
A SPECTRAL RADIUS PROBLEM CONNECTED WITH WEAK
COMPACTNESS

by HANS-OLAV TYLLI

(Received 28 August, 1991)

0. Introduction. The asymptotic behaviour has been determined for several natural
geometric or topological quantities related to (degrees of) compactness of bounded linear
operators on Banach spaces; see for instance [24], [25] and [17]. This paper complements
these results by studying the spectral properties of some quantities related to weak
compactness.

Let E and F be Banach spaces. The bounded linear operator 5 e L(E, F) is weakly
compact, and denoted S eW(E,F), if the image SBE of the closed unit ball of E is
relatively compact in the weak topology of F. The deviation of S e L(E, F) from weak
compactness is measured both by the geometric quantity

a)(S) = inf{£ > 0 | SBE cK + eBF, K weakly compact in F}

due to de Blasi and by the quotient norm \\S\\W = dist(5, W(E, F)).
Suppose that E is a complex Banach space. It is known that a> is a submultiplicative

seminorm on L(E) that vanishes on the closed ideal W(E) and that a>(S) s \\S\\W for all
operators 5 (see [2]). Hence the limit lim <y(5")1/n = inf (o(S")Un exists for all 5 € L(E).

This paper considers the natural problem whether it possesses a concrete spectral
interpretation. In particular, does

lim a)(Sn)Un = max{\k\:keo(S + W(E))} (0.1)

hold for all S e L(E) on non-reflexive Banach spaces El Here o(S + W(E)) denotes the
spectrum of the quotient element 5 + W(E) in the generalized Calkin algebra
L(E)/W(E) and the right-hand side is its radius ra(S + W(E)). The Gelfand-Beurling
spectral radius formula states that

ro(S + W(E)) = lim \\Sn\\H," whenever 5 e L(E). (0.2)

This problem is approached with the help of algebraic semigroups related to the
tauberian and the cotauberian operators. The equality (0.1) is also verified for operators
on several classical non-reflexive spaces having the Dunford-Pettis property by compar-
ing a) and || \\w. These computations complement the results of [3]. Finally, an asymptotic
formula is proved on separable non-reflexive spaces for the inner radius of a spectral
subset related to a subclass of the tauberian operators.

I am indebted to J. Zemanek and to M. Gonzalez for discussions during visits to the
Mathematical Institute (PAN), respectively the Universidad de Cantabria.

1. The tauberian spectrum. Let A be a Banach algebra. The spectrum of the
element a 6/4 is denoted by o(a) and its radius max{|A|:Ae o(a)} by ra(a). If £ is a
Banach space, then K(E) stands for the closed ideal of L(E) consisting of the compact
operators on E.
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It was known to Gohberg et al. in the Calkin algebra case that
l/ (1.1)

for all S € L(E) and all complex Banach spaces £ (see [9] or [24, 3.3 and 3.4]). The
Hausdorff measure of noncompactness

y(5) = inf{e > 0 | SBE c K + eBE, K a finite set in £}

of 5 e L{E) is the compact counterpart of the seminorm u>. The equality (0.1) is clearly
suggested by (1.1).

We recall some algebraic semigroups of operators. Any Banach space E is viewed as
canonically embedded into its bidual E". The operator 5 e L(E, F) induces an operator
R(S) e L(E"/E, F"/F) through R(S)(x" + £) = S"x" + F for x" + E e E"/E. Set

T ( £ , F) = {S e L(E, F) :z"eE whenever S"z" e F and z" e E"},

co r(E, F) = {Se L(E, F):S' e r(F', E')},

<!>,(£, F)={Se L(E, F): R(S) is bijective}.

