
MULTIPLICATION IN VECTOR LATTICES 

NORMAN M. RICE 

1. In t roduc t ion . B. Z. Vulih has shown (13) how an essentially unique 
intrinsic multiplication can be defined in a Dedekind complete vector lattice 
L having a weak order unit. Since this work is available only in Russian, a 
brief outline is given in § 2 (cf. also the review by E. Hewitt (4), and for 
details, consult (13) or (11)). 

In general, not every pair of elements in L will have a product in L. In § 3 
we discuss certain properties which ensure that, in fact, the multiplication 
will be universally defined, and it turns out that L can always be embedded 
as an order-dense order ideal in a larger space L # which has these properties. 
I t is then possible to define multiplication in spaces without a unit. 

In § 4 we show that if L has a normal integral 0, then 4> can be extended 
to a normal integral on a larger space Li(<t>) in L#, and £i(0) may be regarded 
as an abstract integral space. In § 5 a very general form of the Radon-Niko-
dym theorem is proved, and in § 6 this is used to give a relatively simple 
proof of a theorem of Segal giving a necessary and sufficient condition for 
the Radon-Nikodym theorem to hold in a measure space. 

2. Mul t ip l ica t ion in spaces w i th a u n i t . Let L be a vector lattice 
which is Dedekind complete (i.e., every set which is bounded above has a 
least upper bound) and has a weak order unit 1 (i.e., inf (1, x) > 0, whenever 
x > 0). An element e G L is called unitary if inf(e, 1 — e) = 0. (These 
correspond, roughly, to characteristic functions.) e will always denote a 
unitary element, and U(L, 1) = U(L) will denote the set of unitary elements. 

I t is easy to see that any set E of unitary elements is bounded below by 0 
and above by 1 so that sup(E) and inf(E) exist, and it is not hard to show 
that sup(E) and inf(E) are also unitary, so we can conclude (and this will 
be useful in § 6) that U(L) is a complete Boolean algebra. 

For any x Ç l the characteristic element of x is defined to be 

s(x) = supn'mî(n \x\, 1). 

s(x) is always a unitary element, s(x) = 0 if and only if x = 0, s (ax) = s(x) for 
any real number a ^ 0, andx_L y (i.e., inf (\x\, \y\) = 0) if and only if s(x) _L s(y). 
Freudenthal has shown (3) that for every 0 g x £ L there exists a largest 
unitary element e such that e ^ x, and that e = 1 — s[(l — x)+\. I t follows 
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that if we define ka{x) = 1 — s[{al — x)+], then a-ka{x) ^ x for any 
0 ^ x G L, and &a(x) is the largest unitary element with this property. 
Freudenthal showed that it also follows that if 0 < x G L, then there exists 
0 < e G U{L) and a > 0 such that ae ^ x. 

Vulih used these results to show that any 0 ^ x G L can be achieved as 
the supremum of all the linear combinations of unitary elements that lie 
below it. For applications in § 6 we shall need a somewhat stronger result. 

THEOREM 2.1. If 0 rg x G L, /Aew x = sup{r£r(x): rational r ^ 0}. 

Proof. Since rkr{x) S x for every r, there exists 

y = sup{rkr{x)} ^ x. 

Suppose x — y > 0; then there exists e > 0 and a > 0 such that x—3/ > 2ae. 
Let 5 = supjfr': b'e S x} ^ 2a, and let r be a rational number such that 
b — a ^ r ^ b. Then 0 < re ^ x, therefore e ^ &r(x), and hence 

rg S rkr{x) ^ 3;. 

But then (b + a)g = (b — a)e + 2ae ^ re + 2ae ^ y + 2ae ^ x, contra­
dicting the maximality of b. 

We now define multiplication: 
(i) If e, e' G U{L), the product ee' is defined by ee' = inf(e, e'). 

(ii) If x ^ 0 and y ^ 0, the product X3/ is defined by xy = sup {abee'i 
0 ^ ae S x, 0 t^ be' S y} if this supremum exists. xy is not defined if the 
supremum does not exist. 

(iii) In general, the product xy is denned by 

xy = x+y+ — x+3>_ — X-y+ + x_j_ 

if all the products on the right exist. 

Note. Vulih's definition of multiplication in (13) is formally somewhat 
different. For x, y ^ 0, if 0 ^ x' — £ax<?x ^ x and 0 ^ 3 / = X^Me'M g y are 
two finite sums, he defines x'y' to be E x . ^ W / » » a n d then defines X3> to be 
sup {x'y : 0 g x' ^ x, 0 ^ 3/ S y} if this supremum exists. He shows, how­
ever, that the particular representation of x' as a finite sum does not affect 
the product x'y', and with this observation it is easy to see that his definition 
of xy coincides with the one given above; for we may write x' and y' in such 
a way that they have disjoint summands, so that ^a,\b ^e'^ has disjoint 
summands and hence equals supx,M{ax&Me\e'M}-

We list below some of the properties of the multiplication. 
M(i) xl always exists and equals x. 

