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Log-concavity and log-convexity of
moments of averages of i.i.d. random
variables
Philip Lamkin and Tomasz Tkocz

Abstract. We show that the sequence of moments of order less than 1 of averages of i.i.d. positive
random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is
log-convex and show that this holds eventually for integer moments (after neglecting the first p2 terms
of the sequence).

1 Introduction and results

Suppose X1 , X2 , . . . are i.i.d. copies of a positive random variable and f is a nonnegative
function. This article is concerned with certain combinatorial properties of the
sequence

an = E f (X1 + ⋅ ⋅ ⋅ + Xn

n
) , n = 1, 2, . . . .(1)

For instance, f (x) = x p is a fairly natural choice leading to the sequence of moments
of averages of the X i . Because we have the identity

n+1
∑
i=1

x i =
n+1
∑
i=1

∑ j∶ j≠i x j

n
,

we conclude that the sequence (an)∞n=1 is nonincreasing when f is convex. What about
inequalities involving more than two terms?

Such inequalities have been studied to some extent. One fairly general result is due
to Boland, Proschan, and Tong from [1] (with applications in reliability theory). It
asserts in particular that for n = 2, 3, . . .,

Eϕ(X1 + ⋅ ⋅ ⋅ + Xn , Xn+1 + ⋅ ⋅ ⋅ + X2n) ≤ Eϕ(X1 + ⋅ ⋅ ⋅ + Xn−1 , Xn + ⋅ ⋅ ⋅ + X2n)(2)

for a symmetric (invariant under permuting coordinates) continuous random vector
X = (X1 , . . . , X2n) with nonnegative components and a symmetric convex function
ϕ ∶ [0,+∞)2 → R.
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We obtain a satisfactory answer to a natural question of log-convexity/concavity of
sequences (an) for completely monotone functions, also providing insights into the
case of power functions.

Recall that a nonnegative sequence (xn)∞n=1 supported on a set of contiguous
integers is called log-convex (resp. log-concave) if x2

n ≤ xn−1xn+1 (resp. x2
n ≥ xn−1xn+1)

for all n ≥ 2 (for background on log-convex/concave sequences, see, for instance, [8,
12]). One of the crucial properties of log-convex sequences is that log-convexity is
preserved by taking sums (which follows from the Cauchy–Schwarz inequality, see,
for instance, [8]). Recall that an infinitely differentiable function f ∶ (0,∞) → (0,∞)
is called completely monotone if we have (−1)n f (n)(x) ≥ 0 for all positive x and
n = 1, 2, . . .; equivalently, by Bernstein’s theorem (see, for instance, [7]), the function
f is the Laplace transform of a nonnegative Borel measure μ on [0,+∞), that is,

f (x) = ∫
∞

0
e−tx dμ(t).(3)

For example, when p < 0, the function f (x) = x p is completely monotone. Such
integral representations are at the heart of our first two results.

Theorem 1 Let f ∶ (0,∞) → (0,∞) be a completely monotone function. Let
X1 , X2 , . . . be i.i.d. positive random variables. Then, the sequence (an)∞n=1 defined
by (1) is log-convex.

Theorem 2 Let f ∶ [0,∞) → [0,∞) be such that f (0) = 0 and its derivative f ′ is
completely monotone. Let X1 , X2 , . . . be i.i.d. nonnegative random variables. Then, the
sequence (an)∞n=1 defined by (1) is log-concave.

In particular, applying these to the functions f (x) = x p with p < 0 and 0 < p < 1,
respectively, we obtain the following corollary.

Corollary 3 Let X1 , X2 , . . . be i.i.d. positive random variables. The sequence

bn = E(X1 + ⋅ ⋅ ⋅ + Xn

n
)

p
, n = 1, 2, . . .(4)

is log-convex when p < 0 and log-concave when 0 < p < 1.

For p > 1, we pose the following conjecture.

Conjecture 1 Let p > 1. Let X1 , X2 , . . . be i.i.d. nonnegative random variables. Then,
the sequence (bn) defined in (4) is log-convex.

We offer a partial result supporting this conjecture.

