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Abstract
This study presents a simple frequency-dependent regime-switching vector autoregression (VAR) model,
where each regime and its associated parameters in the VAR are characterized by their distinct spec-
tral properties. Empirical applications to several key macroeconomic variables reveal clear frequency-
dependent switching dynamics, with each regime exhibiting distinctive features regarding spectral prop-
erties, volatility, and impulse responses. We compare this model with a conventional regime-switching
model (typically studied in the time domain) and highlight several key differences between the two
approaches.
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1. Introduction
1.1. Motivation andmain findings
It is well established thatmacroeconomic time series exhibit various forms of time variation, which
has led to a growing interest in capturing these features in vector autoregression (VAR) models.
Various models have been developed for this purpose, including, among others, threshold and
smooth-transition VARs (Balke and Fomby, 1997; Teräsvirta et al. 2010), Markov-switching VARs
(Krolzig, 1997; Sims et al. 2008), and time-varying coefficient VARs (with stochastic volatilities)
(Cogley and Sargent, 2005; Primiceri, 2005).

While these models have been successful in capturing the time-varying features of data for
a variety of applications, most approaches in this line of research have been developed in the
time domain, and there have been limited attempts to characterize such features in the frequency
domain for VARs. Considering that most macroeconomic time series exhibit distinct dynamics
across different frequencies, and distinguishing these features is crucial in various contexts,1 the
lack of research in this area is a significant gap that needs to be addressed.

Motivated by these observations, this study presents a simple frequency-dependent regime-
switching VAR model for macroeconomic time series. The novel feature of the model is that each
regime and its associated parameters in the VAR are characterized by their own distinct spectral
properties. Specifically, by postulating the two regimes (in the frequency domain), low-frequency
and business cycle (BC) frequency, we explore how the key spectral features of the data exhibit
switching behavior between the two regimes over time.
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Empirical applications of this model to key macroeconomic series, including GDP, inflation
rates, and interest rates, yield several notable results. First, the dynamics of these variables are
well captured by frequency-dependent regime-switching behavior over time. Specifically, while
the low-frequency regime tends to dominate overall, there are several distinct periods, particularly
from the 1970s to the mid-1980s, when the dynamics of the variables are better characterized by
the BC-frequency regime.

In addition, these changes in the frequency regimes appear to be associated with BCs, with
recession periods often corresponding to the BC-frequency regime. However, the degree of this
association varies across different recession episodes. We also find that volatilities generally
increase with frequency, that is, the BC-frequency regime is associated with relatively larger shock
variances, which is consistent with findings in the Great Moderation literature (e.g., Kim and
Nelson, 1999; McConnell and Perez-Quiros, 2000).

The impulse response analysis also reveals distinct frequency-dependent dynamics across
regimes, with the responses in each regime characterized by strong persistence and clear cycli-
cal patterns, respectively. Beyond these differences, we also observe several notable features in the
responses across the regimes. For example, following an interest rate shock, while both output and
inflation exhibit strong and persistent increases in the low-frequency regime, their responses in
the BC-frequency regime are either negative or relatively short-lived and insignificant.

To illustrate the key properties of the model, we compare it with several alternative specifi-
cations. By comparing it with other models having different volatility specifications or priors,
we show that regime-switching heteroskedasticity is essential for making reasonable and sharp
inferences about regimes.

Moreover, by comparing our (frequency-dependent) regime-switching model with a conven-
tional (time domain) regime-switching VAR, which is usually used to identify recession regimes,
we highlight some notable differences between the two types of models. First, while the overall
features of the estimated regimes are somewhat similar between the two models, the conven-
tional model identifies several recession episodes as a recession regime, which are classified as
either a low-frequency regime or only a weakly identified BC-frequency regime in the frequency-
dependent switching model. In addition, although the shapes of the spectral densities are largely
similar for both the BC-frequency and recession regimes, the low-frequency regime contains
relatively more low-frequency components and is therefore more persistent compared to the
expansion regime. These results suggest that the regimes identified in each type of model have
their distinct characteristics, and thus the expansion (recession) regime cannot be directly equated
with or treated as the low- (BC-) frequency regime.

