MULTIPLICATION IN VECTOR LATTICES

NORMAN M. RICE

1. Introduction. B. Z. Vulih has shown (13) how an essentially unique
intrinsic multiplication can be defined in a Dedekind complete vector lattice
L having a weak order unit. Since this work is available only in Russian, a
brief outline is given in § 2 (cf. also the review by E. Hewitt (4), and for
details, consult (13) or (11)).

In general, not every pair of elements in L will have a product in L. In § 3
we discuss certain properties which ensure that, in fact, the multiplication
will be universally defined, and it turns out that L can always be embedded
as an order-dense order ideal in a larger space L# which has these properties.
It is then possible to define multiplication in spaces without a unit.

In § 4 we show that if L has a normal integral ¢, then ¢ can be extended
to a normal integral on a larger space L1(¢) in L#, and Li(¢) may be regarded
as an abstract integral space. In § 5 a very general form of the Radon-Niko-
dym theorem is proved, and in § 6 this is used to give a relatively simple
proof of a theorem of Segal giving a necessary and sufficient condition for
the Radon-Nikodym theorem to hold in a measure space.

2. Multiplication in spaces with a unit. Let L be a vector lattice
which is Dedekind complete (i.e., every set which is bounded above has a
least upper bound) and has a weak order unit 1 (i.e., inf(1, x) > 0, whenever
x> 0). An element ¢ € L is called wunstary if inf(e, 1 — ¢) = 0. (These
correspond, roughly, to characteristic functions.) e will always denote a
unitary element, and U(L, 1) = U(L) will denote the set of unitary elements.

It is easy to see that any set E of unitary elements is bounded below by 0
and above by 1 so that sup(Z) and inf(E) exist, and it is not hard to show
that sup(E) and inf(E) are also unitary, so we can conclude (and this will
be useful in § 6) that U(L) is a complete Boolean algebra.

For any x € L the characteristic element of x is defined to be

s(x) = sup, inf(n |x|, 1).

s(x) is always a unitary element, s(x) = Oif and only if x = 0, s(ax) = s(x) for
any realnumbera # 0,and x L y (i.e.,inf(|x/, [y|) = 0) if and only if s(x) L s(y).
Freudenthal has shown (3) that for every 0 < x € L there exists a largest
unitary element e such that e = x, and that e = 1 — s[(1 — x).]. It follows
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that if we define k,(x) =1 — s[(al — x);], then a-k,(x) < x for any
0 =x€ L, and k,(x) is the largest unitary element with this property.
Freudenthal showed that it also follows that if 0 < x € L, then there exists
0 <e€ U(L) and a > 0 such that ae < x.

Vulih used these results to show that any 0 £ x € L can be achieved as
the supremum of all the linear combinations of unitary elements that lie
below it. For applications in § 6 we shall need a somewhat stronger result.

TaEOREM 2.1. If 0 = x € L, then x = sup{rk,(x): rational » = 0}.
Proof. Since rk,(x) < x for every 7, there exists
y = sup{rk,(x)} = x.

Suppose x — y > 0; then there exists ¢ > 0 and a > 0 such that x—y > 2qe.
Let b = sup{d’: b’¢ = x} = 2a, and let r be a rational number such that
b—a =r £0b. Then 0 < re < x, therefore ¢ = k,(x), and hence

re < rk.(x) = y.

But then (b4 a)e = (b — a)e + 2ae < re + 2ae = vy + 2ae < x, contra-
dicting the maximality of b.

We now define multiplication:

(i) If e, ¢’ € U(L), the product ee¢’ is defined by ee’ = inf(e, e’).

(ii) If x 2 0 and y = 0, the product xy is defined by xy = sup(abee’:
0<ae=x 0=0be =y} if this supremum exists. xy is not defined if the
supremum does not exist.

(iii) In general, the product xy is defined by

XY = XpYy — XpY— — X Y4+ XY-
if all the products on the right exist.

Note. Vulih’s definition of multiplication in (13) is formally somewhat
different. For x, v 2 0,if 0 S &' = Yaern Sxand 0 £y’ = > bue'y < v are
two finite sums, he defines x’y" to be X .azbuere’s, and then defines xy to be
sup{x’y’: 0 = & = x,0 =y =y} if this supremum exists. He shows, how-
ever, that the particular representation of x’ as a finite sum does not affect
the product «’y’, and with this observation it is easy to see that his definition
of xy coincides with the one given above; for we may write " and 3’ in such
a way that they have disjoint summands, so that > axbu.exe’, has disjoint
summands and hence equals supy,.{axbuere’s}.

We list below some of the properties of the multiplication.

M (i) «x1 always exists and equals «.

