lemma 3(iii)
may be repeated to prove that Cp(a)) = 1 and Cgi(o) € Ci(d) € M.
In particular, [6, P|] = [o, )] # 1 by Proposition 6. Thus Q,(P,) 2
(ay, by, Y) with (b)) = Q,((b)) and Y a Z-invariant subgroup of type
(p,p) with [Y ,0]=7.

The following remark will be used in the proof:

(x) If P* is any Z-invariant subgroup of P, then N,(P") C M ; and if
d € C, (0) - Z(P) then Cp(d) =P,

(Recall 1 # [T, P] C T. As (T, P)) C C;(P"), Lemma 2(ii) yields
NG(P*) C M. If (d)) = Q,((d)) then for some x € (d,, a,), Cr(x) # 1.
As 1 # [Cp(x), a5] € Cr(x), the same argument yields that C,(x) C M.
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Thus Cp(d,) = Cp(x) = P, = PN M as required.)

Let R = N,(P|) # P, and note that Q,(Z(R)) = (a,). Therefore if y €
Q,(Z,(R)), y has at most p conjugates in R. Since Q,(P,) 2 (q,, b, )
it follows from () that Q,(Z,(R)) € P,. Now ¢ is fixed-point-free on
R/P, so |R: P| > pz. We conclude that C(o) N Q,(Z,(R)) = {a,) and
|R: P =p2 .For xe R—P, |C(x)N(Y, a,, byl sz so P, is the unique
abelian subgroup of R of its order. Hence P, char R so R =P and P,
char P.

Let H be a maximal Z-invariant subgroup (of G) containing N (Z(J(P))).
Since (ay) = Q,(Z(P)), Cy(a,) covers H/O(H) by the Frattini argument.
Thus |H| is odd as C,(a,) = 1. It now follows from Propositions 3(i) and
4 that P = Op(H) . Clearly OP,(H) CM as Cy(F) CM (by (+).

Suppose that H = P(HNM) = PN, (P,); thatis, N, (P,) covers H/F(H)
# 1. Let g divide |H : C,(P))| and let QO be the Z-invariant Sylow g¢-
subgroup of H. We have Q C N, (P,) whence Q C Q,, the Z-invariant
Sylow g-subgroup of M. If Q, C O(M), 1 # [N, (Q,),T] € T, so
N;(Q,) € M by Lemma 2(ii). It follows that @, « M (by Propositions
3(i) and 4). However this forces [, P,]1 =1 which contradicts the choice
of g. We have shown that ¢ € &% and so @, is abelian. If Q is the X-
invariant Sylow g-subgroup of G, there exists ¢ € CQl (o) with CQ(c) # 0,
by Lemma 3 (if Q, = O(M)NQ, # 1) or Proposition 7 (if @, =1).

As (a,) = Q,(Z(P)), (a,) <H, so {(a)) € Z(H) since H/Cy(a,) must
be cyclic and a, € C;(o) which is abelian. Now ¢ € C(0) C Cilqy) = H
soce Q. Let P= Cp(c) and let L be a maximal Z-invariant subgroup
of G containing C,;(c) (note that M # L # H). Since H = N, (Z(J(P))),
Proposition 3(ii) yields that (a,) is weakly closed in P and hence in P. It
follows from C,(a,) = 1 and the Frattini argument that |L| is odd. Let
P,=PnNL,aSylow p-subgroup of L. If P, ¢ P,, P, is non-abelian (as
b € P,). However q; € Pé C F(L) whence {(a,) € Z(L), a contradiction.
Hence P, C P, and P, is abelian. Now (a,) weakly closed in P, forces
N,(P,) € H=P(HNM). Thus P,= N,(P,))NP,C Py,as N,(P,) S HNM .
By Proposition 4, P; C F(L) so P;<0,(L)N,(P)) =L whence P;=1 by
(*) . Burnsides’ Transfer Theorem yields that L has a normal p-complement.
Thus [P,, 0] =1 so that P C P, C P, (by the choice of ¢). If Q, is the
Z-invariant Sylow g-subgroup of L, Q, # Q, (by the choice of c¢) and so
there exists d € (b,, a,) with CQ2 (d)Y#0Q,.

Let F be a maximal Z-invariant subgroup of G containing C,(d) (note
that H # F # M). As Cp(d) = P, and P is non-abelian, arguing as above
we conclude that P, is a Sylow p-subgroup of F, P = Np(P, Y n P aF
and P* C P,. Since P C P, 1 #[c, P,]C P" which contradicts (x).
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We have proved that H # P(H n M). Use the bar convention for
H/Cy(P)). Since Cy(0) C HN M, there exists X = Z x Z , Z-invariant
with [X, 0] =X . Put Q =Q,(Z,(P)) C P, . Recall that Cy(g) = (a,) and
1#[Q,0]CP,. If [X,Q] #1, o has a fixed point on [X, Q], which
contradicts Cq(0) = (a,) . Thus [Q, X] =1 so that CPO(T(') # 1. Thus the
centralizer of the Z-invariant subgroup C P, (X) does not lie in M , which
contradicts (x). This completes the proof of the lemma.

