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Abstract

When biological samples are first exposed to electrons in cryo-electron microcopy (cryo-EM),
proteins exhibit a rapid ‘burst’ phase of beam-induced motion that cannot be corrected with
software. This lowers the quality of the initial frames, which are the least damaged by the
electrons. Hence, they are commonly excluded or down-weighted during data processing,
reducing the undamaged signal and the resolution in the reconstruction. By decreasing the
cooling rate during sample preparation, either with a cooling-rate gradient or by increasing the
freezing temperature, we show that the quality of the initial frames for various protein and virus
samples can be recovered. Incorporation of the initial frames in the reconstruction increases the
resolution by an amount equivalent to using ~60% more data. Moreover, these frames preserve
the high-quality cryo-EM densities of radiation-sensitive residues, which is often damaged or
very weak in canonical three-dimensional reconstruction. The improved freezing conditions can
be easily achieved using existing devices and enhance the overall quality of cryo-EM structures.

Introduction

Biological molecules are structurally damaged when they are irradiated by electrons during
electron microscopy. Embedding the samples in ice and imaging them at low temperatures
suppresses the damage (Taylor and Glaeser, 1976; Hayward and Glaeser, 1979). Plunge-freezing
thin layers of aqueous suspensions of proteins in liquid ethane embeds the proteins in vitreous
ice (Adrian et al., 1984). This requires rapid cooling of the suspensions. Therefore, it has been
recommended that the temperature should be maintained just above the melting point of liquid
ethane at �183 °C (Passmore and Russo, 2016) to provide the highest cooling rate.

During cryo-electron microcopy (cryo-EM) imaging of proteins embedded in vitreous
ice, beam-induced motion (BIM) occurs with high-energy electrons (Henderson et al., 2011;
Brilot et al., 2012; Campbell et al., 2012). BIM is characterised by an initial rapid ‘burst’ phase
(first 3–5 e�/Å2), followed by a slower phase (Glaeser, 2016; Ripstein and Rubinstein, 2016). BIM
blurs the cryo-EM images, which reduces the resolution of the reconstruction. Using the movie
mode of a direct detector device for imaging, a significant proportion of the BIM in the slower
phase can be corrected by translational alignment of the movie frames (Campbell et al., 2012;
Rubinstein and Brubaker, 2015; Zheng et al., 2017; Zivanov et al., 2019). However, the initial
rapid burst motion cannot be effectively corrected with current software. Therefore, the initial
frames remain blurred, which, unfortunately, contain the most structural information on the
target proteins with the least amount of radiation damage. This is considered a key outstanding
problem in cryo-EM (Vinothkumar and Henderson, 2016; Henderson and Russo, 2019), and
frames that exhibit the effects of the rapid ‘burst’ phase are either excluded or down-weighted
during data processing. In addition, it has been observed that electron bombardment of a cryo-
EM sample caused drum-like motion (Brilot et al., 2012). This caused both translational and
rotational motion of a protein (Henderson et al., 2011; Brilot et al., 2012; Naydenova et al., 2020),
among which the rotational motion cannot be corrected with existing motion correction
software.

It has been suggested that the electron beam releases stress in the vitreous ice, which then
causes the rapid burst motion. Different hypotheses exist for the origin of the stress. The beam
may cause internal pressures to build up in the ice (Glaeser, 2008; Glaeser, 2016). The charge from
the accumulation of secondary electrons on the sample surface could also blur the images
(Henderson, 1992; Glaeser and Downing, 2004; Russo and Henderson, 2018). Additionally,
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beam-induced wrinkles in the grid carbon at low temperature may
be a significant source of stress (Wright et al., 2006; Brilot et al.,
2012), which has led to improved support films (Rhinow and
Kühlbrandt, 2008; Yoshioka et al., 2010; Russo and Passmore,
2014a, 2014b; Huang et al., 2020). The stress may also be generated
during vitrification and subsequent cooling (Glaeser, 2016). Thorne
(2020) proposed that the cooling rate of the grid bars is significantly
lower than that of the aqueous solution. Therefore, when the
temperature of the solution approaches that of the liquid ethane,
a further decrease in the temperature of grid bar causes shrinkage
and stress in the ice. Recently, Naydenova et al. (2020) improved
gold film fabrication by generating nanoscale arrays of 260-nm
holes. BIM is prevented because the ice in these small holes cannot
be bent by stress. They proposed that rapid cooling causes com-
pressive strain in the aqueous film.Wieferig et al. (2021) found that
an extra step of ice devitrification also reduced the rapid burst
motion. Because experimental data are lacking with regard to the
stress origin, it is unclear how it could be reduced.