Finally, a simple comparison of forecasting performance between models shows that the
frequency-dependent regime-switching model delivers reasonable predictive performance; it sig-
nificantly outperforms the constant-parameter VAR, and its performance is roughly comparable
to the conventional time-domain VAR.

1.2. Related literature
This study is closely related to several strands of empirical research.

First, it is widely recognized that most macroeconomic time series reflect both BC factors
and low-frequency (or trend) forces, each with different characteristics. In the context of VARs,
commonly used to analyze the responses of variables to structural shocks, recent studies have high-
lighted the importance of accounting for these frequency-domain properties. For example, some
puzzling results regarding the effects of structural shocks can be explained by imposing restric-
tions on the frequency interval around zero for technology shocks (Francis and Ramey, 2005),
or by isolating short-term and BC fluctuations from low-frequency effects in the context of news
shocks (Barsky and Sims, 2011; Kurmann and Sims, 2021).
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Meanwhile, another line of research explores the dynamic properties of DSGE models in the
frequency domain. For instance, several recent studies have examined the properties of standard
DSGE models (e.g., Smets and Wouters, 2007) over specific frequency ranges and found that key
aspects of the models, such as parameter estimates, goodness of fit, and forecasting performance,
vary significantly depending on the frequency bands over which the models are estimated (e.g.,
Tkachenko and Qu, 2012; Sala, 2015; Caraiani, 2015). These studies suggest that, without careful
consideration of the frequency-domain properties of the data, inference based on VARs (albeit
relatively less stylized than DSGE models) can be potentially misleading.

Although the literature on estimating VARs at different frequencies is relatively limited, there
are some notable exceptions. For example, Sargent and Surico (2011) examine the time-varying
low-frequency relationships between money growth and inflation, while Kliem et al. (2016) study
those between public deficits and inflation. Both studies find significant changes in these low-
frequency relationships, especially around the 1970s, which is consistent with the findings of this
study. While their focus is mainly on low-frequency behavior, with little attention to other fre-
quencies, this study provides a more comprehensive analysis of how keymacroeconomic variables
exhibit time variations across the entire frequency spectrum, highlighting frequency-dependent
regime shifts.

This study is also closely related to the literature on the prior elicitation for Bayesian VARs.
Since VARs typically involve a large number of parameters, Bayesian VAR analysis has become
increasingly popular, incorporating additional information into the estimation by adopting appro-
priate priors to sharpen the inference. Various priors have been proposed for this purpose,
including the Minnesota prior (Litterman, 1986), (independent) normal-inverse Wishart prior
(Kadiyala and Karlsson, 1997), the steady-state prior (Villani, 2009), and priors designed for
large-scale VARs (Chan, 2020a).2

While these priors have proven useful in various contexts, most have been developed in the
time domain, with limited efforts made to formulate priors for VARs in the frequency domain that
capture the distinct features of data at different frequencies. Some studies have proposed useful
approaches for eliciting priors over specific frequency ranges, such as the long-run (Giannone
et al. 2019) or the BC frequencies (Andrle and Plašil, 2018; Planas et al. 2008; Jarociński and Lenza,
2018). However, few attempts have been made to develop a comprehensive set of priors covering
the entire frequency spectrum, including cases involving frequency-dependent regime-switching,
as explored in this study.

This study addresses this gap by proposing a set of priors tailored to the spectral properties of
different frequency regimes and estimating the corresponding hyperparameters, thus contributing
to the existing literature in this area. Our results show that several hyperparameters (in particular,
those associated with co-integration) exhibit clear frequency-dependent characteristics, with each
set well-suited to capture the distinct dynamics specific to its respective regime.

Finally, this study is closely related to wavelet-based analysis. While wavelet analysis provides a
useful toolkit for exploring variations in time-frequency information in data and has yielded inter-
esting results (e.g., Aguiar-Conraria et al 2012, 2018), it is technically complex, and interpreting
or extracting economically meaningful insights can be challenging.3 This study, which allows the
spectral properties of variables to change over time within a familiar parameterized model, com-
plement wavelet-based approaches and can be easily extended or integrated with other widely
used economic models.