M (ii) If xy exists, then yx exists and equals xy. 
M (iii) If xy, {xy)z, and yz all exist, then x(yz) exists and equals {xy)z. 
M(iv) If xy and xz exist, then x(y + z) exists and equals xy + xz. 
M(v) If xy exists and a is real, then {ax)y exists and equals a{xy). 
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M(vi) If x, y ^ 0 and xy exists, then xy ^ 0. 
M(vii) If xy exists, and |x'| :§ \x\ and \y'\ S \y\, then x'y' exists. 

M (viii) x _L y if and only if xy exists and equals 0. 
I t can be shown that any (partially defined) multiplication in L which 

satisfies the above eight properties must in fact be identical to the Vulih 
multiplication. 

Remark. The uniqueness referred to above depends, of course, on the unit 
1 (cf. property M(i)). In general, two elements which have a certain prod­
uct with respect to one unit will have a different product (or none at all) 
with respect to another unit. However, there is a connecting formula (cf. 
11, Theorem 5.3): let 1 and V be two units of L\ denote the product of x and y 
with respect to 1 by xy, and the product with respect to V by x * y; if xy and 
x * y both exist, then V {x * y) = xy. 

Some further properties of the multiplication are the following. 
M(ix) If xy exists, then s(xy) = inf(s(x), s(y)). 
M (x) If x rjs y, then there exists e > 0 and a > 0 such that xe ^ ye + ae. 

M(xi) For any element x ^ 0 and any integer n > 0 there is a unique 
positive nth root of x, i.e., a unique y ^ 0 such that yn exists and equals x. 

M(xii) Let {xa} and {ya\ be two nets in L indexed by the same directed 
set. Suppose (0)-lim(xa) = x, (0)-lim(;>/«) = y, xaya exists for each a, and 
there exists z Ç L such that \xaya\ ^ z for all a. Then the product xy exists 
in L, and (0)-lim(xaya) = xy. 

M(xiii) Since xe + x( l — *) = x with x ( l — e) Ç {e}x and xe 6 {^}J--L, we 
see that xe is the component of x in [e], the normal subspace of L generated 
by e (cf. 2, Chapter II, § 1.5). 

Vulih defines the inverse of an element x to be an element y (if such exists) 
such that s(y) = s(x) and x^ = s(x). He denotes the inverse of x by x - 1 , 
and proves, for instance: 

I(i) If x ^ 0 and x~l exists, then x_ 1 ^ 0, 
I(ii) If xy = s(x), then x_ 1 exists and x~l = y-s(x), 

I(iii) Let x = y + z, where y 1. z. If x - 1 exists, then y~l and z - 1 exist, 
and x_ 1 = 3>_1 + z~1. Conversely, if y~l and z~x exist, then x_ 1 exists, 

I(iv) If x_ 1 exists, and \y\ ^ |x| and s(y) = s(x)y then y~l exists and 
ly-1] ^ Ix-1!. 

Remark. Vulih's proof of I (iv) can be considerably simplified by noting 
the following criterion (cf. 11, Theorem 4.2): for x ^ 0, let 

S = {y ^ 0: s (y) ^ s(x), and xy S s(x)}; 

then x_ 1 exists if and only if sup (S) exists, and in this case x_ 1 = sup (S). 

3. Rings, and extensions to rings. L may fail to be a ring because the 
multiplication may not be universally defined. Therefore, it is of interest to 
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have conditions which will guarantee that L does indeed become a ring. We 
list below several properties that a Dedekind complete vector lattice may 
have ; we shall show that they are mutually equivalent, and are sufficient to 
make the multiplication universally defined. 

Pi: There exists a unit 1 £ L; and, taking unitary elements with respect 
to any unit, a subset S (Z L+ has a supremum if for every 0 < e G U(L) 
there exists 0 < e' ^ e and a real number b such that xe' g be' for all x £ S. 

P2: A subset S (Z L+ has a supremum if for every 0 < y £ L there exists 
a real number b such that 

sup mi (by, x) < by. 
x£S 

P3: If the elements of the subset S C L+ are mutually disjoint, then sup(S) 
exists. 

THEOREM 3.1. In a Dedekind complete vector lattice, L, Pi, P2, and P3 are 
mutually equivalent. 

Proof. We shall prove Pi => P2 => P3 => Pi. 
(i) Suppose Pi holds, and suppose that S C L+ is such that for every 

0 < y G L there exists b such that 

sup inf (fry, x) < by. 
x£S 

In particular, if e > 0, there exists & such that 

sup mi (be, x) < be, 
x£S 

and hence by Freudenthal's result (3, Theorem 7.4.4) there exists 0 < e' S e 
and c > 0 such that 

sup mi (be, x) ^ be — cef. 
X 

Then it follows that xe' ^ be' for every x G S; for if xe' ^ fre', then there 
exists 0 < e" ^ e' such that xe" ^ &e", and then be" > (b - c)e" ^ inf (be", 
xe") = be", a contradiction. Hence, by Pi, sup(S) exists, and therefore P2 

holds. 
(ii) Suppose P2 holds, and suppose that S C L+ is a set of mutually dis­

joint elements. For 0 < y G L we want to find b such that 

sup mi(by, x) < by. 
x£S 

If y is disjoint from every x Ç S, then b = 1 will do. Suppose that for some 
2 6 -S, y = inf (y, z) > 0. Then there exists b such that by' ^ 2, i.e., 
inf (0, z — &y) < 0, and since y' is disjoint from every other x Ç S, 

sup inf (0, x — by') < 0. 