Here, reconstructions of various samples that were frozen at
different cooling rates indicate that a lower rate helps to recover the
quality of the initial frames. Simple modifications to existing pro-
tocols allow plunge-freezing at the lowest cooling rate required for
vitrification, which enables the initial imaging frames to be recovered.

Results

Vitreous ice on a grid frozen with a cooling-rate gradient

To prevent crystalline ice from forming in the water, a high cooling
rate is required to vitrify a thin aqueous film for cryo-EM sample
preparation. Crystalline ice is a stable phase with the lowest energy.
Therefore, when water is frozen at a low cooling rate, the molecules
have more time to migrate to equilibrium positions, which may
produce less stress. However, it is challenging to measure the
absolute cooling rate of a thin aqueous film. Therefore, our goal
was to produce a cooling-rate gradient on the grid.

Grids generally have a thick metal grating and a nanometer-
thick support film. During freezing, the grid was held by tweezers
and plunged into liquid ethane. The tweezers transferred heat
directly to the liquid ethane, or through the metal ring (shown in
orange in Fig. 1a), which lowered the cooling rate near the tweezer

tips and the metal ring (Vinothkumar and Henderson, 2016). The
cooling rate of the aqueous film was thus higher in the region
farthest from the tips and the metal ring, which led to a cooling-
rate gradient on the grid. To increase the gradient, we moved the
tweezers approximately 0.5mm towards the center of grid (Fig. 1a),
which increased the contact between the tweezers and the grid and
led to more heat transfer from the tweezers. As a result, we repeat-
edly found that crystalline ice formed in the mesh surrounding the
position that was originally occupied by the tips of the tweezers
(shown in dark blue in Fig. 1a), even in holes that had a very thin
layer of ice (Fig. 1b). The ice in the mesh ~0.7 mm away from this
region and the metal ring (shown in light blue in Fig. 1a) was
vitrified. Both crystalline and vitreous ice formed in the mesh
between these two regions (shown in pink in Fig. 1a).We attributed
crystalline ice formation to the low cooling rate. The cooling rate
increased with distance from the tweezer tips or the metal ring.
Therefore, in the pink region in Fig. 1a, the vitreous ice near the
crystalline ice was frozen at the lower cooling rate.

Initial frame recovery with low-cooling-rate freezing

To verify whether the low cooling rate enabled recovery of the
initial frames, cryo-EM datasets were acquired (Methods and
Table S1) for different samples in the pink region. Samples such
as apo-ferritin, glutamate dehydrogenase (GDH), and EV71 virus-
like particles (VLP) were imaged with a Titan Krios electron
microscope, equipped with a K2 camera for frame exposures of
1.2 e�/Å2. Micrographs of samples in vitreous and crystalline ice
could be easily distinguished via Fourier transforms, because the
polycrystalline ice had strong diffraction rings at approximately
1/3.6 Å�1, as shown in Fig. 1b. Micrographs of proteins in a thin
layer of vitreous ice were selected for further data processing. The
resolutions of the per-frame reconstructions (see Methods) were
calculated for each dataset. The overall difference in resolution
among these datasets was because of different numbers of particles,
and was not relevant to the recovery of rapid burst motion. The
effect of recovering rapid burst motion was characterised by reduc-
ing the differences in resolution between the first few frames and
that of the best frame in the same dataset. As shown in Table 1, and
by the green lines in Fig. 2a, the resolutions of the per-frame
reconstructions from the initial frames were effectively recovered

Fig 1. Cooling-rate gradient for cryo-electron microscopy (EM) samples. (a) Schematic of types of ice formed on grid covered by a cooling-rate gradient. The mesh in the dark blue
region contained mostly crystalline ice. The pink region contained either vitreous ice or crystalline ice, and the light blue region contained mostly vitreous ice. (b) glutamate
dehydrogenase (GDH) embedded in vitreous ice and crystalline ice frozen at �183 °C.
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for all three samples. The first two per-frame reconstructions of
VLP with 0–1.2 and 1.2–2.4 e�/Å2 exposures exhibited the best
resolutions. The differences in resolution between the first and best
per-frame reconstruction of apo-ferritin and GDH were 0.1 and
0.4 Å, and that between the second and best per-frame reconstruc-
tion was 0.1 and 0.1 Å, respectively (Table 1). For comparison, the
resolutions of the per-frame reconstructions from the first two
frames of the same samples after normal rapid freezing were ~1 Å
lower than that for the best frame, as shown inTable 1 and Fig. S1a–c.