The tauberian operators T and the cotauberian operators co r were introduced by Kalton
and Wilansky [12] respectively by Tacon [18]. Alternatively, 5 e co x(E, F) if and only if
lmS" + F=F" [18, p. 65]. Evidently Sez(E,F) if and only if R(S) is injective while
S e c o r ( £ , F ) if and only if R(S) has dense range in F"/F. Moreover, S € L(E) is
W-invertible, denoted by S e<bw(E), if there are 7]'e L{E) and weakly compact
VteW{E) (i = l,2) such that T1S = ld + Vi and 5T2 = Id + V2. It is immediate that
3>W(E) <= <Pj(E) <r r(E) D co r(E). In addition

{5 e L(E): Im 5 closed, Ker 5 and £/Im 5 reflexive} + W(E) c <&,(£)

in view of [23, 5.1].
The proof of [24, 2.1] implies that (0.1) holds for all 5 e L(£) if and only if there is

6 > 0 such that Id + R e 3>w(£) whenever R e L{E) satisfies a)(R)<5. However, this
perturbation criterion seems difficult to work with and the following connection between
the norm of the R-representation and the measure of weak non-compactness appears
more useful.

THEOREM 1.1. Let E and F be Banach spaces. Then

\\R{S)\\<w{S) forallSeL(E,F).

Proof. Suppose that A > co(S) and pick a weakly compact subset K of F with

SBE c K + XBF.

The iv*-density of BE in BE- yields

S"BE.. c 5Z?£* c K + XBF' czK + kBr (1.2)

since K is w*-compact in F". Here Aw" denotes the w*-closure of A in F". Suppose that
x"eE" satisfies ||JC" + £ | | = dist(jc", £ ) < 1 and let <5>0. We may assume that ||x"|| ^
1 + 6, if necessary by passing to x"-y for some yeE. There is by (1.2) an element
k(x") e K c F satisfying
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One deduces that

||K(S)(JC" + £)| | < \\S"x" - k(x")\\ s (1 + <5)A.

This gives the desired inequality upon letting d approach 0.

It is well known that 5 e W(E, F) if and only if R(S) = 0. The operator R induces the
contractive representation R:L(E, F)/W(E, F)-> L(E"/E, F"/F) considered in [23], in
view of the inequality ||i?(5)|| ^ 11511K,. This representation is not always bounded below.

COROLLARY 1.2. Let E be a Banach space. If Im R is dosed in L(E"/E), then m and
|| ||„, are equivalent seminorms in L(E). In particular, there are Banach spaces E such that
Im R fails to be closed in L(E"/E).

Proof. Evidently ImR is closed in L(E"/E) if and only if || \\w and \\R( )|| are
equivalent seminorms on L(E). In this case at is also equivalent to || !!„, according to the
preceding theorem. It is known [3, Theorem 1 and Corollary 3] that this does not always
hold.

(o and \\R( )|| also fail in general to be comparable. See [11].
Let £ be a complex Banach space and let 5 e L(E). The (symmetric) tauberian

spectrum of 5 is the subset

aT(S) = {AeC:AId-S<£ T ( £ ) n co T ( £ ) }

of o(S + W(E)). Geometrically the tauberian spectrum consists of particular IV-
perturbed eigenvalues of 5, since

or(S) = {A e C: there is V e W(E) such that either
Ker(A Id - (5 + V)) or £/Im(A Id - (S + V)) is non-reflexive}

by [10, Theorem 1]. Examples are later given where the tauberian spectrum of 5 is either
the empty set or a non-closed subset of o(S + W(E)).

COROLLARY 1.3. Let E be a complex Banach space. Then

ra(R(S)) < lim (o(S")Un < rff(5 + W(E)) for all S e L(E).

n—*-°o

/ / E satisfies the condition

*w(E) = <t>,{E) (1.3)
or if \\R( )|| and || ||w are equivalent on L(E), then (0.1) holds for all S e L(E). In
addition, lim o)(S")Un >sup{\X\:ke or(S)} whenever or(S)¥=0.

n—*«

Proof. It follows readily that

crr(S) = {A e C: A Id - R{S) is not injective or Im(A Id - R(S)) is not dense in £"/£}

c o(R(S)) c o(S + W(E))

for any operator S. Theorem 1.1 yields

ra(R(S))= lim \\R(S")\\lln < lim w(5")1/'1 <ro(5 + W(E))

for all 5 6 L(E). Moreover, sup{|A|: A e oT(S)} < ro(R(S)) whenever oT(S) is non-empty.
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If the Banach space E satisfies (1.3), then o(S + W(E)) = o(R(S)) for all 5 e L(E) and
(0.1) holds. In addition, if \\R( )|| and || ![„, are comparable seminorms, then ra(R(S)) =
ra(S + W(E)) for all 5 e L(E).