LEMMA 5. If p € & then C,(a) = 1. Further, if z€ Z, then C,(z) =
T xO(M)=Cg,(z).

ProOOF. Suppose C,(a) #1 and let U = (u, #°) be a Z-invariant four
group in C,(a) with u € C,(n). Suppose that P, = OM)N P, # 1.
Let L be a maximal X-invariant subgroup of G containing N;(P,), P, a
Sylow p-subgroup of L and R = NPZ(PI). Using the same argument as

in the previous lemma we get that |R : P| = pz. As L has a normal 2-
complement we may assume that XU normalizes R/P,. By Proposition 7,
[U, R] C P, which contradicts Lemma 2(iii). Hence F, =1 and P, = (a).

Let 4 = Cp(a). As U acts on Np(4)/4 and Cp(U) = (a), o has a
nontrivial fixed point on N,(4)/4 if Np(4) # A. However a € C,(0) is
abelian, so we conclude that 4 = P; that is, (a) C Z(P).

Let N = N, (Z(J(P))). We will show that N C C;(a). As N ¢ M,
a maximal Z-invariant subgroup of G which contains N has a normal 2-
complement (Lemma 2(ii)). Thus N has a normal 2-complement, and so
N=O(N)-(TnN). Now [TNN,{@]CTnNnZ(J(P))=1and TNN C
Cr(a). A maximal Z-invariant subgroup of G containing C,(a) also has
a normal 2-complement. Hence Cg(a) = O(Cg(a)) - Cp(a). The Frattini
argument yields that C,(a) € N. In particular U € TNN = C,(a).
By Proposition 4, O(N)' C F(O(N)) C Cy(a), whence Cou(@) 1 O(N).
Also, Lemma 2(iii) yields CO(N)(U) C M NO(N) C Cy(a). Therefore, if
O(N)/CO(N)(a) # 1, o has a non-trivial fixed point on O(N)/CO(N)(a) .
This contradicts C;(6) C C;(a) and we have shown that N C Cg(a). It
follows now from Proposition 3(ii) that (a) is weakly closed in P with
respect to G. ,

Since P # (a) and u ~ u” ~ u° in Ny(P)-Z, Cp(U) # (a). Now
Co(U) = PN M = (a) so m inverts CP/<a)(u) by Proposition 7. Hence
n inverts C,(u) (as a € C,(0)) and in particular, Cp(u) is abelian. The
fact that (a) is weakly closed in Cp(u) means that C,(u) is a Sylow p-
subgroup of C(u). Further, N,({a)) = C;(a) as ¢ must centralize the
cyclic group N ({a})/C;(a). The transfer theorem [4, Theorem 7.4.4] gives
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a¢ OD(CG(u)). Since T' C C,(u), the Frattini argument yields Cg(u) =
O (Cg(w)) - (a).

Forany g € #—~{p}, let Q, be the Z-invariant Sylow g-subgroup of M,
Q, ={d)xQ,, deCyl(a), Qy=OM)NQ, . Suppose that [d, C(a)] # 1.
As d € Cg(a), this implies that the maximal Z-invariant subgroup of G
containing C;(a) does not have a normal 2-complement. Thus C,(d) =
Cr(a) and d € Cg(u). The same argument as above yields that C,(u) =
Oq(CG(u))(d). As P, =1, M contains an abelian Hall Z-subgroup B C
Cylo),and M = (T x O(M)) - B. Also C;(u) has a normal subgroup Y
with YNM =T xO(M) and Cy(u)=Y -B.

Since Ny (Z(T)) = Ny(J,(T)) = Ny (T) = T x O(M), Proposition 10
yields that Y has a normal 2-complement. As (a) is a Sylow p-subgroup
of M, the Frattini argument yields that (a)T C N,(P) for some Sylow p-
subgroup P of O(Y). The weak closure of (a) in P forces [{a), P}=1.
However 1 # [(a), T] must centralize P # 1, a contradiction of Lemma
2(i1i). We have proved that C,(a) = 1.