But then, since y ^ y , 

sup inf (0, x — by) < 0, i.e., sup inf (by, x) < by. 
x£S x€S 
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Hence, by P2 , sup (S) exists and so P 3 holds. 
(iii) Suppose t h a t P 3 holds. We first show t h a t L then has a unit . In fact, 

let {xa} be a collection of positive elements, maximal with respect to the 
proper ty t h a t its elements are mutua l ly disjoint. By proper ty P 3 it follows 
immediately t h a t 1 = sup(x a ) exists, and it is clear t h a t 1 is a weak order 
un i t (for otherwise there would exist x > 0 such t h a t x JL xa for all a, and 
then {xa} could be enlarged) . 

Now let S (Z L+ be such t h a t for every 0 < e G U(L) there exists 
0 < e' S e and b such t h a t xe' ^ be' for all x G S. We shall say (for the 
moment ) t h a t a set E of un i ta ry elements is admissible if its elements are 
mutua l ly disjoint and for each e G E there exists ae such t h a t xe ^ aee for 
every x G S. Let A be the collection of admissible sets. A is inductively ordered 
by inclusion, so there is a maximal admissible set E 0 , and we can see by 
the assumption on 5* t h a t sup(e: e G E0) = 1. Now, since E0 is admissible, 
its elements are mutua l ly disjoint, thus by proper ty P 3 there exists 

y = sup(aee: e G E0). 

We can see t h a t y is an upper bound for S; for if not , then there is an x G 5 
such t h a t x ^ y, so there exists e' > 0 and b > 0 such t h a t xe' ^ ye' + be' 
(proper ty M ( x ) ) . B u t since sup(e: e G -Eo) — 1, there exists e G E0 such 
t h a t g" = ee' ^ 0, and then 

ye" = 3/eV = ft^'g' ^ x e V = xe" ^ 3/£r/ + 6e",-

a contradict ion. T h u s , y is an upper bound for S, and therefore, since L is 
Dedekind complete, sup(S) exists. Hence P i holds. 

W e will occasionally refer to any of the properties P i , P2 , P3 as simply 
proper ty P. 

Nex t we show t h a t p roper ty P is the sor t of p roper ty we want . 

T H E O R E M 3.2. If L is a Dedekind complete vector lattice with property P , then 
the multiplication is universally defined. 

Proof. I t is sufficient to prove t h a t xy exists for a n y x, y ^ 0. Le t 
S = {abee': 0 ^ ae ^ x, 0 ^ be' S y], and consider any e0 > 0. Now ceo $ x 
for some c, so there exists 0 < e\ ^ e0 such t h a t ce\ ^ xe'Q. Similarly, 
de'o ^ y for some d, so there exists 0 < e"o ^ e\ such t h a t de"0 ^ ye"{). 

Now suppose abee' G S, i.e., ae ^ x and &e' :g 3;. Then 

{abee')e'\ = (aee" *)(}>e'e" *) S (xe'\)(ye'\) g (<*"<>) (<te"0) = afe 'V 

T h u s e"o and cd are as required in proper ty Pi , thus sup(S) exists, i.e., xy 
exists. 

Remark. Another proper ty t h a t is sufficient to make the mult ipl icat ion 
universally defined is t h a t 1 be a strong unit (i.e., for every x G L there 
should be a real number a such t h a t |x| ^ a l ) . Th i s follows immediate ly 
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from the properties of multiplication M(i ) and M(vi i ) . However, these two 
conditions are independent: for instance, the space of all real sequences has 
proper ty P b u t not a s trong unit, whereas the space of all bounded sequences 
has a s t rong uni t bu t not proper ty P. Hence, none of these conditions is 
necessary for multiplication to be universally denned with respect to some 
part icular unit . On the other hand, property P is a necessary condition for 
multiplication to be universally defined with respect to every uni t in L (cf. 
11, Theorem 7.3). I t is also t rue t h a t every element in L has an inverse if 
and only if L has proper ty P (cf. 11, Theorems 7.1 and 7.2). 

A. G. Pinsker has shown (see 8; 9) how a Dedekind complete vector lat t ice 
L may be embedded as an order-dense order ideal in a certain Dedekind 
complete space L # which turns out to have proper ty P. His construct ion 
of L # is, essentially, to adjoin to L the suprema of sets 5 C L+ satisfying 
the conditions of proper ty P2 . More precisely (for details, see 8; 9; or 11, § 8 ) : 
A subset X (Z L+ will be called a section if y £ X whenever 0 ^ y ^ x £ X, 
and if X is closed in the sense tha t : {xa} C X and xa ^ x £ L for all a implies 
sup(x a ) G X. Le t L be the collection of sections of L. An order can be defined 
in L by: X S Y if X C F ; denote 0 = {0}, thus X ^ 0 always. For a ^ 0 
we define aX = {ax: x ^ I ) , and X + F is defined by X + Y = {x + y: 
x G X, y £ Y} ; these two sets are again sections. We embed L+ —> L by 
0 ^ x —^ {y: 0 S y = ^ } ; thus we may consider L+ a subset of L. 