Theorem 4 Let X1 , X2 , . . . be i.i.d. nonnegative random variables, let p be a positive
integer, and let bn be defined by (4). Then, for every n ≥ p2, we have b2

n ≤ bn−1bn+1.
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Remark 5 When p = 2, we have bn = nEX2
1+n(n−1)(EX1)

2

n2 = (EX1)2 + n−1 Var(X1),
which is clearly a log-convex sequence (as a sum of two log-convex sequences).
The following argument for p = 3 was kindly communicated to us by Krzysztof
Oleszkiewicz: when p = 3, we can write

bn = (EX1)3 + (EX3
1 + (EX1)3 − 2(EX2

1 )(EX1))n−2 + (EX1)Var(X1)(3n−1 − n−2).

The sequences (n−2) and (3n−1 − n−2) are log-convex. By the Cauchy–Schwarz
inequality, the factor at n−2 is nonnegative,

EX2
1 ≤

√
EX3

1

√
EX1 ≤

EX3
1

2EX1
+ (EX1)2

2
,

so again (bn) is log-convex as a sum of three log-convex sequences. It remains elusive
how to group terms and proceed along these lines in general. Our proof of Theorem 4
relies on this idea, but uses a straightforward way of rearranging terms.

Remark 6 It would be tempting to use the aforementioned result of Boland et al.
with ϕ(x , y) = (x y)p to resolve Conjecture 1. However, this function is neither
convex nor concave on (0,+∞)2 for p > 1

2 . For 0 < p < 1
2 , the function is con-

cave and (2) yields (bn np)2 ≥ bn−1(n − 1)pbn+1(n + 1)p , n ≥ 2, equivalently, b2
n ≥

( n2−1
n2 )

p
bn−1bn+1. Corollary 3 improves on this by removing the factor ( n2−1

n2 )
p
< 1.

For p < 0, ϕ is convex, so (2) gives b2
n ≤ ( n2−1

n2 )
p

bn−1bn+1 and Corollary 3 removes

the factor ( n2−1
n2 )

p
> 1.

Concluding this introduction, it is of significant interest to study the log-behavior
of various sequences, particularly those emerging from algebraic, combinatorial, or
geometric structures, which has involved and prompted the development of many
deep and interesting methods, often useful beyond the original problems (see, e.g.,
[3–6, 10–13]). We propose to consider sequences of moments of averages of i.i.d.
random variables arising naturally in probabilistic limit theorems. For moments of
order less than 1, we employ an analytical approach exploiting integral representations
for power functions. For moments of order higher than 1, our Conjecture 1, besides
refining the monotonicity property of the sequence (bn) (resulting from convex-
ity), would furnish new examples of log-convex sequences. For instance, neither
does it seem trivial, nor handled by known techniques, to determine whether the
sequence, obtained by taking the Bernoulli distribution with parameter θ ∈ (0, 1),
bn = ∑n

k=0 (n
k) (

k
n )

p θk(1 − θ)n−k is log-convex. In the case of integral p, we have
bn = ∑p

k=0 S(p, k) n!
(n−k)!n p θk , where S(p, k) is the Stirling number of the second kind.

The rest of this paper is occupied with the proofs of Theorems 1, 2, and 4 (in their
order of statement), and then we conclude with additional remarks and conjectures.
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2 Proofs

2.1 Proof of Theorem 1

Suppose that f is completely monotone. Using (3) and independence, we have

an = E f (X1 +⋯+ Xn

n
) = ∫

∞

0
[Ee−t X1/n]n

dμ(t).

Let un(t) = [Ee−t X1/n]n
. It suffices to show that for every positive t, the sequence

(un(t)) is log-convex (because sums/integrals of log-convex sequences are log-
convex: the Cauchy–Schwarz inequality applied to the measure μ yields

(∫
√

un−1(t)un+1(t)dμ(t))
2
≤ (∫ un−1(t)dμ(t))(∫ un+1(t)dμ(t)) ,

which combined with un(t) ≤
√

un−1(t)un+1(t), gives a2
n ≤ an−1an+1). The log-

convexity of (un(t)) follows from Hölder’s inequality,

Ee−t X1/n = Ee−
n−1
2n

t X1
n−1 e−

n+1
2n

t X1
n+1 ≤ (Ee−

t X1
n−1 )

n−1
2n (Ee−

t X1
n+1 )

n+1
2n ,

which finishes the proof.

2.2 Proof of Theorem 2

Suppose now that f (0) = 0 and f ′ is completely monotone, say f ′(x) = ∫
∞

0 e−tx dμ(t)
for some nonnegative Borel measure μ on (0,∞) (by (3)). Introducing a new measure
dν(t) = 1

t dμ(t), we can write

f (y) = f (y) − f (0) = ∫
y

0
f ′(x)dx = ∫

∞

0
∫
∞

0
te−tx 1{0<x<y}dxdν(t).