M (i) If xy exists, then yx exists and equals xy.
M (iii) If xy, (xv)z, and vz all exist, then x(yz) exists and equals (xy)z.
M(@iv) If xy and xz exist, then x(y + 2) exists and equals xy + xz.
M (v) If xy exists and a is real, then (ax)y exists and equals a(xy).
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M(vi) If %,y = 0 and xy exists, then xy = 0.

M (vii) If xy exists, and |x'| < |x| and |y'| £ |y|, then x'y" exists.

M (viii) x L ¥ if and only if xy exists and equals 0.

It can be shown that any (partially defined) multiplication in L which
satisfies the above eight properties must in fact be identical to the Vulih
multiplication.

Remark. The uniqueness referred to above depends, of course, on the unit
1 (cf. property M(i)). In general, two elements which have a certain prod-
uct with respect to one unit will have a different product (or none at all)
with respect to another unit. However, there is a connecting formula (cf.
11, Theorem 5.3): let 1 and 1’ be two units of L;denote the product of x and ¥
with respect to 1 by xy, and the product with respect to 1’ by x * y; if xy and
x * y both exist, then 1’ (x xy) = xy.

Some further properties of the multiplication are the following.

M (ix) If xy exists, then s(xy) = inf(s(x), s(v)).

M(x) If x £ y, then there exists e > 0 and ¢ > 0 such that xe = ye 4 ae.

M(xi) For any element x = 0 and any integer # > 0 there is a unique
positive nth root of x, i.e., a unique y = 0 such that y" exists and equals x.

M (xii) Let {x,} and {y.} be two nets in L indexed by the same directed
set. Suppose (0)-lim(x,) = x, (0)-lim(ye) = ¥, %oVa exists for each «, and
there exists 2 € L such that |x,y.] = 2 for all @. Then the product xy exists
in L, and (0)-lim (x.y.) = xy.

M (xiii) Since xe 4+ x(1 — ¢) = x with x(1 — ¢) € {e}+ and xe € {e}+1, we
see that xe is the component of x in [e], the normal subspace of L generated
by e (cf. 2, Chapter II, § 1.5).

Vulih defines the inverse of an element x to be an element y (if such exists)
such that s(y) = s(x) and xy = s(x). He denotes the inverse of x by x~1,
and proves, for instance:

I(i) If x =2 0 and x! exists, then x~! = 0,

I(ii) If xy = s(x), then x~! exists and x~! = y-s(x),

1(ii) Let x =y + 2, where y L 2. If x~! exists, then y~! and z! exist,
and x~1 = y~! 4 z71 Conversely, if y~! and 2! exist, then x~! exists,

I(iv) If x! exists, and [y| = |x| and s(y) = s(x), then y~! exists and
Iy = |

Remark. Vulih’s proof of I(iv) can be considerably simplified by noting
the following criterion (cf. 11, Theorem 4.2): for x = 0, let

S={y20:s5(y) <s(x), and xy = s(x)};
then x1 exists if and only if sup(S) exists, and in this case x~! = sup(S).

3. Rings, and extensions to rings. L may fail to be a ring because the
multiplication may not be universally defined. Therefore, it is of interest to
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have conditions which will guarantee that L does indeed become a ring. We
list below several properties that a Dedekind complete vector lattice may
have; we shall show that they are mutually equivalent, and are sufficient to
make the multiplication universally defined.

Py: There exists a unit 1 € L; and, taking unitary elements with respect
to any unit, a subset S C L* has a supremum if for every 0 < e € U(L)
there exists 0 < ¢’ = e and a real number b such that xe’ < be’ for all x € S.

P,: A subset S C L+ has a supremum if for every 0 < y € L there exists
a real number b such that

sup inf (by, x) < by.

z€S

Pj: If the elements of the subset.S C L* are mutually disjoint, then sup(S)
exists.

TuEOREM 3.1. In a Dedekind complete vector laitice, L, P, Ps, and Ps are
mutually equivalent.

Proof. We shall prove Py = P, = P; = P;.
(i) Suppose P; holds, and suppose that S C L+ is such that for every
0 < y € L there exists b such that
sup inf (by, x) < by.

ze8S
In particular, if e > 0, there exists b such that

sup inf (be, x) < be,

z€S

and hence by Freudenthal’s result (3, Theorem 7.4.4) there exists 0 < ¢’ < ¢
and ¢ > 0 such that

sup inf (be, x) < be — ce'.

Then it follows that xe’ = be’ for every x € S; for if xe’ £ be’, then there
exists 0 < ¢’ = ¢’ such that xe’’ = be’’, and then be’ > (b — ¢)e’’ = inf(be”,
xe’’) = be'’, a contradiction. Hence, by Pi, sup(S) exists, and therefore P,
holds.