For X, F, Z G L, it is not necessarily t rue t h a t X + Z = Y + Z implies 
X = Y (e.g., consider Z = L + ) . However, this is t rue if we restrict our­
selves to locally bounded sections: a section X Ç L will be called locally 
bounded if for every 0 < x (E L there exists a real number b such t h a t bx ^ X 
(i.e., bx (I X). Le t L t t + be the set of locally bounded sections; then for 
X, Y,Z 6 L#+, X + Z = F + Z implies X = F ; and furthermore, for 
Y S Z £ L # + there exists a unique element X £ L # + such t h a t F + X = Z. 
T h u s L # + is the positive pa r t of a partially ordered linear space L#; and it 
turns ou t t h a t L t t is a Dedekind complete vector latt ice with proper ty P , 
and t ha t L is embedded in L# as an order-dense ideal. 

Remarks. 1. L# is, in a sense, both a minimal and maximal extension of L. 
More precisely (cf. 11, Theorem 8.5): If L has proper ty P, and is an order-
dense ideal in an Archimedean vector lattice E, then L = E; in part icular, 
L = L# if L has proper ty P, and always Z> = (L#)#. On the other hand, 
if L is an order-dense ideal in a Dedekind complete vector latt ice E with 
proper ty P, then Ln = E. 

2. Nakano , by a different construction, has shown (7, Theorem 34.4) how 
to imbed L in a space with proper ty P 3 (his "universal complet ion") , which 
mus t then (by Remark 1 above) be the same as Pinsker 's extension. 

3. Vulih refers to this imbedding L C L#, showing t h a t multiplication is 
universally denned in L # and t h a t every element in L# has an inverse, b u t 
he does not isolate the implicit necessary and sufficient condition (property P ) . 
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It is useful to note that now we can easily define multiplication in a Dede-
kind complete vector lattice L not necessarily having a unit. For L# lias a unit 
and universal multiplication with respect to it, so we may say: for x, y G L, 
if xy (which exists in L#) is in L, then the product of x and y is defined and 
equals xy. I t is easy to verify that the multiplication thus defined in L satis­
fies properties M(ii) to M(viii) and also M(xii). 

4. Abstract integral spaces. We now take L to be a Dedekind complete 
vector lattice, not necessarily having a unit. Let 0 be a non-negative normal 
integral on L (i.e., a non-negative linear functional such that if a set {xa} C L 
is directed down to 0, xa [ 0, then 0{xa} J, 0). As usual, x, y, and z will denote 
elements of L and / , g, and h will denote elements of L#. 

We define a new functional 0 # on Z # + as follows: for 0 ^ / G L# + , 
0#(f) = sup(0(x): x f L , 0 ^ x ^ / ) . </>#C0 may equal +oo, but for 
0 è x G L, 0#(x) = 0(x). 

LEMMA 4.1 (cf. 6, Theorem 30.6 in Note IX). / / 0 £ fa î / G L t t+, /Ae» 
0*(/) = su P 0*( / a ) . 

Proof. Assume first that 0#(f) < °°. Then, given e > 0, there exists x G L 
such that (t>#(f) ^ 0(x) + e. Let xa = inf (/«, x) ^ / « . Then xa G £ and 
x« | x, so 0(xa) T^OO- Thus sup0 t t(fa) + e ^ 0#(f). 

If 0#(f) = °°, then for any N there exists x ^ f such that 0(x) > A". Now, 
inf(x, fa) t x, therefore sup 0#(f«) è 0(x) > N. Hence 0#(/«) t °°. 

LEMMA 4.2. 0 # is additive on L#+. 

Proof. Let / , g G £ t t + . Every z £ L+ with s ^ / + g can be written 
s = x + 3/ with / ^ x G L+ and g È̂  3> G £ + , and so 

</>*(/+g) = sup(0(x + ;y):O ^ x ^ / , 0 ^ ; y ^ g ) 

= sup(0(x): 0 ^ x Sf) + sup(0(;y): 0 ^ y ^ g) 

= 0#(f) + **(*)• 

Since 0tt is an extension of 0, we may (when confusion does not result) 
write 0 for 0# . Let us now suppose that 0, and hence 0 t t, is strictly positive. 
We define Li(0, L) = Li(0) = Li = {/ G L#: 0( | / |) < 00}. A norm is de­
fined on L\(<t>) by: | | / | | i = #( | / | ) . (This is a norm rather than a seminorm 
since 0 is strictly positive.) 0 can then be extended to all of Li(0) by defining 
0(f) = 0(/+) — </>(/-)• We note that L is an ideal in L# and that, by Lemmas 
4.1 and 4.2, 0 (i.e., 0#) is a strictly positive normal integral on Lx. The next 
theorem is the key to showing that Li(0) (and later L2 (0)) is complete. 

THEOREM 4.3. If 0 ^ fa î G £1(0) a/zd sup||/a | | i < °°, JAera //z<?r£ exists 
sup(fa) G £1(0). 
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Proof. F i rs t we use proper ty P 2 to show t h a t there exists sup(/«) G L # . 
Le t 0 < g G L # , and suppose t h a t for every b 

supinf (6g , / a ) = bg. 
a 

Then 

b<i>(g) = 4>{bg) = <t>( sup inf(Z>g, /«)) = sup 0( inf(Jg , / a ) ) ^ sup </>(/*) < 00. 
a a a 

B u t since 0(g) > 0, this cannot be true for every b, i.e., there mus t exist b 
such t h a t 

supinf(6g,/«) < bg. 
a 

B u t then, since L t t has property P2 , there exists / = sup(/«) G £ # . 
Then to show / £ £i(<£) we only have to notice t ha t by Lemma 4.1, 

0(f) = S U P ( / a ) <CO. 