The remainder of this paper is organized as follows: Section 2 outlines the econometric model,
while Section 3 presents the data and the main empirical results. Section 4 examines several alter-
native model specifications and compares their results. Finally, Section 5 provides concluding
remarks.
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2. Econometric model
2.1. A regime-switching VAR
Consider a simple VAR model where the variables of interest, yt , exhibit regime-switching
behavior:

yt = β
(0)
St + β

(1)
St yt−1 + · · · + β

(p)
St yt−p + ut , ut ∼N

(
0,�St

)
, (1)

where yt is an n× 1 vector of data at time t; β(0)St is an n× 1 vector of constants and β(l)St is an n× n
matrix associated with the lagged terms; and the error term, ut is an n-dimensional zero mean
white noise process with covariance matrix, �St . Stacking the dependent variables into a T × n
matrix, y, whose t’th row is y′

t and the regressors into a T × (np+ 1) matrix, X, where the t’th row
is Xt = (1, y′

t−1, · · · , y′
t−p), respectively, we have

y= XβSt + u, (2)

where u is a T × n matrix of innovations in which the t’th row is u′
t and βSt = [β(0)St ,

β
(1)
St , · · · , β

(p)
St ]

′. The evolution of latent (R-state) Markov state variable St , is governed by the
transition probability matrix, P. Specifically, the (r, r′) element of P, denoted as P(r,r′), represents
the transition probability from state r at time t − 1 to state r′ at time t, that is, P(r,r′) = p(St =
r′|St−1 = r).

A novel feature of this model is that the key properties of each regime and the associated
(regime-specific) parameters (i.e., βSt and �St ) are characterized by their own distinctive spectral
properties. Specifically, by postulating a few regimes in the frequency domain such as low-
frequency, BC-frequency, and/or high frequency, we assume that the dynamics of data at each
time can be represented as one or a combination of these regimes.

Our main objective is to make an inference about the unobserved states as well as the model
parameters. To do this, we rely on Bayesian inference, which provides a natural framework for
incorporating the frequency-dependent behavior of the data. The following subsections describe
our approach to prior specification and outline the estimation algorithm.

2.2. Prior
This subsection discusses the (regime-dependent) priors imposed on the model parameters. We
adopt a normal-inverseWishart prior for the VARmodel parameters (βSt and�St ), along with the
Minnesota prior, which provides shrinkage toward the specified prior means in each frequency
regime. In the following, for the sake of notational simplicity, we drop the regime subscript, St ,
unless it causes confusion.

Eliciting priors for the VAR coefficients largely draws on the framework of the unobserved
components model, widely used in the trend-cycle decomposition literature (Harvey, 1985;
Watson, 1986; Clark, 1987). This approach is useful in that it allows us to impose priors that
appropriately capture the key characteristics of different frequency regimes with a small set of
hyperparameters.

In a typical unobserved component model, (log of) a macro time series is assumed to consist
of three components, trend (yτt ), cyclical (yct ), and irregular components (yεt ). First, the trend is
usually assumed to evolve as follows:

yτt = yτt−1 +μt , (3)

μt =μt−1 + δt , δt ∼N
(
0, σ 2

δ

)
, (4)
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which implies that the trend follows an integrated random walk, or ARIMA(0, 2, 0):

�2yτt = yτt − 2yτt−1 + yτt−2 = δt . (5)

Building on this, we impose an I(2) process for the VAR coefficients in the low-frequency
regime (St = 1).4

Next, the prior for the dynamics of the BC-frequency regime (St = 2) is specified using trigono-
metric functions. Specifically, following Planas et al. (2008) and Jarociński and Lenza (2018), we
assume: (

1− 2ρ cos (2π/τ) L+ ρ2L2
)
yct = ut , (6)

where L is the lag operator, ρ denotes the amplitude, and τ represents the periodicity.5
Finally, we set a simple white noise process for the fluctuations in the high-frequency regime

(St = 3) (when additionally considered).6
To summarize, the prior means for the VAR coefficients are set as follows:

βSt
=

⎧⎪⎪⎨
⎪⎪⎩
[
0(1×n); 2In; − In; 0(n−2)p×n

]
, for St = 1;[

0(1×n); 2ρ cos (2π/τ) In; − ρ2In; 0(n−2)p×n
]
, for St = 2;[

0((np+1)×n)

]
, for St = 3.

(7)

We implement these priors by adding the following (regime-dependent) dummy observations,
grouped into several blocks, to the actual data (Sims and Zha, 1998).