(ii) Suppose P, holds, and suppose that S C L+ is a set of mutually dis-
joint elements. For 0 < y € L we want to find b such that

sup inf (by, x) < by.

z€S
If y is disjoint from every x € .S, then b = 1 will do. Suppose that for some
2 €S, ¥ = inf(y,2) > 0. Then there exists b such that by’ £ sz ie.,
inf(0,z — by') < 0, and since ¥’ is disjoint from every other x € S,

sup inf (0, x — by’) < 0.
TES

But then, since y = ¥/,

sup inf(0, x — by) < 0, i.e., supinf(by,x) < by.
z€S

zZ€S
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Hence, by Py, sup(S) exists and so P; holds.

(iii) Suppose that P; holds. We first show that L then has a unit. In fact,
let {x,} be a collection of positive elements, maximal with respect to the
property that its elements are mutually disjoint. By property P; it follows
immediately that 1 = sup(x,) exists, and it is clear that 1 is a weak order
unit (for otherwise there would exist ¥ > 0 such that x 1L x, for all «, and
then {x,} could be enlarged).

Now let S C L* be such that for every 0 < e € U(L) there exists
0 < ¢ = e and b such that x¢’ < be’ for all x € S. We shall say (for the
moment) that a set E of unitary elements is admissible if its elements are
mutually disjoint and for each ¢ € E there exists @, such that xe < «.e for
every x € S. Let 4 be the collection of admissible sets. 4 is inductively ordered
by inclusion, so there is a maximal admissible set E,, and we can see by
the assumption on S that sup(e: e € E;) = 1. Now, since E, is admissible,
its elements are mutually disjoint, thus by property P; there exists

y = sup(a.e: e € Ey).

We can see that y is an upper bound for S; for if not, then there is an x € S
such that x £ y, so there exists ¢/ > 0 and b > 0 such that xe’ = ye' + be’
(property M (x)). But since sup(e: ¢ € E;) = 1, there exists ¢ € E, such
that ¢’ = ee’ # 0, and then

ye'' = ye-e = ape-e = xe-e = xe'' = ye'' + be'’,

a contradiction. Thus, ¥y is an upper bound for .S, and therefore, since L is
Dedekind complete, sup(S) exists. Hence P; holds.

We will occasionally refer to any of the properties P;, P, Pj; as simply
property P.
Next we show that property P is the sort of property we want.

TaEOREM 3.2. If L s a Dedekind complete vector lattice with property P, then
the multiplication is universally defined.

Proof. It is sufficient to prove that xy exists for any x,v = 0. Let
S = {abee’: 0 = ae = x,0 = be’ =y}, and consider any ¢, > 0. Now cey £ x
for some ¢, so there exists 0 < ¢’y = e such that ce’y = xe’. Similarly,
de'y £ y for some d, so there exists 0 < €'’y = ¢’y such that de”’y = ye,.

Now suppose abee’ € S, i.e., ae < x and be’ < y. Then

(abee')e”o — (aee”o) (be’e”o) < (xeuo) (ye"o) < ((36”0) (de”o) = cde’,.

Thus ¢'¢ and cd are as required in property P, thus sup(S) exists, i.e., xy
exists.

Remark. Another property that is sufficient to make the multiplication
universally defined is that 1 be a strong unit (i.e., for every x € L there
should be a real number a such that |x| < al). This follows immediately
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from the properties of multiplication M (i) and M (vii). However, these two
conditions are independent: for instance, the space of all real sequences has
property P but not a strong unit, whereas the space of all bounded sequences
has a strong unit but not property P. Hence, none of these conditions is
necessary for multiplication to be universally defined with respect to some
particular unit. On the other hand, property P is a necessary condition for
multiplication to be universally defined with respect to every unit in L (cf.
11, Theorem 7.3). It is also true that every element in L has an inverse if
and only if L has property P (cf. 11, Theorems 7.1 and 7.2).

A. G. Pinsker has shown (see 8;9) how a Dedekind complete vector lattice
L may be embedded as an order-dense order ideal in a certain Dedekind
complete space L# which turns out to have property P. His construction
of L* is, essentially, to adjoin to L the suprema of sets .S C L+ satisfying
the conditions of property Ps. More precisely (for details, see 8;9; or 11, § 8):
A subset X C Lt will be called a section if y € X whenever 0 = y < x € X,
and if X is closed in the sense that: {x.} C X and x, = x € L for all @ implies
sup(x.) € X. Let L be the collection of sections of L. An order can be defined
in Lby: X £ Yif X C VY, denote 0 = {0}, thus X = 0 always. For a = 0
we define X = {ax: x € X}, and X 4+ Y is defined by X + ¥V = {x + »:
x € X,y € V}; these two sets are again sections. We embed L+ — L by
0 <x—1{y: 0=y =< «x}; thus we may consider L+ a subset of L.