T H E O R E M 4.4. L i ( ^ ) is complete (in the norm | | - | | i ) . 

Proof. Suppose 0 S fn Î € Lx and sup| | / n | | i < <». Then the theorem above 
implies t h a t sup(fn) exists in Li . B u t this is exactly the criterion of Amemiya 
(1) t h a t a normed vector lattice be complete. (Cf. also 6, Theorem 5.3 in 
Note I I , and Theorem 26.3 in Note VI I I . ) 

More generally, if <j> is not strictly positive, decompose L = Q ® N<f> 
(where N^ is the null ideal of <f> and C^ = N^ is the carrier or suppor t of <j>; 
cf. (6, pp. 107-108 in Note V I I I ) ) . Since L is an order-dense ideal in L # , 
this decomposition induces a decomposition L # = C0

# 0 N^ with <j> zero 
on N<j>n, and Q># = A^#J-. 0 is str ictly positive on Cp, so we may define £ i ( 0 , L) 
in general to be Li(0, Q ) . By an abuse of language we shall sometimes say 
t h a t / G £ i ( 0 , £ ) if the component o f / in C0

tt is in L i (0 , Q ) . For </> str ict ly 
positive we may also define L2(<t>, L) = L2((j>) = L2 = {/ 6 L#: $(f2) < °°}. 
We can see t h a t L2 is a linear subspace of L#, for 

(f+ g)2 =P + g2 + 2fg£ 2(p + g2), 
so 0 ( ( f + g)2) ^ 2 («(/*) + 0( g 2)) , and hence f,g£L2 implies ( / + g ) 6 U. 

Also, since / g ^ hif2 + g2), then |0(fe) | S hW) + <!>(g2)) < » , thus we 

m a y define in L2 an inner product (/, g) = <f>(fg) and a norm | | / | | 2 = (/, / ) 1 / 2 . 

(|| • ||2 is a norm ra ther than a seminorm since <t>(P) = 0 impl ies / 2 = 0 which 

implies / = 0.) 

T H E O R E M 4.5. L2(<t>) is a Hilbert space. 

Proof. We only have to prove t h a t L2 is complete in the norm || -| |2. Sup­
pose 0 ^fn î G L2 and sup | | / n | | 2 < » . Then 0 ^ fn

2 f G £ i and 

SUP | |/w
2 | |1 = SUp| | / r e | | 2

2 <oo, 
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thus by Theorem 4.3 there exists g = sup(fn
2) G Li . B u t 

/„ S sup(fn
2, 1) ^ sup(g, 1) G L* 

thus there exists sup(fre) G £ # , and by the cont inui ty of the produc t and 
uniqueness of the square root (properties M(xi i ) and M(x i ) ) we have 
sup(fn) = g1/2 G L2. T h u s by Amemiya ' s theorem (1), L2 is complete. 

5. T h e R a d o n - N i k o d y m t h e o r e m . Le t 0 be a (non-negative) normal 
integral on the Dedekind complete vector lat t ice L, and let ^ be a (non-
negative) normal integral on some subspace E C L#. Then \p is said to be 
absolutely continuous with respect to </> if i i ( ^ ) © N^ is order dense in L#, 
and for every 0 ^ / £ L#, 0(f) = 0 implies x/s(f) = 0. 

Note. Requir ing t h a t Li(\p) © N^ be dense in Ln is equivalent to the more 
usual condition (cf. 14, p . 134) t h a t <j> and \p be initially defined on the same 
space, for we m a y regard (ii(</>) © N^) C\ (Li(\p) © N^) as the initial 
domain of $ and \f/t and this is order dense in L # . 

T H E O R E M 5.1. Let <j> be a normal integral on L, and let 0 ^ g G L # . Define 
\// on L#+ by \f/(f) = <j>(fg) for all 0 ^ / G £ # + , awd /Ae» 0?z ^ow^ subspace 
E (Z L by \f/(f) = ^(f+) — ̂ (f_) whenever \{/(f+) and yf/(f~) are finite. Then \p 
is a normal integral, absolutely continuous with respect to <f>. 

Proof. Since <j> is normal and multiplication is (0)-continuous, \p is a normal 
integral on L ^ ) © i\fy = {/ G £*: \Klf|) < °°}. Next , if </>(f) = 0, then 
/ G # , * = ( C 0 * K and hence / g Ĝ  (C**)* = # , * , i.e., *(f) = 0 ( /g ) = 0. 

Finally, we mus t show tha t , given 0 < / G £ # , there exists 

0 <h e Li(<£) © A ^ 

such t h a t h ^ / . B u t if / > 0, then there exists 0 < fx G £i(</>) © iV0 with 
0 < / i ^ / , and g > 0, a > 0, and 0 ^ & < °° such t h a t 0 < ae S fi and 
ge ^ be. I t follows t h a t ^(ae) = <j>(aeg) S 4>(abe) ^ b</>(fi) < oo , and hence 
ae is a suitable element in Li(\p) © i\fy. 