It is important, for instance, in view of the previous result to determine the exact
relations between classes such as <S>W, <J>, and T n co T on concrete Banach spaces. The
R-representation has not been much studied from this point of view. Recall that
5 e <&+(£) if S has closed range and finite dimensional kernel while S e <&-(£) if Im 5 has
finite codimension in E. The class of Fredholm operators is <!>(£) = <!>+(£) n <&_(£). The
Banach space E is quasi-reflexive if the canonical image of E has finite codimension in E".
The James space / (see [15, l.d.2]) is the best known example. Let /„ =J ©. . . ©7 (n
copies) with the /2-norm.

PROPOSITION 1.4. (i). Suppose that E is a Banach space such that E and E' contain no
closed infinite-dimensional reflexive subspaces. Then

<&(£) = <&„(£) = #,(£) = T ( £ ) n co T(£) .

(ii). <bw(Jn) = <t>,{Jn) for all n e N.

Proof, (i). Assume that 5 e T ( £ ) n co T ( £ ) ~ $(£) . If S <£<!>+(£), then there is an
infinite-dimensional subspace M of E such that the restriction S\M is compact [6, 4.4.7].
On the other hand, S e T ( £ ) implies that BM is relatively weakly compact [12, 3.2]. This is
not possible in view of the assumption on E. If S $ <!>_(£), then there is according to
duality and [6, 4.4.7] an infinite-dimensional subspace McE' with S'\M compact. But
5' e r(E') [18, p. 65] and one would deduce as before that M is a reflexive subspace of
E'.

(ii). The spaces Jn are realized up to isomorphism as

equipped with the norm

(n - l \ 1/2

2\\zPk-zPkJ\2+\\zpJ\2) ;
see [4, 1.1]. The supremum is taken over all finite sequences px < . . .< />„ of natural
numbers and l\ denotes the /z-dimensional Hilbert space. Here Fn consists of the
sequences (z,) with z,e/2 and ||(z,)||<oo. The isometry •ty:FnIJn^>l\ is given by

) + /„) = lim z,. Suppose that for 5 e L(Jn) there is T e L(l2
n) with R(S)T = TR(S) =

id/2. Define t/:/n-»Jn through U(z,) = (Tz,). Evidently U is a bounded operator
satisfying R(U) = T, since

+Jn)) = \imTzi for all (z,)e/n'.
i—*co

Consequently R(SU-ld) = 0 and (SU - Id)"/^c7n. This implies that SU - Id e W(Jn).
Similarly US - Id e W(Jn) and hence 5 e <&w(Jn).

The condition of part (i) is satisfied for c0 [15, 2.a.l]. More generally, if £ is a
Banach space such that £ ' is isometric to /', then £ is co-hereditary (any infinite-
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dimensional subspace contains a copy of c0). This follows for instance from a result of
Fonf; compare [7, IX.12]. Thus part (i) holds for all C(/Q-spaces, where K is a countable
compact metric space. It is claimed in [22, 4.1] that ^(L^O, l)) = ®i(Ll(0,1)), but the
proof is incomplete. It would be interesting to determine whether this equality holds on
the classical spaces with the Dunford-Pettis property; compare Section 2. The question
whether <!>„,(£) = <£,(£) gives rise to a lifting problem for operators on E"/E: is there an
operator U e L(E) with R(U) = S whenever 5 e L(£"/£)? It is unclear to me whether this
always holds even for quasi-reflexive E. However, it is possible to show as above that
<&W{J{E, Id)) = $,•(/(£, Id)) for the /-sum / (£ , Id) constructed in [4], which satisfies
/ ( £ , ld)"/J(E, Id) = E isometrically whenever £ is a given reflexive space.