For X, Y, Z € L, it is not necessarily true that X + Z = V 4+ Z implies
X =Y (eg., consider Z = L*). However, this is true if we restrict our-
selves to locally bounded sections: a section X € L will be called locally
bounded if for every 0 < x € L there exists a real number b such that bx £ X
(i.e., bx ¢ X). Let L#t be the set of locally bounded sections; then for
X, V,Zec st X+Z =Y+ Z implies X = V; and furthermore, for
Y < Z € L#* there exists a unique element X € L#*+ such that ¥ 4+ X = Z.
Thus L#* is the positive part of a partially ordered linear space L#; and it
turns out that L# is a Dedekind complete vector lattice with property P,
and that L is embedded in L# as an order-dense ideal.

Remarks. 1. L* is, in a sense, both a minimal and maximal extension of L.
More precisely (cf. 11, Theorem 8.5): If L has property P, and is an order-
dense ideal in an Archimedean vector lattice E, then L = E; in particular,
L = L# if L has property P, and always L# = (L#*)% On the other hand,
if L is an order-dense ideal in a Dedekind complete vector lattice E with
property P, then L# = E.

2. Nakano, by a different construction, has shown (7, Theorem 34.4) how
to imbed L in a space with property P; (his ‘“‘universal completion’’), which
must then (by Remark 1 above) be the same as Pinsker’s extension.

3. Vulih refers to this imbedding L C L#, showing that multiplication is
universally defined in L# and that every element in L¥ has an inverse, but
he does not isolate the implicit necessary and sufficient condition (property P).
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It is useful to note that now we can easily define multiplication in a Dede-
kind complete vector lattice L not necessarily having a unit. For L# has a unit
and universal multiplication with respect to it, so we may say: for x,y € L,
if xy (which exists in L#) is in L, then the product of x and y is defined and
equals xy. It is easy to verify that the multiplication thus defined in L satis-
fies properties M(ii) to M (viii) and also M (xii).

4. Abstract integral spaces. We now take L to be a Dedekind complete
vector lattice, not necessarily having a unit. Let ¢ be a non-negative normal
integral on L (i.e., a non-negative linear functional such that if a set {x,} C L
is directed down to 0, x, | 0, then ¢{x,} | 0). As usual, x, y, and z will denote
elements of L and f, g, and % will denote elements of L*.

We define a new functional ¢# on I#* as follows: for 0 < f € L#+,
¢*(f) =sup(p(x):x € L,0 = x =f). ¢#(f) may equal —+o, but for
0<xc¢cL, ¢#(x) = ¢(x).

LemMa 4.1 (cf. 6, Theorem 30.6 in Note IX). If 0 < f, 1 f € L#*, then
¢¢t(f) = sup ¢#(fa)

Proof. Assume first that ¢#(f) < . Then, given ¢ > 0, there exists x € L
such that ¢#(f) = ¢(x) + e Let x, = inf(fs, ) = fo. Then x, € L and
Yo T %, 50 ¢(xe) T #(x). Thus sup ¢#(fo) + € = ¢*(f).

If ¢*(f) = o, then for any IV there exists x < f such that ¢(x) > N. Now,
inf(x, o) T x, therefore sup ¢#(fs) = ¢(x) > N. Hence ¢*(fo) T .

LeMMmA 4.2, ¢* is additive on L#+,

Proof. Let f,g € L#+. Every z € L* with 2 = f+4 g can be written
zg=x+ywithf=x € Ltand g =2 y € L*, and so

¢*(f+ g) =supp(x +3):0=x =f, 0=y =g
=sup(¢p(x): 0 =x = f) +sup(¢(¥): 0=y
o*(f) + ¢*(g).

Since ¢* is an extension of ¢, we may (when confusion does not result)
write ¢ for ¢*. Let us now suppose that ¢, and hence ¢*, is strictly positive.
We define Li(¢, L) = Li(¢p) = Ly = {f € L#*: ¢(|f]) < »}. A norm is de-
fined on Li(¢) by: |If|]1 = ¢(|f]). (This is a norm rather than a seminorm
since ¢ is strictly positive.) ¢ can then be extended to all of L;(¢) by defining
() = o(f+) — ¢(f-). We note that L is an ideal in L# and that, by Lemmas
4.1 and 4.2, ¢ (i.e., ¢#) is a strictly positive normal integral on L,. The next
theorem is the key to showing that L;(¢) (and later L.(¢)) is complete.

I\

g)

I

THEOREM 4.3. If 0 < f. T € Li(¢) and sup||fulls < o, then there exists
sup(fa) € L1(e).

https://doi.org/10.4153/CJM-1968-108-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-108-0

VECTOR LATTICES 1143

Proof. First we use property P, to show that there exists sup(f.) € L*.
Let 0 < g € L*, and suppose that for every b

sup inf (bg, fa) = bg.
Then

bo(e) = ¢(be) = ¢(sup inf(bg, /o)) = sup ¢(inf (b, fa)) = sup ¢(fa) <.