Thus, the initial frameswere almost fully recovered in the pink region
frozen at the lower cooling rate.

To test whether freezing at a higher cooling rate led to decreased
resolution in the initial frames, we collected GDH data in the light
blue region (Fig. 1a) on the same grid, with a frame exposure of
1.2 e�/Å2. Micrographs of proteins in a thin layer of vitreous ice
were selected for further data processing. As shown by the blue line
in Fig. 2b, the resolutions of the initial frames collected in the light
blue regionwere not restored as well as the data collected in the pink

Table 1. Comparisons of various samples frozen under different conditions

Samples T (°C)

Difference in resolution (Å)

Da (nm) Hb (nm) h/DBest-frame resolution (Å) Resframe1-Resbest frame Resframe2-Resbest frame

Apo-ferritin �183 2.7 0.1 0.1 1,200 15 1:80

GDH �183 3.8 0.4 0.1 2,000 20 1:100

VLP �183 4.2 0.1 0.0 1,200 40 1:30

Apo-ferritin �110 2.0 0.1 0.0 1,200 15 1:80

Aldolase (Auc) �110 3.6 0.2 0.1 1,200 15 1:80

Aldolase (Cud) �110 4.5 0.0 0.1 2,000 15 1:130

GDH �110 3.7 0.2 0.1 2,000 20 1:100

DPSe �183 2.4 0.1 0.0 260 20 1:13

Apo-ferritin Standardf 2.2 0.9 0.4 1,200 – –

GDH Standard 3.1 1.1 0.9 2,000 – –

VLP Standard 3.2 1.2 0.7 2,000 – –

Aldolase Standard 4.5 1.9 1.5 1,200 – –

Abbreviations: DPS, DNA protection protein during starvation; GDH, glutamate dehydrogenase; VLP, virus-like particles.
aD is the diameter of the grid holes.
bh is the thickness of the ice.
cAu means that the aldolase was collected in holey NiTi film covered on the Au grid.
dCu means that the aldolase was collected in holey carbon film covered on the Cu grid.
eDPS dataset was reconstructed based on the deposited maps andmask by Naydenova et al. (2020). The DPS was frozen by regular plunge-freezing at�183 °C without intentionally moving the
tweezers using a grid with 260-nm-diameter holes.
fStandard means using regular freezing conditions at �183 °C, without intentionally moving the tweezers.

Fig. 2. Resolutions of per-frame reconstructions for various samples frozen at different cooling rates. (a) Resolutions of per-frame reconstructions of various samples frozen by
lowering the cooling rate. The green lines are for apo-ferritin (rhombus), glutamate dehydrogenase (GDH; square) and virus-like particles (VLP; triangle) collected in the pink region
marked in Fig. 1a. The red lines are for apo-ferritin (rhombus), GDH (square) and aldolase (triangle) frozen at�110 °C. Aldolasewas frozen on anAu grid coveredwith a holeyNiTi film
(regular triangles), and also on a Cu grid covered with a holey carbon film (inverted triangle). The grey line shows the resolutions of downloaded per-frame reconstructions (EMD-
11210) of DNA protection protein during starvation (DPS). (b) Resolutions of per-frame reconstructions of GDH datasets using a cooling-rate gradient. The green dataset was
collected for a standard frozen sample formed at the highest cooling rate, the blue dataset was collected in the light-blue region in Fig. 1a, and the red dataset was collected in the
pink region in Fig. 1a.

QRB Discovery 3

https://doi.org/10.1017/qrd.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2021.8


region. However, when the data collected in the light blue region
were compared with data from the sample frozen under normal
freezing conditions without moving the tweezers, the differences in
resolution between the initial and best per-frame reconstructions in
the former were small. This indicated that the initial frames col-
lected in the light blue region were only partially recovered.