We close this section with two examples concerning operators on vector-valued
sequence spaces that stress the analogy of the tauberian spectrum with the point
spectrum. Let £ be a non-reflexive Banach space. For l<p<«> consider

{
(xn):xn

eE,neN,\\(xn)\\p =

Standard vector-valued duality yields canonical isometries (lp(E))' =/*(£'), where

- + - = 1, and (l"(E))" = /"(£"). These identifications remain true for the spaces
P <7

EXAMPLE 1.5. Let £ be any complex non-reflexive Banach space. If 5+ is the
vector-valued shift S+(xn) = (*„+,) on lp(Z,E), then ar(S+) = 0 . Indeed, o(S+)c{ze
C: \z\ = 1} (cf. [8, 1.31]) since S+ is a bijective isometry on lp(Z, £). Hence it suffices to
verify that A Id - S+ e r n co r whenever A e C satisfies |A| = 1. Assume that (*;') e
1"{Z, £") and that

(A id - s+)oo = (Ax;' - *;'+1) e i»(z, £).

Consequently A*;' -x'^+l e E for all n e Z. It follows that
n- l

A nvti vti ^ 1n~\~k("\vti it \ _ c1

•*0 xn ~ ZJ *• yAXk xk + l) e ^ J
*=0

for all n > 1. Similarly X"x'o - x"n e £ for / i< 0. This means that distK, £) = dist(4', £) for
n e Z , and hence that « ) e / P ( Z , £ ) .

The fact that A Id - 5+ is cotauberian for the same values of A is verified in a similar
manner since 5+ = 5_, where S-(x'n) = (x'n^) on lq(Z, £ ') . This establishes the claim.

EXAMPLE 1.6. Let £ be a complex non-reflexive Banach space. Suppose that
{rn:neN} is an enumeration of the set {a + if}eC:a, /3 rational, 0< ar2 + /32< 1}.
Let SeL{l"{E)) be defined by S(xn) = (rnxn). Then oT(S) = {rn: n e N} and
a(5 + W(/"(£))) = o(S) = {z e C: \z\ < 1}.

Indeed, here S'OO = (rnjt;), S " « ) = ( r ^ ) for all (x'n) e /"(£') respectively (JCJ) e
lp(E"). Clearly rn I d - S fails to be tauberian for all neN, since the non-reflexive space
£ c Ker(rn Id - 5). It follows similarly by duality that rn I d - 5 ' $ T(1"(E')) and conse-
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quently {rn:n e N} c aT(S). There remains to verify that A i d - 5 e r f l c o T whenever
{z e C: \z\ ^ 1} ~ {rn :n e N}. In fact, if « ) e /"(£"), then

if and only if x"n e E for all n e N. The verification that A/ — 5 is cotauberian is formally
similar using duality. This yields the claim.

2. Further results. The equality (0.1) is certainly valid on a given complex space E
if to and || Ĥ  are equivalent seminorms on L(E) because of (0.2). Equivalence holds if E
has a certain weakly compact approximation property, but it does not hold in general [3,
Theorem 1].

Recall that a Banach space E has the Dunford-Pettis property if all weakly compact
operators S:E^*F map relatively weakly compact sets fic£ to relatively compact sets
SB. Standard examples of spaces with this property are the =2"- and J£°°-spaces, such as / ' ,
1/(0,1), c0, C(0,l) , r and M(0,1) [14, II.4.30]. It is known that <&„(£) = <&(£)
whenever E has the Dunford-Pettis property. Indeed, suppose that T,,T2e L(E),
VuV2eW{E) satisfy TtS = Id+ V{ and Sr2 = Id + K2. Then Id - K? e <D(£) (i = l ,2) ,
since V] is compact in view of the Dunford-Pettis property of E. Thus Id + Vj and 5 are
Fredholm operators by [6, 3.2.6]. In this event o(S + W(E)) = o(S + K(E)) for all
5 e L(E).

A Banach space E has the Schur property if all relatively weakly compact subsets of
E are relatively compact. This property clearly passes to subspaces. The canonical
example is /'(/) for all index sets /. Recall that E has the X-extension property if for all
subspaces M of F and all 5 e L(M, E) there is an extension T of 5 to F with || 7| | < A ||5| | .

THEOREM 2.1. The seminorms a) and \\ \\w are equivalent on L(E), and thus the
equality (0.1) holds, in the following cases.

(i) E has the weakly compact approximation property of [3], for instance if E has the
Schur and the bounded approximation property.