But since ¢(g) > 0, this cannot be true for every b, i.e., there must exist b
such that

sup inf (bg, f.) < bg.

But then, since L# has property P, there exists f = sup(fa) € L*.
Then to show f € Li(¢) we only have to notice that by Lemma 4.1,

é(f) = sup(fa) <.

THEOREM 4.4. Li(¢) is complete (in the norm ||-||1).

Proof. Suppose 0 = f, T € L; and sup||f,||1 < <. Then the theorem above
implies that sup(f,) exists in L;. But this is exactly the criterion of Amemiya
(1) that a normed vector lattice be complete. (Cf. also 6, Theorem 5.3 in
Note II, and Theorem 26.3 in Note VIII.)

More generally, if ¢ is not strictly positive, decompose L = Cy @ N,
(where N, is the null ideal of ¢ and Cy = N4+ is the carrier or support of ¢;
cf. (6, pp. 107-108 in Note VIII)). Since L is an order-dense ideal in L#,
this decomposition induces a decomposition L# = Cg# @ Ng* with ¢ zero
on Vg, and Cg#f = N ¥+, ¢ is strictly positive on Cy, so we may define L, (¢, L)
in general to be Li(¢, Cs). By an abuse of language we shall sometimes say
that f € Li(¢, L) if the component of f in C4* is in Li(¢, Cy). For ¢ strictly
positive we may also define Ls(¢, L) = Ls(¢p) = Lo = {f € L#: ¢(f?) < »}.
We can see that L, is a linear subspace of L#, for

F+e2=r4++ 2 22(7+ ¢,

s0 6((f + 0% = 26(7) + 6(e)), and hence f, g€ Ly implies (f+g) € La.
Also, since fg < 3(f* + ), then |¢(f2)| < 3(5(") + 6(¢2) < =, thus we
may define in L, an inner product (f, g) = ¢(fg) and a norm ||f||. = (f, f)*/%
(||1]2 is @ norm rather than a seminorm since ¢ (f?) = 0 implies f2 = 0 which
implies f = 0.)

THEOREM 4.5. Ly(¢p) is a Hilbert space.

Proof. We only have to prove that L, is complete in the norm ||-||.. Sup-
pose 0 = f, 1 € Ly and supl|fu)les < ©. Then 0 < £,27 € L; and

supl|fa*[[1 = sup||falls* < e,

https://doi.org/10.4153/CJM-1968-108-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-108-0

1144 NORMAN M. RICE

thus by Theorem 4.3 there exists g = sup(f,?) € Li. But
Ju S sup(f,% 1) < sup(g, 1) € L¥,

thus there exists sup(f,) € L¥, and by the continuity of the product and
uniqueness of the square root (properties M (xii) and M (xi)) we have
sup(f,) = g/ € L,. Thus by Amemiya’s theorem (1), L, is complete.

5. The Radon-Nikodym theorem. Let ¢ be a (non-negative) normal
integral on the Dedekind complete vector lattice L, and let ¢ be a (non-
negative) normal integral on some subspace E C L*¥. Then ¢ is said to be
absolutely continuous with respect to ¢ if Li(y) @ Ny is order dense in L#,
and for every 0 = f € L#, ¢(f) = 0 implies ¢(f) = 0.

Note. Requiring that Li(¢) @ Ny be dense in L# is equivalent to the more
usual condition (cf. 14, p. 134) that ¢ and ¢ be initially defined on the same
space, for we may regard (Li(¢) @ Ny) N (L.(¥) @ Ny) as the initial
domain of ¢ and ¢, and this is order dense in L*,

TaEOREM 5.1. Let ¢ be a normal integral on L, and let 0 £ g € L¥*. Define
v oon L# by (f) = ¢(fg) for all 0 £ f € L#+, and then on some subspace
E CL by y¥() = v(f+) — ¢(f-) whenever Y(f1) and (f-) are finite. Then ¢

is « normal integral, absolutely continuous with respect to ¢.

Proof. Since ¢ is normal and multiplication is (0)-continuous, ¢ is a normal
integral on Li(y) @ Ny = {f € L#: ¢(|f]) < =}. Next, if ¢(f) = 0, then
f € Ng# = (Cg#)+, and hence fg € (Cg*)+ = Ny, ie., ¢¥(f) = ¢(fg) = 0.

Finally, we must show that, given 0 < f € L#, there exists

0<heLi(y) ®Ny

such that # = f. But if f > 0, then there exists 0 < f; € Li(¢) @ Ny with
0<fisf,and ¢e> 0, ¢« >0, and 0 = b < « such that 0 < ee = f; and
ge < be. It follows that ¢ (ze) = ¢(aeg) = ¢(abe) < bp(f1) < «, and hence
ae is a suitable element in Li(y) @ Ny.