T h e main object in this section is to prove a converse to the preceding 
theorem. Fi rs t we prove a special case. (Notice t h a t the proof parallels very 
closely t h a t given in (14) for measure spaces. Other classical proofs can 
also be adap ted to this abs t r ac t s i tuat ion.) 

T H E O R E M 5.2. Let L be a Dedekind complete vector lattice with a unit 1. Let 
<t> be a strictly positive normal integral on L, and let 0 ^ \f/ be any normal integral 
on L. Then there exists a unique 0 S g G Li(</>) such that f G Li(\p) if and 
only if fg G £ i ( 0 ) , and \p(f) = 0(fg) for every f G L^). 

Proof, (i) Define co on L by co = <j> + i/'. co is clearly a s t r ic t ly positive 
normal integral on L. W e mus t verify t h a t co# = <£# + ^ t t . For 0 ^ / G £ # , 
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(* + *)*(0 = sup((tf> + *)(x):0£x£f) = 

sup(tf>(x) + *(*) : 0 è x èf) è 0»(f) + **(f). 

On the other hand, 0 ^ x, y ^ f implies z = sup(x, y) ^ / ; thus, 

*(*) + *G0 ^ (0 + ^)(z), 
therefore 

4>*(f) + lP(f) = sup(*(*) + ^ ) : 0 ^ , ^ / ) | 

sup((4> + *)(*): 0 ^ s ^ / ) = (0 + ^)*( / ) . 

Since, then, «* = <£* + ^#, we shall henceforth omit the tt on <f>, \p, and co. 
(ii) Consider the Hilbert space L2(w). F o r / G L2(co) we have 

hK/)|^*([/|) £«(|/ |) = (1/1,1) ^ | | / | | 2 | | i | | 2 

by the Schwarz inequality. Thus ^ is a bounded linear functional on L2(co), 
therefore there exists A G L2(oo) such that 

*(f) = (f,h) = «(/A) = *(fft) + *(fft) 

for a l l / G L2(co). Since I/2(co) is order-dense in L#, the same equation holds 
for any 0 ^ / G £ # . 

(iii) We prove now several facts about A. First of all, A ^ 0, for, taking 
/ = s(hJ) in the above we have that 

0 g t(s(h_)) = co(s(A_)A) = « ( - * _ ) g 0, 

and hence A_ = 0. 
Secondly, s[(l — A)+] = 1. For if not, then there exists e > 0 such that 

eJL s[(l — h)+], and then e — he = (1 — A)e ^ 0, i.e., Ae ^ e. But then 
\//(e) = co(#A) ^ co(e) = 0(e) + ^(g) ^ ^P(e); hence equality holds through­
out, and thus <j>(e) = 0, a contradiction since <j> is strictly positive. Note that 
it follows immediately from s[(l — h)+] = 1 that 1 — h = (1 — h)+ ^ 0, 
i.e., h ^ 1; but this is a weaker statement. 

(iv) Now we use the fact that every element in L# has an inverse to 
define g = h(l — h)~l £ Ln. Since 1 — h ^ 0 and s(l — h) = 1 we have 
that (1 - h)-1 ^ 0 so that g ^ 0 and (1 - h)-l(\ - h) = 1. 

Consider any 0 ^ / 6 £ t t . Noting that / ( l — A) -1 G £ t t + we have that 

4>(fg) = 0 ( / ( l - A)"1*) = * a ( l - A)"1) ~ ^ ( / ( l " A)"1*) = 
* t f ( l - ft)-i(l - A)) = *(/)• 

This equation shows that g is a suitable element in Ltt. I t also shows that 
/ G LiWO if a n d only if fg £ £i(0) and, in particular, t ak ing / = 1, it shows 
that g e Lx(0). 

(v) Finally, we show that g is unique. Suppose there also exists gf such 
that 4,(f) = 0 ( # ) for / 6 Lity). Let « = s[(g - g')+]. Then 
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so 0 = <t>(ge - gef) = 4>((g - g')e) = <j>((g - g')+), and hence (g - g')+ = 0, 
i.e., g ^ g'- Similarly, g' rg g, therefore g' = g. 

T H E O R E M 5.3 (Radon-Nikodym) . Let L be a Dedekind complete vector lattice, 
4> a {non-negative) normal integral on L, and \p a (non-negative) normal integral 
absolutely continuous with respect to </>. Then there exist a unit 1 f L t t and an 
element 0 g g G L# such that f G Li(\j/) if and only if fg Ç L\(</>), and 
\p(f) = 4>{fg) for every f £ Li(\//). g is unique in the sense that its component 
in C<fp is uniquely determined as soon as the unit 1 is determined. 

Proof. Wr i t e L = C0 0 N^. </> is zero on iV0, thus , by absolute cont inui ty , 
\p is also zero on N^ i.e., we m a y consider \p s imply as a normal integral 
on Q . And 4> is s t r ict ly positive on C0. 