(ii) There is a projection P: E"—* E and E' has the X-extension property for some A.
These conditions are satisfied by Ll(0,1), (/")', Af(0,1) or by any further even dual of
these.

(iii) c0.
(iv) E is quasi-reflexive.

Proof, (i) See [3, Theorem 1].
(ii) Observe first that

I|S'L^PIL<||P||||S'L (2.1)
for all SeL(E). Indeed, if p>\\S'\\w and VeW(E') is such that \\S'-V\\<p, then
PV'KE is weakly compact on E while

where KE denotes the natural embedding of E into its bidual. Thus (2.1) follows with the
general inequality \\S'\\W s \\S\\W (by Gantmacher's theorem).

Moreover, it follows from the proof of [2, 5.2] and the above that

a>(S")^\\S"\\w=\\S'\\w<XcD(S")

https://doi.org/10.1017/S0017089500009599 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009599


A SPECTRAL RADIUS PROBLEM 91

whenever SeL(E), since E' has the A-extension property. Consequently one obtains
after combining with the general inequality a>(5") < o>(5) [2, 5.1] that

for S e L(E).
It is well known that there is a projection P:(Ll(0,1))"-»L1(0,1) with norm 1. The

existence of the required projection in the other cases follows since they are dual spaces.
Finally, all duals E' have the extension property since the spaces E considered here are
if'-spaces; see [14, II.5.7].

(iii) We claim that

a>(S) = y(S) = ||S|U = dist(5, K(c0)), S e L(c0).

The argument is based on block-basis techniques.
Let (c,) be the coordinate basis of c0, let £ > 0 be small and assume that 5 e L(ca) is

normalized by

Since W(c0) = K(c0) and since y(R) = dist(/?, K(c0)) for all R on c0 [13, 3.6], it is enough
to verify that

o)(S)>/3 (2.2)

for all 0</3< 1. This is achieved by showing that the restriction of S to some subspace
isometric to c0 is a nice isomorphism. Assume that 0 < J U < 1 is given. According to [20,
1.2] there are block basic sequences (xn) and (zn) with respect to the basis (e,) such that
for all n eN:

\\xn\\ = l, \\Sxn\\>li, (2.3)

\\Sxn-zn\\<5l2n. (2.4)

Here the images {Sxn) are almost disjoint and the blocks (zn) are corresponding
truncations, so that it is possible to make the difference in (2.4) arbitrarily small, given
any preassigned <5>0. The closed linear span [xn] is isometric to c0 and we estimate
a>(SB[Xii\) from below. Since (zn) are disjoint finite blocks formed from (Sxn) one may
ensure from the bimonotonicity of the unit basis that

H<\\zn\\^\\Sxn\\<l + e (neN). (2.5)

Evidently

1 00 II

E AnzJ<(l + e)max|An|
n = l II ncN

for all (An) ec0. If <5 > 0 is chosen small enough one ensures from (2.5) and perturbation
results for basic sequences [15, l.a.9(i)] that

v max |AJ < ^ KSxJ <(l + e) max |An|
neN Wn = \ II "<=N

for all 0 < v < / z and all (An)ec(). Consequently the restriction S\M is an isomorphism
onto [Sxn] with | | 5 | K | | | IKSj^j)"1!! ^ v~'(l + e). Observe further according to disjoint-
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ness and the proof of the perturbation result in [15, l.a.9(ii)] that there are projections
P:c0-•[*„] and Q : c0-* [Sxn] such that ||P|| = 1 and ||Q||<A, for any A > v~2(l + ef, as
soon as d >0 is small enough. It is easily estimated that

( 5 ) CO(SBM) ~ 2 ( 1 ) " 2 ( B )

Here (o(Blx^) = 1 while m(SBlx^) is computed in the subspace [Sxn]. Eventually this
yields (2.2) after appropriate choices of fi, v, e and A.

(iv) Recall that R e W(E) if and only if R"E" c E. It follows from the finite-
dimensionality of E"/E that W(E) has finite codimension in L(E). The claim is seen since
all norms are equivalent in the finite-dimensional space L(E)/W(E).