The first block is specified as:

yD1︸︷︷︸
(np×n)

=
[
β(1) � S · 1λ2 ; · · · ;β(p) � S · pλ2

]
/λ1, (8)

and

XD
1︸︷︷︸

(np×(np+1))

=
[
0(np×1), diag

(
1λ2 , · · · , pλ2)⊗ S/λ1

]
, (9)

where β(l) is an n× n matrix of (regime-dependent) prior means of the VAR coefficients at lag l,
whose (i, j) element represents the coefficient for variable j in equation i at lag l; S is the diag-
onal scale matrix whose elements are set to the standard deviations of error terms from OLS
estimates of the autoregression for each variable in the model; and � is the element-by-element
multiplication operator.

Since this block implies that, for variable j in equation i at lag l,

β
(l)
(i,j) ∼N

⎛
⎝β(l)

(i,j),

(
λ1
lλ2

× �(i,i)
S(i)

)2
⎞
⎠ , (10)

it follows that λ1 governs the overall tightness of the prior, while λ2 controls the shrinkage of more
distant lags. Specifically, a smaller λ1 indicates a tighter prior while a larger value of λ2 implies
greater shrinkage for longer lags.

The second block is defined as:
yD2︸︷︷︸
(n×n)

= β̃y/λ3 and XD
2︸︷︷︸

(n×(np+1))

= [
0(n×1), y/λ3, · · · , y/λ3

]
, (11)

where β̃ is an n× n diagonal matrix whose elements are the sum of its own coefficients over lags,
that is, β̃(i,i) =

∑p
l=1 β

(l)
(i,i); and y is an n× n diagonal matrix whose i’th element is equal to the

sample mean of the variable yi (as in Sims and Zha, 1998). This prior implies:
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p∑
l=1

β
(l)
(i,i) ∼N

⎛
⎝β̃

(i,i),

(
λ3
y(i)

)2

�(i,i)

⎞
⎠ , (12)

indicating that λ3 controls the tightness of the sum of its own coefficients. This prior, a generaliza-
tion of the random walk prior, allows for flexible forms of persistence (through autocorrelation),
with a smaller λ3 corresponding to a more informative prior.

The third block is given by:

yD3︸︷︷︸
(n×n)

= diag
(
y
)
/λ4 and XD

3︸︷︷︸
(n×(np+1))

= [
0(n×1), yD3 , · · · , yD3

]
, (13)

and this prior pushes the variables toward their unconditional mean, ensuring that the series
in the VAR share a common stochastic trend. Thus, this prior pertains to co-persistence or co-
integration. The tightness of this prior is controlled by the hyperparameter λ4, where a smaller λ4
indicates a tighter prior.

The last two blocks are:

yD4︸︷︷︸
(n×n)

= 0(n×n) and XD
4︸︷︷︸

(n×(np+1))

=
[
1(n×1)/λ5, 0(n×np)

]
, (14)

and

yD5︸︷︷︸
(n×n)

= S and XD
5︸︷︷︸

(n×(np+1))

= 0(n×(np+1)), (15)

and these two blocks relate to the priors on the constant terms and the covariances of the
error terms, respectively. All these blocks are collected in yD = [yD1 ; y

D
2 ; y

D
3 ; y

D
4 ; y

D
5 ] and XD =

[XD
1 ; X

D
2 ; X

D
3 ; X

D
4 ; X

D
5 ], both with a length of TD.

The dummy observation priors are characterized by a set of hyperparameters, λ=
(λ1, · · · , λ5). In setting their values, we follow the hierarchical approach of Giannone et al. (2015),
by treating these hyperparameters as additional regime-dependent parameters to be estimated.7
In addition to its flexibility, this approach is useful since there seems no consensus on the appro-
priate values for frequency-specific priors (especially in models involving regime-switching, as in
this study). In particular, given that the degree and pattern of shrinkage and persistence may differ
across frequencies, it will be interesting to observe whether there are significant differences in the
tightness of these priors across different frequency regimes.