Integrating against dx gives

f (y) = ∫
∞

0
[1 − e−t y]dν(t).

Let F be the Laplace transform of X1, that is,

F(t) = Ee−t X1 , t > 0.

Then,

E f (X1 +⋯+ Xn

n
) = ∫

∞

0
[1 − F(t/n)n]dν(t) = ∫

∞

0
G(n, t)dν(t),

where, to shorten the notation, we introduce the following nonnegative function:

G(α, t) = 1 − F(t/α)α , α, t > 0.

To show the inequality

[E f (X1 +⋯+ Xn

n
) ]

2
≥ E f (X1 +⋯+ Xn−1

n − 1
) ⋅E f (X1 +⋯+ Xn+1

n + 1
) ,
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it suffices to show that pointwise

G(n, s)G(n, t) ≥ 1
2

G(n − 1, s)G(n + 1, t) + 1
2

G(n + 1, s)G(n − 1, t),

for all s, t > 0. This follows from two properties of the function G:
(1) for every fixed t > 0, the function α ↦ G(α, t) is nondecreasing,
(2) the function G(α, t) is concave on (0,∞) × (0,∞).

Indeed, by (2), we have

G(n, s)G(n, t) ≥ G(n − 1, s) +G(n + 1, s)
2

⋅ G(n − 1, t) +G(n + 1, t)
2

(in fact, we only use concavity in the first argument). It thus suffices to prove that

G(n − 1, s)G(n − 1, t) +G(n + 1, s)G(n + 1, t)
−G(n − 1, s)G(n + 1, t) −G(n + 1, s)G(n − 1, t)

= [G(n − 1, s) −G(n + 1, s)] ⋅ [G(n − 1, t) −G(n + 1, t)]

is nonnegative, which follows by (1).
It remains to prove (1) and (2). To prove the former, notice that F(t/α)α =

(Ee−t X/α)α = ∥e−t X∥1/α is the L1/α-norm of e−t X . By convexity, for an arbitrary
random variable Z, p ↦ (E∣Z∣p)1/p = ∥Z∥p is nondecreasing, so F(t/α)α = ∥e−t X∥1/α
is nonincreasing and thus G(α, t) = 1 − F(t/α)α is nondecreasing. To prove the latter,
notice that by Hölder’s inequality the function t ↦ log F(t) is convex,

F(λs + (1 − λ)t) = E[(e−s X)λ(e−t X)1−λ] ≤ (Ee−s X)λ(Ee−t X)1−λ = F(s)λ F(t)1−λ .

Therefore, its perspective function H(α, t) = α log F(t/α) is convex (see, e.g., Chapter
3.2.6 in [2]), which implies that F(t/α)α = eH(α ,t) is also convex.

2.3 Proof of Theorem 4

We recall a standard combinatorial formula: first, by the multinomial theorem and
independence, we have

E(X1 + ⋅ ⋅ ⋅ + Xn)p = ∑
p!

p1!⋯pn!
E(X p1

1 ⋅ . . . ⋅ X pn
n ) = ∑

p!
p1!⋯pn!

μp1 ⋅ . . . ⋅ μpn ,

where the sum is over all sequences (p1 , . . . , pn) of nonnegative integers such that
p1 + ⋅ ⋅ ⋅ + pn = p and we denote μk = EXk

1 , k ≥ 0. Now, we partition the summation
according to the number m of positive terms in the sequence (p1 , . . . , pn). Let Qm
be the set of integer partitions of p into exactly m (nonempty) parts, that is, the set
of m-element multisets q = {q1 , . . . , qm}with positive integers q j summing to p, q1 +
⋅ ⋅ ⋅ + qm = p. Then,

E(X1 + ⋅ ⋅ ⋅ + Xn)p =
p

∑
m=1

∑
q∈Qm

p!
q1!⋯qm!

n!
α(q) ⋅ (n −m)!

μq1⋯μqm ,
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where α(q) = l1!⋯lh ! for q = {q1 , . . . , qm} with exactly h distinct terms such that
there are l1 terms of type 1, l2 terms of type 2, etc., so l1 + ⋅ ⋅ ⋅ + lh = m (e.g., for q =
{2, 2, 2, 3, 4, 4} ∈ Q6, we have h = 3, l1 = 3, l2 = 1, and l3 = 2). The factor n!