Initial frame recovery with increased freezing temperature

In routine cryo-EM sample preparation, the freezing temperature is
�183 °C to maximise the formation of vitreous ice. Higher tem-
peratures would reduce the cooling rate (Ryan et al., 1987), andmay
still produce vitreous ice. To determine the highest vitrification
temperature for cryo-EM samples, apo-ferritin was frozen by
plunging grids into liquid ethane at temperatures ranging from
�90 °C to�183 °C, using automated devices (Gatan CP3). Because
the tweezers were not adjusted, less heat was conducted from the
tweezers to the metal ring, resulting in more homogeneous cooling
rates across the grid. We used a thermocouple calibrated by mea-
suring liquid nitrogen and the melting points of five substances at
atmospheric pressure (Fig. S2) to calibrate the liquid ethane tem-
perature in both the CP3 and EMGP plunging devices (Table S2).
The experiments revealed that thin aqueous samples of apo-ferritin,
GDH, aldolase and β-galactosidase were vitrified in liquid ethane
at calibrated temperatures below �110 °C (Fig. S3). Most of the
samples were crystalline above �110 °C.

For apo-ferritin samples frozen at�183,�150 and�110 °C, we
acquired datasets with a Titan Krios microscope equipped with a
K2 camera (Fig. 3a). The apo-ferritin in the three datasets was
reconstructed to 2.1, 2.4 and 1.9 Å, respectively, using standard
data processing via single-particle analysis (see Methods). The
resolutions of the per-frame reconstructions from the three datasets
are shown in Fig. 3b. At �183 °C, the resolutions of the first three
per-frame reconstructions were significantly lower than those of
subsequent per-frame reconstructions. This difference became
smaller with increased freezing temperature. At �110 °C, the
per-frame reconstruction for the second frame had the best reso-
lution, and the resolution of the first per-frame reconstruction was
slightly lower than that of the second.

To support our observations, we collected cryo-EM datasets for
GDH and aldolase on two different grids (Table 1 and Table S1)
vitrified at�110 °C, with frame exposures of 1.5, 1.2 and 1.2 e�/Å2,
respectively. The per-frame reconstructions are shown in Fig. 2a
(red lines). As shown in Table 1, the first two frames were effectively
recovered in all the datasets, which indicated that freezing at a lower
cooling rate by increasing the freezing temperature restored the
resolution of the initial frames. Conversely, the corresponding
resolutions of per-frame reconstructions from the initial frames
of samples frozen under standard freezing conditions were signif-
icantly lower than those of subsequent frames, as shown in Table 1
and Fig. S1d–f.

Benefits of recovering the initial frames

Certain protein amino-acid residues that contain carboxyl side-
chain groups, solvent-exposed disulfide bonds or are part of an
enzyme active site, are highly sensitive to electron damage (Weik
et al., 2000; Bartesaghi et al., 2015; Glaeser, 2016). As shown in
Fig. 4, we compared the EM map densities of site-specific amino
acids in different per-frame reconstructions. Side-chain densities of
damage-sensitive amino acids were well-preserved in the first two
per-frame reconstructions (0–2.54 e�/Å2), but were already dam-
aged in the fourth frame. The cumulative electron dose before
acquiring the fourth frame was 3.8 e�/Å2.

After full frames were processed with a dose-weighting proce-
dure in MotionCor2 (full-frames dataset), the apo-ferritin sample
frozen at �110 °C had an overall resolution of 1.9 Å. To compare
the quality of these reconstructions with a standard cryo-EM sam-
ple affected by rapid-burst BIM, wemimicked the data by excluding
the first three frames from the dataset frozen at�110 °C during the
dose-weighting procedure. For the same apo-ferritin particles,
the resulting partial-frames dataset had an overall resolution of
2.0 Å. The ResLog (Stagg et al., 2014) plots from these two datasets
indicated that the partial-frames dataset mimicking cryo-EM sam-
ples at �183 °C required 60% more particles to achieve the same
resolution as that for the full-frames dataset acquired at �110 °C
(Fig. 5). Moreover, we observed a slight improvement in the
b-factor in the full-frames dataset. The full-frames dataset exhibited

Fig. 3. Effect of freezing temperature. (a) Images of apo-ferritin embedded in vitreous ice frozen at�150 and�110 °C. (b) Resolutions of per-frame reconstructions of apo-ferritin
frozen at �183 °C (green), �150 °C (blue) and �110 °C (red), with exposures of 1.2, 1.2 and 1.27 e�/Å2 for each frame, respectively.
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higher image quality than that of the partial-frames dataset because
the former was averaged with three extra frames having the least
amount of electron radiation damage. The higher image quality
enabled a more accurate alignment in the refinement during data
processing, thus improving the b-factor.