The main object in this section is to prove a converse to the preceding
theorem. First we prove a special case. (Notice that the proof parallels very
closely that given in (14) for measure spaces. Other classical proofs can
also be adapted to this abstract situation.)

THEOREM 5.2. Let L be a Dedekind complete vector latiice with a unit 1. Let
¢ be a strictly positive normal integral on L, and let 0 = ¢ be any normal integral
on L. Then there exists a unique 0 = g € Li(¢p) such that f € Li(y) of and
only if fg € Li(¢), and ¥(f) = ¢(fg) for every f € Li(¢).

Proof. (i) Define w on L by w = ¢ + ¢. w is clearly a strictly positive
normal integral on L. We must verify that o# = ¢# 4 y#. For 0 < f € L#,
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(6 +¥)#(f) =sup((@ +¥)(x): 0= x =f) =
sup(p(x) + ¢ (x): 0 = x = f) = ¢*(f) + ¢¥*(f).
On the other hand, 0 = x,y < f implies z = sup(x, y) < f; thus,

o(x) + ¢ (@) = (o + ¥)(2),
therefore

¢#(f) + ¢#(f) = sup(p(x) +¢¥(): 0 =%,y = f) =
sup((¢ +¥)(2): 0 =z = f) = (¢ + ¥)*().

Since, then, w* = ¢%* + ¢*#, we shall henceforth omit the # on ¢, ¥, and w.
(ii) Consider the Hilbert space Ls(w). For f € Ly(w) we have

W = edfD) = i) = (7L 1) = (Il 1]

by the Schwarz inequality. Thus ¢ is a bounded linear functional on L,(w),
therefore there exists # € Ly(w) such that

v() = (L k) = w(fh) = ¢(h) + ¥ (fh)

for all f € Ly(w). Since Ls(w) is order-dense in L#, the same equation holds
for any 0 = f € L#,

(iii)) We prove now several facts about k. First of all, 2 = 0, for, taking
f = s(h-) in the above we have that

0 = ¢(s(h)) = w(s(h)h) = w(—h-) =0,

and hence k- = 0.

Secondly, s[(1 — %),] = 1. For if not, then there exists ¢ > 0 such that
el s[(1 —h),], and then e — he = (1 — h)e =0, i.e., he = e. But then
Y(e) = wleh) = w(e) = ¢(e) + ¢(e) = ¢(e); hence equality holds through-
out, and thus ¢(e) = 0, a contradiction since ¢ is strictly positive. Note that
it follows immediately from s[(1 — ), ] =1 that 1 —h = (1 —h), =0,
i.e., » = 1; but this is a weaker statement.

(iv) Now we use the fact that every element in L# has an inverse to
define ¢ = (1 — h)~' € L#, Since 1 — 2 =0 and s(1 — k) =1 we have
that (1 — %)= 0 so that g 20 and (1 — A)~'(1 — k) = 1.

Consider any 0 < f € L#. Noting that f(1 — k)~! € L#+ we have that

o(fe) =o(fA — B)7'h) =y (fL — B)™") —¢(f(1 — A)7'h) =
YA =) A = k) = ¥(f).

This equation shows that g is a suitable element in L#. It also shows that
f € Li(y) if and only if fg € Li(¢) and, in particular, taking f = 1, it shows
that g € Li(¢).

(v) Finally, we show that g is unique. Suppose there also exists g’ such

that ¢(f) = ¢(fg’) for f € Li(¥). Let ¢ = s[(g — ¢’)+]. Then
dleg) = yle) = d(eg),
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so 0 = ¢(ge — g¢') = ¢((g — g)e) = ¢((g — £)+), and hence (g — ¢')+=0,
ie., g = ¢. Similarly, ¢ < g, therefore ¢ = g

TuaeoreM 5.3 (Radon-Nikodym). Let L be a Dedekind complete vector lattice,
¢ a (non-negative) normal integral on L, and ¢ a (non-negative) normal integral
absolutely continuous with respect to ¢. Then there exist ¢ unit 1 € L# and an
element 0 = g € L¥* such that [ € Li(y) if and only if fg € Li(¢), and
v(f) = ¢(fg) for every f € Li(y). g is unique in the sense that its component
in Cg# ts uniquely determined as soon as the unit 1 is determined.

Proof. Write L = Cy @ Ny. ¢ is zero on Ny, thus, by absolute continuity,
Y is also zero on Ny, i.e., we may consider ¢ simply as a normal integral
on Cy. And ¢ is strictly positive on Cj.