Let {xa} be a maximal collection of mutua l ly disjoint positive elements 
of Q , and take sup(x a ) (which exists in LP by proper ty P3) as a uni t for 
C0#. W e have t h a t C0 = U © [xa] and Q * = U © [*«]# (where U © K ] 
denotes the smallest normal subspace of L containing all the normal sub-
spaces [xa]). 

For each a, [xa] is a Dedekind complete vector lat t ice with a uni t xa, and 
on [xa], $ acts as a str ict ly positive normal integral. Thus , by Theorem 5.2, 
there exists a unique 0 ^ ga (E [xa]

u such t h a t \p(fa) = <p(faga) for every 
0 ^ / « É [xa] t t. Let 0 ^ g = sup(g a) Ç CV* (again, g exists since C^ has 
proper ty P 3 ) . For a n y 0 g / Ç CV** (whose component in [#a] i s /«) the com­
ponent of fg in [xa] i s / a g a , for 

(fg)« = fg'%a (by proper ty M(xi i i ) ) 

= (fXa)(gXa) = faga. 

B u t then * ( / ) = E«*( /«) = E«*( /«&) = ZM(fg)a)=<l>(fg). T h e theorem 
now follows immediate ly; in part icular , the uniqueness of g follows from the 
uniqueness of each ga. 

Remark. T h e proof above depends on picking a par t icular uni t for L#. 
Actually, however, the formula for a change of uni ts shows t h a t the theorem 
is t rue for multiplication with respect to a n y uni t of L#. 

6. Sega l ' s t h e o r e m . I t is interest ing to note t h a t in Theorem 5.3, no 
condition such as cr-finiteness is required. In this section we use this fact to 
give a new proof of Segal 's theorem (12), t h a t the Radon-Nikodym theorem 
holds in a measure space with no purely infinite sets if and only if the measure 
algebra is localizable, i.e., complete as a lat t ice. (The Radon-Nikodym theorem 
is said to hold in a given measure space (X, S, n) if for a n y integral \{/, abso­
lutely continuous with respect to the integral f -dp, there exists a /z-unique 
measurable function g such t h a t \p(f) = Jfg d\x for every ^- integrable / . ) 

T h e proof proceeds essentially as follows: L1(Xy S, n) can be embedded in 
the space of measurable functions M, b u t it can also be though t of as an 
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abs t rac t vector latt ice L and embedded in ZA I t turns out t ha t the Radon-
Nikodym theorem holds in (X,S,p) if and only if M and Ln are isomorphic, 
which occurs if and only if the measure algebra of (X, S, p) is localizable. 

In detail : (i) Let (X, S, p) be a measure space. We may suppose t h a t p 
is a l ready extended by the Carathéodory procedure, so t h a t S is the ^--algebra 
of measurable sets. Le t S0 be the subring of measurable sets with finite meas­
ure. W e shall assume t ha t there are no purely infinité sets, i.e., if E is a meas­
urable set with JU(JE) > 0, then there exists a measurable set K (Z E such 
t h a t 0 < p(K) < oo. I t follows immediately from this t h a t if F C X is such 
t h a t p(F r\ K) = 0 for all K Ç S0, then F e S and p(F) = 0. 

As usual, two sets E, F £ S are said to be equivalent if £ A F is a null set. 
W e shall denote by £ * the equivalence class of sets equivalent to E, and by 
B the collection of equivalence classes. Then B is a cr-algebra, the mapping 
E —> E* is a cr-algebra homomorphism, and p may be considered as a measure 
on B by set t ing p(E*) = p(E). T h e system ( 5 , p) is the measure algebra of 
the measure space (X, S, p). 

Let Bo be the subalgebra of B consisting of those elements which have 
finite measure. Since X has no purely infinite sets we can see t h a t for any 
£ * G 5 , £ * = sup(i£*: i£* G 5 0 , ^ * ^ £ * ) ; indeed, £ * is certainly an 
upper bound for all such K*, and if £* is also an upper bound, then 
F* ^ £ * H K* for all X* G B0, so t h a t (£* - F*) C\ K* = (E* H i^*) 
- F* = 0 for all X* G 5 0 , and hence E* - F* = 0, i.e., £ * g £* as re­
quired. T h u s B0 is order-dense in B. 

(ii) Let L = Li(X, S, n) be equivalence classes of integrable functions 
modulo null functions. Denote by f * the equivalence class of functions equal 
to / a lmost everywhere. L is a cr-Dedekind complete vector lattice with an 
integral </> defined by <£(/*) = $f dp for / * G L. <f> is strictly positive on L, 
hence L is Dedekind complete (in fact, super-Dedekind complete) and cj> is 
a normal integral (cf. 6, Lemma 27.16 in Note V I I I ) . 

(iii) Embed L C L#. For a uni t in L#, let 1 = sup(^ a ) , where ea is the 
element of L determined by the characteristic function of Ea for Ea G So. 
Note t h a t this uni t is suitable for use in the Radon-Nikodym theorem. Also 
recall t h a t U(L#, 1) is a complete Boolean algebra. 

(iv) We wan t to define a measure-preserving isomorphism p of B into 
U(L#). For E* Ç Bo define p(E*) to be the element in L determined by XE-
We note t h a t p(B0) is order-dense in U(L#): indeed, if 0 < e G U(L#), then 
(since L is order-dense in L#) there exists x ^ L such t ha t 0 < x ^ e; we 
may take £ to be a measurable set of finite measure which is contained in 
the suppor t of an integrable function determining x, and then p(E*) ^s(x) ^e, 
as required. 

