
SOME MULTIPLICATIVE FUNCTIONALS 

D. G. BOURGIN 

This note concerns itself primarily with the representation of continuous 
multiplicative functionals on L2 types of rings or Banach algebras to the real 
or complex fields where convolution is taken as the ring multiplication. In a 
recent publication [1] such functionals were studied for the continuous function 
ring C(S) over a compact space S. It was shown that for each such multiplicative 
functional M there is an associated countable compactum, D{M), termed a 
determining set in 5, such that the values of x(s) on D(M) alone, fix M(x) in 
the real case and M\x\ in the complex case. For the case considered in the present 
work, a similar result is valid except that a finite set enters in the role of D(M). 

For a Banach algebra the maximal ideals are associated with continuous 
functionals common to the family of linear functionals and to the family of 
multiplicative functionals. The first family bears on the underlying Banach 
space and has of course been extensively investigated. The results below and 
earlier results [1], study the second, hitherto neglected, family, which is associated 
with the underlying multiplicative semi-group. It seems promising also to 
consider our results from the viewpoint of a linear representation theory of this 
multiplicative semi-group. In this sense our work yields the representations of 
degree 1. 

Suppose G is a compact Abelian group. We write G' for its discrete character 
group and use R and K for the real and complex fields respectively. We employ F 
to stand for either R or K. Let L2 (G, F) be the ring of functions x ~ x(g | G) 
with multiplication designated by a star and defined by convolution, i.e., 

(1) (x*y)(h) = \ x(g)y(hg~1) dg. 

Let C°(S, F), 5 discrete, be the Banach algebra of functions on 5 to F, vanishing 
except on a denumerable subset at most, and such that the function values 
converge to 0. The norm is that induced by C(S, F) and the ring multiplication 
is pointwise multiplication of functions. Lp(5, F) is the obvious ring with 
pointwise multiplication and elements designated by capitals, that is, X ~ 
X(s | S). Plainly the elements of LP(S, F) are in C°(S, F). We use countable to 
cover either finite or denumerable. For convenience we quote two results of [1] 
that intervene in the sequel. We assume M\X\ is not identically 0 or 1. 

THEOREM A. If M is a norm continuous multiplicative functional on C(Q, R) 
to R, where Q is Hausdorff compact, then M(x) is determined by the values of x(q) 
on a countable compactum D and \M(x)\ has the representation 
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\M(x)\ = M\x\ = f i \x(d)\"{i\ 
deD 

where n(d) > 0. 

THEOREM B. If M is a norm continuous multiplicative functional on C(Q, K) 
to K, where Q is Hausdorff compact, then M\x\ is determined by the values of 
\x(q)\ on a countable compactum D and M\x\ has the representation. 

M\x\ = exp]C {ix{d) + i v(d)} log \x(d)\, 
dtD 

where n(d) > 0 and v{d) is unrestricted. 

Since Theorem B is stated without proof in [1, p. 569] we sketch the demonstra­
tion. First M\x\ = |Af|x|| exp iF\x\. Then |ikf|x|| is the transformation denoted 
by Mo in [1] and has the determining set D. Evidently F\x\ is distributive. 
The association of a regular measure v and the arguments concerning the 
measure adduced in [1, Theorem 3] apply here except of course that the infer­
ences from .F|xn| —> °° do not differ from those from F\xn\ —> — <». The conclusion 
then is that v may be of either sign or 0 and is concentrated on the countable 
compactum, Dt. The proof that D D Dt is immediate, for otherwise \xn] 
exists with xn —> x, where x(s) vanishes at some point of Dt but is bounded 
away from 0 on D. Then ikf|xw|/|Af|xw|| converges while exp iF\xn\ does not, a 
manifest absurdity. 

We now give the two theorems fundamental for our conclusions. 

THEOREM 1. If M is a norm continuous single-valued multiplicative functional 
on E to K where E is either C°(S, K) or LP(S, K), p > 1, 5 discrete, then there 
is a finite set D in S and sets of complex numbers {n(d) + iv(d)\n(d) > 0, d £ D] 
and integers \n(d)\D} such that 

(2) M{X) = exp ( £ (fx(d) + iv{d)) log \X{d)\ +in(d) argX(d)). 
deD 

THEOREM 2. If M is a norm continuous multiplicative functional on E to R 
where E is either C°(S, R) or LP(S, R) p > 1, S discrete, then there are a finite set 
D in S and real numbers 

{fi(d) \ix{d) > 0,d eD}, {n(d) \n(d) = 0, or n(d) = 1} 

such that 

(3) M(X) = El (\X(d)\Md) (sgnX(d)T(i)). 
deO 

We consider first the proof of Theorem 1. 
We tacitly assume below that the trivial cases M(X) = 0 or M(X) = 1 for 

all X are excluded. Let a designate a finite subset of S. Write 1 (a) for the element 
of E which is 1 on a and vanishes on the complement of a. For arbitrary X Ç E 
let Q(X) = {s | X(s) 9e 0}. Suppose Q(X) is denumerable. Order the finite 
subsets CT(X) of Q{X) by inclusion so {a \ <r = a(X)}, for fixed X, is a directed 
set. Plainly X 1 (a) converges in the norm to X. Hence, since M(X) T* 0 for say 
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X = Xo, there is a <rf in the collection {a \ a = a(Xo)} for which M(XQ 1 (o-')) ^ 
0. If Q(X) is finite, *' may be taken as Q(X) itself. Since 1(a) = (l(cr))2 it 
follows that 

M(X0 I V ) ) = ^ ( ^ o l ( c r ' ) ) ^ ( l ( 0 ) . 

Accordingly Jkf(l(o-')) = 1. Therefore for arbitrary X £ E we have 

(4) ikf(X) = M(\(<J'))M(X) = M(X 1 (</)). 