Let {x.} be a maximal collection of mutually disjoint positive elements
of C4, and take sup(x.) (which exists in L#* by property P3) as a unit for
Cgt. We have that Cy = U @ [x.] and Cg#* = U D [x,]# (where U@ [x.]
denotes the smallest normal subspace of L containing all the normal sub-
spaces [x.])-

For each «, [x.] is a Dedekind complete vector lattice with a unit x,, and
on [x.], ¢ acts as a strictly positive normal integral. Thus, by Theorem 5.2,
there exists a unique 0 = g, € [%.]¥ such that ¢(fa) = ¢(fags) for every
0 = fa € [wa]#. Let 0 = g = sup(g.) € Cg#* (again, g exists since Cg#* has
property P3). For any 0 = f € Cg# (whose component in [x,] is f,) the com-
ponent of fg in [x.] is fuga, for

(fe)a = fg %« (by property M (xiii))
= (%) (g%a) = fula
But then ¢(f) = 2Za¥(fo) = 2ad (faa) = 20 ((f2)a) = ¢(fg). The theorem

now follows immediately; in particular, the uniqueness of g follows from the
uniqueness of each g,.

Remark. The proof above depends on picking a particular unit for L*.
Actually, however, the formula for a change of units shows that the theorem
is true for multiplication with respect to any unit of L#.

6. Segal’s theorem. It is interesting to note that in Theorem 5.3, no
condition such as o-finiteness is required. In this section we use this fact to
give a new proof of Segal’s theorem (12), that the Radon-Nikodym theorem
holds in a measure space with no purely infinite sets if and only if the measure
algebra is localizable, i.e., complete as a lattice. (The Radon-Nikodym theorem
is said to hold in a given measure space (X, S, u) if for any integral ¥, abso-
lutely continuous with respect to the integral J"dp, there exists a wp-unique
measurable function g such that y(f) =ffg du for every y-integrable f.)

The proof proceeds essentially as follows: L;(X, .S, u) can be embedded in
the space of measurable functions M, but it can also be thought of as an
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abstract vector lattice L and embedded in L*. It turns out that the Radon-
Nikodym theorem holds in (X,.S, ) if and only if M and L# are isomorphic,
which occurs if and only if the measure algebra of (X, .S, u) is localizable.

In detail: (i) Let (X, S, u) be a measure space. We may suppose that p
is already extended by the Carathéodory procedure, so that .S is the o-algebra
of measurable sets. Let Sy be the subring of measurable sets with finite meas-
ure. We shall assume that there are no purely infinite sets, i.e., if £ is a meas-
urable set with u(E) > 0, then there exists a measurable set K C E such
that 0 < u(K) < «. It follows immediately from this that if ¥ C X is such
that u(FNK) =0 for all K € Sy, then F € S and u(F) = 0.

As usual, two sets E, F € S are said to be equivalent if E A Fis a null set.
We shall denote by E* the equivalence class of sets equivalent to E, and by
B the collection of equivalence classes. Then B is a s-algebra, the mapping
E — E* is a g-algebra homomorphism, and x may be considered as a measure
on B by setting u(E*) = u(E). The system (B, u) is the measure algebra of
the measure space (X, S, u).

Let By be the subalgebra of B consisting of those elements which have
finite measure. Since X has no purely infinite sets we can see that for any
E* € B, E* =sup(K*: K* ¢ By, K* £ E*); indeed, E* is certainly an
upper bound for all such K*, and if F* is also an upper bound, then
F* =z E* N\ K* for all K* € By, so that (E* — F*) N\ K*¥ = (E* N K*)
— F* = 0 for all K* € By, and hence E* — F* = 0, ie., E¥ £ F* as re-
quired. Thus By is order-dense in B.

(ii) Let L = Li(X, S, u) be equivalence classes of integrable functions
modulo null functions. Denote by f * the equivalence class of functions equal
to f almost everywhere. L is a ¢-Dedekind complete vector lattice with an
integral ¢ defined by ¢(f *) = [fdu for f* € L. ¢ is strictly positive on L,
hence L is Dedekind complete (in fact, super-Dedekind complete) and ¢ is
a normal integral (cf. 6, Lemma 27.16 in Note VIII).

(iii) Embed L C L*. For a unit in L#, let 1 = sup(e.), where e, is the
element of L determined by the characteristic function of E, for E, € S,.
Note that this unit is suitable for use in the Radon-Nikodym theorem. Also
recall that U(L*, 1) is a complete Boolean algebra.

(iv) We want to define a measure-preserving isomorphism p of B into
U(L*). For E* € B, define p(E*) to be the element in L determined by xz.
We note that p(B,) is order-dense in U(L#*): indeed, if 0 < e € U(L#*), then
(since L is order-dense in L#) there exists x € L such that 0 < x =< ¢; we
may take E to be a measurable set of finite measure which is contained in
the support of an integrable function determining x, and then p (E*) <s(x) <e,
as required.