Note that by assuming a normal-inverse Wishart distribution, our prior specification treats
each equation symmetrically. To address this potentially restrictive property, several approaches
involving asymmetric conjugate priors have been proposed (e.g., Carriero et al. 2019; Carriero
et al. 2022; Chan, 2022). While these approaches offer greater flexibility and computational effi-
ciency, it is unclear whether this feature would be beneficial in the context of our model. On
the one hand, allowing for a flexible structure through an asymmetric prior may allow the data
to better reflect equation- or variable-specific information. On the other hand, this flexibility may
complicate the estimation of the joint switching behavior of the variables in the frequency domain.
We revisit this issue later by examining a model in which the symmetric property of the prior is
relaxed.

For the transition probabilities, we impose a Dirichlet distribution, as a conjugate prior,
for each column of the transition matrix, P. Specifically, for column r, its density depends on
αr = (αr1, · · · , αrR) and the prior mean of the transition probability (from regime r to r′) is

P(r,r′) = αrr′∑R
r′=1 αrr′

, (16)
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Collecting all the parameters in θ = (β ,�, P, λ), the prior structure (for each regime) can be
written as:

p (θ)= p (β|�, λ) p (�|λ) p (λ) p (P) . (17)

2.3. Regime inference, posterior, and likelihood
This section briefly describes the algorithm for regime inference, posterior distribution of model
parameters, and the computation of likelihood. In terms of notation, a variable with a super-
script t denotes the entire history of the variable up to time t, for example, yt = (y1, · · · , yt)′, and
variables with a subscript St denote the actual observations (along with dummy observations)
corresponding to the respective regime.

In essence, regime inference amounts to computing the probabilities of each regime at each
time t, based on the actual observations, yt ,

ξt|t = p
(
St|yt , θ

)
, (18)

where the t’th element in ξt|t represents the filtered probability of regime r, ξt|t(r)= p(St = r|yt , θ).
Starting with appropriate initial regime probabilities, ξ0|0, this inference can be made recursively,
through prediction and updating steps, as follows.

At the start of time t (conditional on the data up to time t − 1), based on the regime inference
for the previous period, ξt−1|t−1, the predicted probabilities for time t, ξt|t−1 (of each regime) are
given by:

ξt|t−1 = Pξt−1|t−1. (19)

Then, updating the information contained in yt yields the filtered probabilities:

ξt|t = ξt|t−1 � ηt

1′ (ξt|t−1 � ηt
) , (20)

where the symbol � denotes element-by-element multiplication, 1 is a vector with all elements
equal to 1, and ηt is a vector whose r’th element contains the conditional likelihood for regime r:

ηt (r)= p
(
yt|St = r, yt−1, θ

)
= (2π)−n/2 ∣∣�St

∣∣−1/2 exp
{
−0.5

(
yt − β ′

StXt
)′
�−1

St
(
yt − β ′

StXt
)}

. (21)

As a byproduct of this algorithm, the log likelihood function (of all the observed data) can be
calculated as follows:

LogL
(
yT |θ

)
=

T∑
t=1

log f
(
yt|yt−1, θ

)
, (22)

where f (yt|yt−1, θ)= 1′(ξt|t−1 � ηt).
In addition to these filtered probabilities, we can compute the smoothed probabilities for each

regime, p(St = r|yT , θ), by incorporating the full sample information, yT . The recursive algorithm
for this is summarized as follows:

ξt|T = ξt|t �
[
P′ξt+1|T (÷) ξt+1|t

]
, (23)

where (÷) denotes element by element division.8
We simulate the posterior distribution of the parameters, using the algorithm of random walk

Metropolis-Hastings within Gibbs. For the hyperparameters, we first draw λ∗ from the normal
proposal distribution, N(λ′, cλH−1

λ ), for each regime, where λ′ is the previous draw of λ, Hλ is
the Hessian of the negative of the log posterior of the hyperparameters at the peak, and cλ is a

https://doi.org/10.1017/S1365100524000786 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100524000786


8 Y. Hwang

scaling constant. Set λ= λ∗ with probability αλ; otherwise reject the draw and set λ= λ′, where
the acceptance probability is

αλ =min

(
1,

pλ
(
ySt |λ∗)

pλ
(
ySt |λ′)

)
, (24)

and the marginal likelihood, pλ(y), is as given by Del Negro and Schorfheide (2011). The scaling
parameter cλ is set so that acceptance probability is around 0.3 to 0.4.