Thus we need consider the values of M on a' alone; so we are reduced to con­
sideration of multiplicative functionals over C(</, K). 

Suppose a' consists of N points. Then 

(5) C(a',K)= flK,. 

If Z = (Zi, . . . , ZN) Ç C(a', K) we refer to Z ; as the j th coordinate of Z. 
Write Zj as the element of C(<r'\ K) whose 7th coordinate is Zy and whose other 
coordinates are 1. We have 

(6) M(Z) = ft M(Zj). 

Evidently for fixed j , M(Zj) may be considered as on K to K. Accordingly, sup­
pose N = 1 and let W = peie. We have then 

(7) M(W) = M(p)M(eie). 

It is easy to see from the continuity condition that M(p) = exp (ju + iv) log p, 
where /z > 0 but v is an unrestricted real number. For positive integers 
k and N and (9 = 2x*/tf, (MCe"))" = M(l) = 1. Hence | M ( e 2 * ^ ) | = 1. 
Appeal to continuity establishes |ilf(e**)| = 1 for arbitrary 6. The single-
valuedness and continuity requirements on M imply now that M is a homo-
morphism on the topological group of the circle, P , into itself; that is to say 
that M is a character of P. It is well known then that M(ei9) = em for n integral. 
In view of (6) the representation (2) for N > 1 is now fully verified. 

The demonstration of Theorem 2 proceeds along similar lines. The significant 
part of the proof is the analogue of (5) with C{v', R) replacing C((/, K). Then 
a direct argument (or appeal to Theorem A, since </ is compact) yields (3). 

In the interests of completeness we note the effect of changing the continuity 
requirement on M. 

THEOREM 3. If M is a weakly continuous multiplicative functional on C(Q, R) 
to R, where Q is Hausdorff compact, then D is finite and M(x) has the representation 
(3). For R replaced by K the set D for M\x\ is finite and the representation for 
M\x\ falls under (2). 

Every functional continuous in the weak topology is surely continuous in the 
norm topology. Accordingly, the M's consistent with our hypotheses form a 
subset of those described in Theorem A and in Theorem B. Suppose that the 
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determining set D could be infinite. Let e(s) = 1 for all s in S. Plainly M(e) = 1. 
Any weak neighbourhood of e is of the form 

N(e, a-, e) = {x | \x(s) - 1| < e, 5 Ç <r} 

where o- is a finite subset of 5*. Evidently D contains a point, d,, not in a. Let x* 
be a continuous function vanishing at da, taking on the value 1 on a and other­
wise subject to 0 < xa(s) < 1. Then x„ Ç N(e, a, e). Yet M(xa) = 0. Since or 
and e are arbitrary this shows M cannot be continuous in the weak topology if 
D is nonfinite. If D consists of a single point M satisfies the conditions of the 
theorem whence by combination D can be taken as a finite point set. 

Let I — {/1 0 < £ < 1} in the sequel but interpret the elements of L2(I) as 
even periodic functions over 21 ( — 1 < £ < 1 ) with convolutions over 21. The 
functions {\pn(t) I ^o(0 = 2_1, \f/n(t) = cos WTTJ, w > 0} constitute a complete 
orthogonal set for L2(I) and the expansion of x in terms of {ypn(t)} we call the 
Fourier cosine series expansion. 

THEOREM 4. If M is a norm continuous multiplicative functional on the real 
Banach algebra L2(I) to R where ring multiplication in L2(I) is interpreted as 
convolution y then, for some finite set of integers, D, 

(8) M{x) = EI \X(d)fd) (sgnX(d))nW, 
dtD 

where n(d) > 0, n{d) = 0 or 1 and {X(n) \ n = 0, 1, 2, . . .} are the coefficients 
in the Fourier cosine series expansion of x. 

Let 

(9) *(o~É*(i)*i(o 

Then of course [X(j)} Ç /2. In view of the Parseval identity, 

(x*y)(t) = I x(r)y(t — r) dr 
(io) ~l 

The correspondence x<-+ {X(j)} is a linear homeomorphism of L2(I) 
onto /2. Indeed, it is compounded of x^->2^x<->{2^Z(0), X ( J | J > 1 ) } < - > 

{-X'Oli > 0)}, where the first map merely recognizes that the norm is taken 
over / and not 21, while the next map is a linear isometry etc. Accordingly, 
Theorem 2 can be applied in combination with (10) to establish (8). 

It is well known [2] that a Fourier transform T can be defined on L2(G, K) 
to L2{G', K). Indeed X(gf) = (Tx)(gf) is simply the coefficient in the develop­
ment of x in terms of the character gf and so corresponds exactly to X(j) in (9). 
The inverse Fourier transform T' from L2(G

f, K) to L2(G, K) satisfies T'Tx = x. 
Furthermore it is known that T and T' are unitary and 

(ID T(x*y) = Tx . Ty — X Y. 
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THEOREM 5. If Mis a norm continuous single-valued multiplicative functional 
on the ring L2(G, K) to K> where ring multiplication is taken as convolution, then 
there is a finite set D in G', complex numbers {/z(d) + iv(d) \ n(d) > 0, d Ç D} 
and integers \n{d) \ D) such that 

(12) M(x) = I I \(T(x))(d)\"id)+uid) exp * £ <d) arg ((T(x))(d)). 
deD dtD 

Let 
N(X) = M{T'X) = M{x). 

We remark 

N(XY) = M(T'(XY) = M(x*y) = M(x)M(y) = N(X)N(Y). 

Thus N is multiplicative and single-valued on Li{G\ K) to K. Moreover since 
x and X are related by a unitary transformation the norm continuity of M 
implies norm continuity of N and conversely. Accordingly, Theorem 1 may be 
invoked to yield the representation (12). 
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