Since B0 is order-dense in the Boolean algebra B, and p(B0) is order-dense 
in the complete Boolean algebra U(L#), p can be extended uniquely to an 
(algebraic) isomorphism of B into [/(L t t), and the extension (again denoted 
by p) maps B onto U(L#) if and only if B is complete, i.e., if and only if p. 
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is localizable (cf. 12, Lemma 3.3.2). I t is easy to see that p is measure-
preserving, i.e., 0(p(£*)) = /*(£*) for all £* G 5 ; indeed, if /*(£*) < °°, then 
this is true by definition, and if p(E*) = oo , then there are elements i£* ^ E* 
with finite but arbitrarily large measures so that <£(p(£*)) ^ </>(p(i£*)) | °°. 
We also note that if e € U(L#) is such that </>(e) < °°, then there exists 
E* Ç f?0 such that p(E*) = e; indeed, since p(B0) is dense in U(L#) and <£ 
is strictly positive, there is a sequence [p(E*n)) such that p(E*n) ^ g and 
<j)(p(E*n)) î # ( e ) , so that p(E*n) ] e and hence p(supE*w) = sup p(E*n)=e. 

(v) Let M denote equivalence classes of measurable functions modulo null 
functions. The map p: B -^ U{L#) induces in a natural way an algebraic 
isomorphism p* of M into L# as follows: for every measurable function/ ^ 0 
we have / * = sup(ax%- 0 S cix*E ^ / * ) . The set 

{ap(£*): 0 g a x % S /*} C £*+ 

satisfies the conditions of property P2, therefore we may define, for 0 ^ /* G M, 
p*(/*) = sup(ap(£*): 0 ^ a%% ^ /*) G L# . In general, we define 

P*(f*) =p*(r+) - P * ( / * - ) • 

It is clear that p* is measure-preserving in the sense that, for 0 ^ /* G If, 
0(p* (/"*)) = J/^M- I n fact, p* is an extension of the identity map of L —> L. 
We can even see that p* maps Li(Xy S, p.) onto Li(0, L) : for, given 
0 ^ / t t G Li(</), L), we h a v e / # = sup(r-& r(/#): rationale > 0) by Theorem 
2.1. But cj*(kr(f#)) ^ r - V ( f # ) < °°, thus there exists £* G £ 0 such that 
p(E*) = kr(f#), and hence p*(>x%) = rkr(f#). The set {/-•&,.(/#): rational 
r > 0} is countable, thus there exists /* = sup{(p*) - 1( r '^r( / #))} G M, and 
p*(/*) = / # . In addition, Jfdp = </ ,( /#)< co, therefore /* G Li(X, 5, p). 
Thus Li(X, S, p.) and Li(</>, L) are identical, and, in particular, there is no 
confusion in saying that one integral is absolutely continuous with respect 
to another without specifying which space is being considered. 

Note that p(X*) = 1, so that by the uniqueness of multiplication, p* is 
also an isomorphism of the multiplicative structure. 

(vi) We have, in general, that p*(M) C E#, and we want to show that 
equality holds if and only if p is localizable. In one direction this is clear, 
for if p* maps M onto L#, then p maps B onto U(Ln), and hence p is localiz­
able. Conversely, suppose p is localizable, so that p maps B onto U(Lfi). Then 
for any e G U(L#) there exists p~l(e) = E* £ B, thus for any element of the 
form ae G L# there exists (p*)_1(a<?) = &x*E G M. Now suppose that 
0 ^ / # G L#. Again we have that f# = sup(r-kr(f#): rational r > 0) and 
the set {r-kr(f#): rational r > 0} is countable, thus there exists 

f* = sup«p*)- l(r-kT(/*))) € M, 

and p*(/*) = / # . Thus p* maps ikf onto L# as required. 
(vii) Now suppose /x is localizable. Then M is isomorphic to L # and hence 

the Radon-Nikodym theorem holds in M since it holds in L# . Conversely, 
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suppose the Radon-Nikodym theorem holds in the measure space. For any 
0 ^ f Ç L# we want to find g* G M such that p*(g*) = g#. To do this, 
define the normal integral \p by \p(fn) = 0 ( / # g # ) . & is absolutely continuous 
with respect to <£, and thus, the Radon-Nikodym theorem for Li(X, S, /x) 
implies that there exists g* G M such that ip(J*) = <l>(J*g*) for all 
0 ^ f* G ikf. Then, considering 0 and ^ as integrals on Li(#, L) again, we 
have yp(f#)= 4>{Jtt*p(g*)) for all 0 ^ / t t G L#, and hence, by the unique­
ness of the Radon-Nikodym derivative, p*(g*) = g# as required. Thus p* 
maps ikf onto Ltt, and hence, by (vi), n is localizable. 

iVtfte. Zaanen (15) gives a discussion of Segal's theorem along somewhat 
different lines. He also shows that, if the measure space has purely infinite 
sets, then the Radon-Nikodym theorem holds if and only if the contracted 
measure is localizable. 
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