α(q)⋅(n−m)!
arises, because given a multiset q ∈ Qm , there are exactly

(n
l1
)(n − l1

l2
)(n − l1 − l2

l3
) . . . (n − l1 − ⋅ ⋅ ⋅ − lh−1

lh
)

= n!
l1! ⋅ . . . ⋅ lh ! ⋅ (n − l1 −⋯− lh)!

= n!
α(q) ⋅ (n −m)!

many nonnegative integer-valued sequences (p1 , . . . , pn) such that μp1⋯μpn =
μq1⋯μqm (equivalently, {p1 , . . . , pn} = {q1 , . . . , qm , 0}, as sets).

We have obtained

bn = E(X1 + ⋅ ⋅ ⋅ + Xn

n
)

p
=

p

∑
m=1

n!
np(n −m)! ∑

q∈Qm

β(q)μ(q),(5)

where β(q) = p!
α(q)⋅q1 !⋯qm ! and μ(q) = μq1⋯μqm . By homogeneity, we can assume that

μ1 = EX1 = 1. Note that when X1 is constant, we get from (5) that

1 =
p

∑
m=1

n!
np(n −m)! ∑

q∈Qm

β(q).

Because Qp has only one element, namely {1, . . . , 1} and μ({1, . . . , 1}) = 1, when we
subtract the two equations, the terms corresponding to m = p cancel and we get

bn − 1 =
p−1

∑
m=1

n!
np(n −m)! ∑

q∈Qm

β(q)(μ(q) − 1).

By the monotonicity of moments, μ(q) ≥ 1 for every q, so (bn) is a sum of the
constant sequence (1, 1, . . .) and the sequences (u(m)n ) = ( n!

n p(n−m)! ), m = 1, . . . , p − 1,
multiplied, respectively, by the nonnegative factors ∑q∈Qm β(q)(μ(q) − 1). Because
sums of log-convex sequences are log-convex, it remains to verify that for each 1 ≤ m ≤
p − 1, we have (u(m)n )2 ≤ u(m)n−1 u(m)n+1 , n ≥ p2. The following lemma finishes the proof.

Lemma 7 Let p ≥ 2, 1 ≤ m ≤ p − 1, be integers. Then, the function

f (x) = log x(x − 1)⋯(x −m + 1)
x p

is convex on [p2 − 1,∞).

Proof The statement is clear for m = 1. Let 2 ≤ m ≤ p − 1 and p ≥ 3. We have

x2 f ′′(x) = p − 1 − x2
m−1
∑
k=1

1
(x − k)2 .
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To see that this is positive for every x ≥ p2 − 1 and 2 ≤ m ≤ p − 1, it suffices to consider
m = p − 1 and x = p2 − 1 (writing x

x−k = 1 + k
x−k , we see that the right-hand side is

increasing in x). Because

p−2

∑
k=1

1
(p2 − 1 − k)2 =

p2−2

∑
k=p2−p+1

1
k2 ≤

p2−2

∑
k=p2−p+1

( 1
k − 1

− 1
k
) = 1

p2 − p
− 1

p2 − 2
,

we have

x2 f ′′(x) ≥ p − 1 − (p2 − 1)2 ( 1
p2 − p

− 1
p2 − 2

) = (p − 1)(p + 2)
p(p2 − 2) ,

which is clearly positive. ◻

3 Final remarks

Remark 8 Using majorization-type arguments (see, e.g., [9]), Conjecture 1 can be
verified in a rather standard but lengthy way for every p > 1 and n = 2. The idea
is to establish a pointwise inequality: we conjecture that for nonnegative numbers
x1 , . . . , x2n and a convex function ϕ ∶ [0,∞) → [0,∞), we have

1
(2n

n )
∑
∣I∣=n

ϕ (xI xIc

n2 ) ≤ 1
( 2n

n+1)
∑
∣I∣=n+1

ϕ ( xI xIc

n2 − 1
) ,

where for a subset I of the set {1, . . . , 2n}, we denote xI = ∑i∈I x i . We checked that this
holds for n = 2. Taking the expectation on both sides for ϕ(x) = x p gives the desired
result that b2

n ≤ bn−1bn+1.

Remark 9 It is tempting to ask for generalizations of Conjecture 1 beyond the power
functions, say to ask whether the sequence (an) defined in (1) is log-convex for every
convex function f. This is false, as can be seen by taking the function f of the form
f (x) = max{x − a, 0} and the X i to be i.i.d. Bernoulli random variables.
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