Discussion

The �110 °C vitrification temperature differs from previous
observations that cubic ice formed on microdroplets at �135 °C
(Dubochet and McDowall, 1981; Dubochet et al., 1982). However,
the 30-nm-thick aqueous layer in our experiments was much
smaller than a microdroplet, which led to a much higher cooling
rate that produced vitrification. It has been calculated and observed

that the transition temperature from vitreous to crystalline ice for
pure water is approximately �135 °C (Dowell and Rinfret, 1960;
Dubochet and McDowall, 1981). However, solution components
such as salts and proteins increase the glass transition temperature
(Mackenzie, 1977; Gilkey and Staehelin, 1986; Warkentin et al.,
2013; Thorne, 2020). Rash (1983) have suggested that vitrified
biological samples must be kept below�100 °C to prevent changes
in the physical state. Wieferig et al. (2021) also used temperatures
between �110 and �100 °C to observe a phase transition of an
aqueous film from vitreous to crystalline ice.

Some of the reports on reducing BIM via freezing proteins at
�110 °C have been online at BioRxiv since October 2019 (https://
doi.org/10.1101/824698). Our data showed that the rapid burst
motion was related with the freezing temperature, which indicates
that the stress in vitreous ice caused by the rapid freezing may play
important role in the rapid burst motion. Naydenova et al. (2020)
proposed that rapid cooling causes compressive strain in the thin
film, which agreed with our work. They showed that, using Hex-
AuFoil grids, the quality of the first several per-frame reconstruc-
tions of a 223-kDa DNA protection protein during starvation
(DPS) were recovered. We calculated the resolutions of the per-
frame reconstructions based on their deposited maps and mask
(EMD-11210), as shown by the grey line in Fig. 2a and in Table 1.
The quality of the first frame for DPS was substantially recovered,
but was still slightly worse than that of the second frame based on a
0.143 FSC criterion, as observed for other samples using our freezing
methods (Fig. 2a). As shown in Table 1, the qualities of the initial
frames were almost fully recovered, which indicated that both low-
cooling-ratemethodsworked similarly to theHexAuFoil gridmethod.

Naydenova et al. (2020) used standard freezing conditions to
vitrify the sample. To prevent bending of the ice by the stress release
during imaging, they made the thickness of the ice (h), divided by
the diameter (D) of the grid holes,≥1/11. Thus, the DPS was frozen
using a grid with 260-nm diameter holes. Here, where the cooling
rate was lowered to reduce the stress in the ice, h/Dwas not limited,
as shown in Table 1. Therefore, various grids with different hole
sizes could be used. Using large holes during imaging prevents
recording of the supporting film, which significantly improves
the throughput of the data collection.

Because the cooling rates of the tweezers, grid bars and metal
ring are still lower than that of aqueous film in a standard cryo-
EM sample preparation, a cooling-rate gradient always occurs on
the grid (Vinothkumar and Henderson, 2016; Thorne, 2020). The
magnitude of the gradient depends on howmuch heat is transferred
from the tweezers to the grid. Freezing at�183 °C with the position
of the tweezers adjusted to make more contact with the grid results
in a large cooling-rate gradient. Although the region with a suffi-
ciently low cooling rate (pink region in Fig. 1a) was large enough for
data collection, freezing at�110 °C enabled data collection over the
whole grid. Therefore, freezing at the higher temperature is pre-
ferred. Because of errors in measuring the liquid ethane tempera-
ture when using different plunging devices, a combination of
freezing at slightly lower than �110 °C, with less tweezers adjust-
ment, may create a smaller cooling-rate gradient that enlarges the
area containing rapid motion-free proteins.

Materials and methods

Protein and cryo-EM sample preparation

Human apo-ferritin was diluted to a concentration of ~2 mg/ml
and purified according to previous reports (Fan et al., 2012;

Fig. 4.Maps showing the side chain densities of the initial per-frame reconstructions of
apo-ferritin frozen at �110 °C.

Fig. 5. ResLog plots of datasets including or excluding the first three frames. The red
and blue straight lines were fit from the first five data points, and correspond to the
datasets with or without the first three frames, respectively. The b-factors of the full-
frames dataset and partial-frames dataset were 74.9 Å2 and 76.3 Å2, respectively. The
length between the two horizontal dashed lines is 0.453, which indicates that the
reconstruction of the dataset without the first three frames needed ~1.6 times particles
to achieve the same resolution as that for the dataset with the first three frames.