Since B, is order-dense in the Boolean algebra B, and p(B,) is order-dense
in the complete Boolean algebra U(L#*), p can be extended uniquely to an
(algebraic) isomorphism of B into U(L#), and the extension (again denoted
by p) maps B onto U(L#*) if and only if B is complete, i.e., if and only if u
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is localizable (cf. 12, Lemma 3.3.2). It is easy to see that p is measure-
preserving, i.e., ¢ (p(E*)) = u(E*) for all E* ¢ B;indeed, if u(E*) < «, then
this is true by definition, and if u(E*) = «, then there are elements K* < E*
with finite but arbitrarily large measures so that ¢ (p(E*)) = ¢(p(K*)) | .
We also note that if ¢ € U(L#) is such that ¢(e) < =, then there exists
E* € By such that p(E*) = e¢; indeed, since p(B,) is dense in U(L#) and ¢
is strictly positive, there is a sequence {p(E*,)} such that p(E*,) =< e and
¢ (0(E*,)) T ¢(e), so that p(E*,) T e and hence p(sup E¥,) = sup p(E*,) =e.

(v) Let M denote equivalence classes of measurable functions modulo null
functions. The map p: B — U(L*) induces in a natural way an algebraic
isomorphism p* of M into L# as follows: for every measurable function f = 0
we have f* = sup(ax*s: 0 = ax*s = f*). The set

{ap(E*): 0 < ax*z S f*} C L#+

satisfies the conditions of property P,, therefore we may define, for0 < f* € 1,
p*(f*) = sup(ap(E*): 0 < ax*pr = f*) € L#. In general, we define
P(*) = 0% — ().

It is clear that p* is measure-preserving in the sense that, for 0 < f* € M,
o (p*(f*)) = ff du. In fact, p* is an extension of the identity map of L — L.
We can even see that p* maps L;(X, S, u) onto L,(¢, L): for, given
0 =f#¢€ Li(¢,L), we have f # = sup(r-k,(f*): rational » > 0) by Theorem
2.1. But ¢(k.(f#)) = r1¢(f#) < o, thus there exists E* € By such that
p(E*) = k,(f#), and hence p*(rx*z) = rk,(f #). The set {r-k,(f #): rational
r > 0} is countable, thus there exists f* = sup{(p*)~1(r-k,(f #))} € M, and
p*(f*) = f#. In addition, ff*d,u = ¢(f#) < o, therefore f* € Li(X, S, u).
Thus Li(X, .S, u) and Li(¢, L) are identical, and, in particular, there is no
confusion in saying that one integral is absolutely continuous with respect
to another without specifying which space is being considered.

Note that p(X*) = 1, so that by the uniqueness of multiplication, p* is
also an isomorphism of the multiplicative structure.

(vi) We have, in general, that p* (M) C L*, and we want to show that
equality holds if and only if u is localizable. In one direction this is clear,
for if p* maps M onto L¥, then p maps B onto U(L#*), and hence u is localiz-
able. Conversely, suppose u is localizable, so that p maps B onto U(L#). Then
for any e € U(L#) there exists p~1(e) = E* € B, thus for any element of the
form ae € L# there exists (p*)~1(ae) = ax*sz € M. Now suppose that
0 = f# ¢ L#* Again we have that f# = sup(r-k,(f #): rational » > 0) and
the set {r-k,(f #): rational » > 0} is countable, thus there exists

J* = sup((p*)7'(r-k.(f*))) € M,

and p*(f*) = f#. Thus p* maps M onto L# as required.
(vii) Now suppose u is localizable. Then M is isomorphic to L#* and hence
the Radon-Nikodym theorem holds in M since it holds in L#*. Conversely,
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suppose the Radon-Nikodym theorem holds in the measure space. For any
0 < g# € [# we want to find g* € M such that p*(g*) = g*. To do this,
define the normal integral ¢ by ¢ (f #) = ¢(f #g#). ¢ is absolutely continuous
with respect to ¢, and thus, the Radon-Nikodym theorem for L;(X, S, u)
implies that there exists g* € M such that ¢(f*) = ¢(f*g*) for all
0 = f* ¢ M. Then, considering ¢ and ¢ as integrals on L;(¢, L) again, we
have y(f #) = ¢(f #-p(g*)) for all 0 = f# € L*, and hence, by the unique-
ness of the Radon-Nikodym derivative, p*(g*) = g# as required. Thus p*
maps M onto L#, and hence, by (vi), u is localizable.

Note. Zaanen (15) gives a discussion of Segal’s theorem along somewhat
different lines. He also shows that, if the measure space has purely infinite
sets, then the Radon-Nikodym theorem holds if and only if the contracted

measure is localizable.
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