REMARKS 2.2. (i) In the case L'(0,1) there is a different proof of the equality
a)(S) = \\S\\W by combining [1, 3.6] and [21, Theorem 1].

(ii) Relative to the spaces E = L'(0,1) or c0 there are Banach spaces F such that a>
and || \\w are not comparable on L(F, E), since E fails the approximation property which
ensures equivalency [3, Theorem 1 and Corollary 3]. It is surprising that the situation is

different on L{E). Also, for E = C(0,1) or /°° there is a subspace F = ( © En) such that

0) and || \\w fail to be equivalent in L(F, E). In the construction of [3] the sum F actually
embeds into E since F is separable for C(0,1), while F' has a countable total subset in the
case of l°°. Unfortunately it is not clear whether a> and || \\w are comparable on
L(C(0,1)) or L(/°°).

We conclude by applying a representation of Buoni and Klein [5] of the generalized
Calkin algebra L(E)/W(E) in order to obtain a formula for the inner radius of a subset of
the spectrum. It is referred to [25] or [19] for an analogous result in the Calkin algebra
setting. If £ is a non-reflexive Banach space, let

/-(£) = {(*„):*„ e E, n e N and ||(xn)|| =sup ||jcn|

and

w(E) = {(*„) el"(E):{xn:n€N} is relatively weakly compact in E}.

Consider Q(E) = r(E)/w(E), where the quotient norm satisfies

\\(xn) + w(E)\\ = a)({xn:neN}) for all (xn) + w(E)e Q(E) (2.6)
by [3, Lemma 9]. Any 5 e L(£, F) induces Q(S) e L(Q(E), Q(F)) through Q(S)((xn) +
w(E)) = (Sxn) + w(F) for (JCB) + w(E) e Q(E). The subclass

T + ( £ , F) = Is e L(E, F): <u+(S) = inf
I B

inf ^
B (1){B)

of the tauberian operators was studied in [3]. The infimum in the definition is taken over
all bounded non-relatively weakly compact sets B cE. Clearly u>+ is supermultiplicative
and the limit lim (o+(S"Yln exists for any S e L(E). We require some facts in order to give

n—»o°

a spectral interpretation of the limit.
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LEMMA 2.3. Let E and F be Banach spaces and let S e L(E, F). Then the injection
modulus j(Q(S)) of Q{S) satisfies

= M{\\(Sxn) + w(F)\\: ||(^n) + w(E)\\ = 1} > a)+(S). (2.7)

Equality holds in (2.7) whenever E is separable.

Proof. If \\(xn) + w(E)\\ = (o({xn:n e N}) = 1, then

= co({Sxn:neN})>a>+(S)

in view of (2.6) and this entails (2.7). Let E be separable and assume that A > a>+(S). Pick
a bounded subset B c £ satisfying co(B) = 1 and co(SB) < A. By assumption there is a
sequence (xn) in B such that {*„ : n e N} = £. Then \\{xn) + w(£)|| = co(B) = 1 and
consequently

/(0(S)) < o>({Sjcn :« € N}) = OJ(5S) < A.

This establishes the claim.

The T+-spectrum of 5 e L{E) on a complex non-reflexive Banach space E is
< ( 5 ) = { A e C : A I d - 5 ^ r + ( £ ) } . If £ is separable, then ot(S)co(S) is closed and
non-empty. The fact o*(5) =£0 follows from do(Q(S)) c CT^(S) for the boundary of the
spectrum (cf. [8, 1.16]), since o*(S) coincides with the approximate point spectrum of
Q(S) in this case.

PROPOSITION 2.4. Let E be a complex, separable non-reflexive Banach space. Then

lim a)+(5")1/n = min{|A|: A e o+(S)}, S e L(£). (2.8)
n—»oo

Proof. The asymptotic formula of Makai and Zemanek [16, Theorems 1 and 3] for
the injection modulus states that

lim j(Q(S")Yln = min{|A|: A Id - Q(S) is not bounded below} (5 e L(£)).
n—•»

According to Lemma 2.3 one has j(Q(S")) = a>+(S") and

ot(S) = {A e C: A Id - Q(S) is not bounded below}

whenever £ is separable. This yields (2.8).
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