It remains to show that C;(z) = C,(z) for z€ Z. As C\(2) = T x
O(M) and N,(J,(T)) = M, Proposition 10 yields that C;(z) has a normal
2-complement K. We claim that |Z| > 64. Indeed (o) x (a,) acts fixed-
point-free on Z. If |Z| = 16 then g, has order 5. However n inverts
(6, a,) whereas GL(4,2) = A; has no dihedral group of order 30. Thus
|Z| > 64, and |C,(n)| > 8. If K # O(M) there exists a four group (¢, u) C
C,(m) with Cp((t,u)) € OM). As (t°, u’) acts on this group we may
assume that C,((t,t”)) ¢ O(M). However (1, (°) is Z-invariant (recall
that ¢ € C,(n)). This contradicts Lemma 2(iii). Thus C(z) = T x O(M)
and the lemma is proved.

LEMMA 6. The subgroup C;(n) has a normal 2-complement.

PROOF. We begin with two remarks. First, if 1 # X C Z(T) then
Ng(X) C Ng(T)Cy(X) € M (by the Frattini argument and Lemma 5). Sec-
ond, if T, = C,(n), we have that T, is a Sylow 2-subgroup of C = Cg(n).
(Ifnot, T, C T¥ for some (m)-invariant Sylow 2-subgroup 7% of G with
TN C a Sylow 2-subgroup of C. As there exists u € T,NZ, O(M) =
O(M®) = 1. Further, all involutions in n7T are conjugate in 7 and so,
n, n¥ are conjugate in N (T¥) = M*. That is, there exists h € M* with
n = n¥" . Therefore T8 = CnT* = CNT? and so T, is (conjugate to) a
Sylow 2-subgroup of C.)

Now suppose that C does not have a normal 2-complement. We note that
NG (Z(T,)) = Ng(T,) - C4,(Z(T,)) S Ng(T,)- T as C,(Z(T,)) C T x O(M)
by Lemma 5. Therefore we have N.(T,) = N.(Z(T,)). It follows from

n
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Proposition 10 that either N.(T}) # C.(T,)- T, or there exists S, a T,
T./S, cyclicand N.(S,)/S,C.(S,) has a non-trivial normal 2-complement.
Let S denote either 7, or S, and let x be an element of odd order in
Nq(S) - M. (We can choose x ¢ M as Cy (n) =T, x CO(M)(n) 2

As x normalizes S’ C Z(T), the first remark (at the beginning of the
proof) yields that S is abelian. Since Z NS # 1, Cy(S) = Cr(S) x O(M).
Let A = C(S). As x normalizes O(C;(S)) = O(M), O(M) =1 and
Cs(8)=428S.

We have x € N;(4) and therefore, arguing as for .S, we get that

(0,(Ng(4))) = 1.

Thus 4 = O,(Ng(A4)) = C;(A4). Set N = N;(A) and apply the bar conven-
tion to N = N/A. If N(T) # C(T) there exists d of order g, for some
g € % with d € Cy(0) and [d,T] # 1. Since [d, TN Cp(d) = 1
(recall that C,(d) = 1), (d, ) acting on [d, T] satisfies the assump-
tions of Proposition 9. Therefore C[d,n(n) covers C[d,T]/[d’T]m 4(7) . As
this latter group is isomorphic to C{E,T](") and d has order at least 5,
C[d,T](n) C Tn is non-cyclic. This contradicts the fact that 7, /S is cyclic
(recall that S € A). We conclude that N(T) = C(T) andso N has a normal
2-complement K # 1.

If T is not cyclic, let (t,, t,) be afour group in T . We may assume that
[7,, Cg(;,)1 =K, # 1. Now [,, A1 = 4, € Z(T) so [f,, A,] = 1. Hence
[fo, Ay} = 1, which contradicts Lemma 5. If T is cyclic, let (f) = QI(T) .
Clearly |[7, Q,(4)]] > 4 as ¢ inverts an element of odd order in K. This
forces J,(T) C 4 and N C M, a contradiction. The lemma is proved.

We are now in a position to complete the proof of the theorem. By Lemma
2(1), # #,s0let p e . By Proposition 6, P, = Cp(n) # 1. As a is
fixed-point-free on Z (recall that P, = (a) x F,, P, a Sylow p-subgroup
of M), there exists a four group (u,, u,) € C,(n). Lemma 6 shows that
(u,, u,) normalizes a Sylow p-subgroup P of C=C,(m). Since Cylz) =
T x O(M) for z € Z", it follows that P C O(M). The same argument
as in the (second) remark at the beginning of the proof of Lemma 6 yields
that CNP, = CnN P, is a Sylow p-subgroup of C, (7). As P C O(M),
C NP, is a Sylow p-subgroup of C. Thus [o, P]=[o, Fy] (if [0, P1¢ P,
then P ¢ P|). If H is a maximal X-invariant subgroup of G containing
Ng(lo, P]), then H 2 (T, P) so H # M (Lemma 3(ii)). As p € & we
have 1 # [P,, T] € T. Thus H does not have a normal 2-complement,
against Lemma 2(ii). This contradiction completes the proof of the theorem.
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