QRB Discovery 5

https://doi.org/10.1017/qrd.2021.8 Published online by Cambridge University Press

https://doi.org/10.1101/824698
https://doi.org/10.1101/824698
https://doi.org/10.1017/qrd.2021.8


Jiang et al., 2020). The apo-ferritin proteins were expressed in
Escherichia coli, where they self-assembled into a 24-subunit
nanocage. They were purified via size-exclusion chromatography
on a Sepharose 6 PG XK 16/70 column from GE Healthcare
(Livonia, MI, USA), followed by ion-exchange chromatography
on a Q-Sepharose Fast Flow from GE Healthcare (Livonia, MI,
USA). The apo-ferritin concentration was determined in triplicate
with a BCA protein assay kit (Pierce) form Thermo Fisher Scien-
tific (Portage, MI, USA), using bovine serum albumin as the
standard. The GDH from Sigma-Aldrich (Milwaukee, WI, USA)
was dialysed in 100-mM potassium phosphate (pH 6.8) overnight
prior to purification via gel filtration. The GDH concentration in
the cryo-EM samples was ~3mg/ml. Aldolase was purchased from
Sigma-Aldrich (Milwaukee, WI, USA) and solubilised in 20-mM
HEPES at pH 7.5 and 50-mM NaCl. It was then purified via gel
filtration using a Superdex 200 increase 10/300 from GE Healthcare
(Livonia, MI, USA) column equilibrated in 20mMHEPES at pH 7.5
and 50-mM NaCl. Peak fractions were pooled and concentrated to
2 mg/ml. The VLP was a gift from Dr. Yingzhi Xu (Minhai Biotech-
nology Co.) and was diluted to ~4 mg/ml with 20 mM Tris.HCl
pH 7.5 and 150-mM NaCl.

Approximately 3-μl sample aliquots were applied to a glow-
discharged holey NiTi film covering an Au grid, or to a carbon film
covering a Cu grid. The grids were blotted for 3–7 s with an
automated plunging device CP3 from Gatan (Warrendale, PA,
USA) or EMGP from Leica (Wetzlar, Germany), and then flash-
plunged into liquid ethane at various temperatures ranging from
�90 to �183 °C (details in Table S1).

Data acquisition and processing

Datasets of apo-ferritin frozen at �183 °C and aldolase frozen at
�110 °C on Au grids (Table 1) were collected with a FEI Titan
Krios form Thermo Fisher Scientific (Portage,MI, USA), equipped
with a direct detector K2 summit from Gatan (Warrendale, PA,
USA) with super-resolution mode, at a magnification of 165,000�
and binned pixel sizes of 0.82 Å. The GDH datasets obtained in the
pink and light-blue regions (Fig. 1a) of the Cu grid frozen at�183 °
C (Table 1) were imaged similarly, with aGIF quantum energy filter
(width of 20 eV) by the beam-image shift data collection method
(Wu et al., 2019). All the remaining datasets were collected simi-
larly, with details listed in Table S1.

Images of a thin-layer aqueous sample were selected manually
for further data processing. In all datasets, the BIM was corrected
withMotionCor2 software (Zheng et al., 2017). Aligned stacks were
saved for per-frame reconstructions. The defocus parameters were
estimated with CTFFIND4 software (Rohou and Grigorieff, 2015).
About 2,000 particles were picked by e2boxer.py semiautomatic
particle-picking software (Tang et al., 2007), or by manual picking
with RELION software, and were processed by two-dimensional
(2D) classification. This yielded 2D averages that were used by
RELION as references for automatic particle-picking in all micro-
graphs (Scheres, 2012). After the reference-free 2D and 3D classi-
fications, particles were selected and processed via automatic
refinement. An extra round of refinement was performed after a
CTFFIND4 refinement in RELION-3 (Zivanov et al., 2018). The
reconstruction resolution was determined via post-processing in
RELION, which used a soft mask for each dataset.

For per-fame reconstruction, a single frame was split from the
aligned stacks written out with MotionCor2. The particles were re-
extracted in each frame image using parameters from the previous
refinement iteration, and per-frame reconstructions were

calculated from re-extracted particles via relion_reconstruct_mpi.
The resolutions of the per-frame reconstructions were determined
by post-processing in RELION, with the same soft mask used in the
initial reconstruction of each sample.

Atomic model refinement

Protein data bank coordinates 1MFR served as a starting model for
building the atomic structure of apo-ferritin. Amino acids were
mutated in COOT software (Emsley and Cowtan, 2004), according
to the apo-ferritin amino acid sequence. Manual adjustments were
made in COOT. The model was refined with Phenix software
(Adams et al., 2010).
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