Given the result of regime inference, we can select and group the sub-sample of actual data
that pertains to a particular regime, ySt and XSt . Then, the conditional posterior distribution for
the VAR parameters (which is normal-inverseWishart due to the natural conjugate prior) is given
by:

vec(βSt )|�St , λ, ST , yT ∼N
(
vec(βSt ),�St ⊗

(
X∗′
St X

∗
St

)−1
)

(25)

and

�St |λ, ST , yT ∼ iW
(
S∗
St , T

∗
St
)
, (26)

where y∗
Stand X∗

St are the regime-specific actual data, augmented with the dummy observations,
that is, y∗

St = [ySt ; yDSt ] and X∗
St = [XSt ; XD

St ]; βSt = (X∗′
St X

∗
St )

−1X∗′
St y

∗
St ; S

∗
St = (y∗

St − X∗
StβSt )(y

∗
St −

X∗
StβSt )

′; and T∗
St is the length of y∗

St . In each draw of βSt , we discard all unstable draws and keep
only stable ones.

Finally, the transition probabilities (whose posterior is, conditional on ST , independent of the
data and other parameters in the model) are sampled from the following Dirichlet distribution:

p
(
Pr|ST

)
∼Dir (αr1 + ϕr1, · · · , αrR + ϕrR) , (27)

where r = 1, 2, · · · , R refers to the column number of the transition probability matrix. The
parameter ϕrr′ refers to the number of times that regime r is followed by regime r′, which can
be counted using the draw of ST .

The full MCMC estimation algorithm is summarized as follows.

• Step 0. Initialize parameters and latent state variables, θ (0) and ξ0|0.
• Step 1. Sample ST from p(ST |β ,�, λ, yT), as described in equations (20) and (23).
• Step 2. Draw P from p(P|ST), as described in equation (27).
• Step 3. Draw λ from the normal proposal distribution, N(λ′, cλH−1

λ ), as described above.
• Step 4. Draw� from p(�|λ, yT , ST), as described in equation (26).
• Step 5. Draw β from p(β|�, λ, yT , ST), as described in equation (25).
• Step 6. Repeat Steps 1–5 for a large number of times.

In step 0, we initialize the VAR parameters at their OLS estimates, that is, β(0) = β̂OLS and
�(0) = �̂OLS. We set P(0) at its prior mean, ξ0|0 at the corresponding ergodic (or unconditional)
probabilities of the Markov chain, and λ(0) at their posterior mode.9 In drawing the unobserved
states, we ensure that each regime has a minimum of ten observations.

In producing the results below, we first generate 50,000 draws and discard the first 10,000.
From the remaining 40,000 draws, we retain every 20th draw, resulting in 2,000 draws on which
our inference is based. According to the relative numerical efficiency (RNE) (Geweke, 1992) and
Raftery and Lewis (1992) diagnostics, these draws exhibit good convergence of the Markov chain.
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3. Empirical results
3.1. Data andmodel specification
In our empirical applications, the frequency-dependent regime-switching VAR model presented
in Section 2 is applied to quarterly US data on log GDP (multiplied by 100), inflation rates (mea-
sured as percentage changes in the CPI), and the federal funds rate.10 The data are obtained
from the Federal Reserve Bank of St. Louis’ FRED database, covering the period from 1959:Q1 to
2023:Q2. To address the issue of outliers during COVID-19, which are associated with extremely
high variance that may significantly affect parameter estimates, we include dummy variables in
the error covariance matrix for the period from 2020:Q1 to 2020:Q3. This adjustment provides a
slightly better fit than the model without the dummies, although the overall results remain largely
unchanged.11

A few decisions remain regarding the model specifications, such as the number of regimes and
lag length. For the lag length, we consider values ranging from p= 2 to 5, covering most of the
commonly used options for quarterly VARmodels, with a minimum of 2 lags due to prior settings.
Regarding the number of regimes, while the trend-cycle decomposition literature often considers
three components and thus suggests three frequency regimes (i.e., low, BC, and high) as discussed
in Section 2.2, it is not clear a priori whether the third or high-frequency regime is particularly rel-
evant or economically meaningful in the context of our regime-switching VAR model. Therefore,
we also explore models with two regimes, combining the high-frequency regime with the BC-
frequency regime and setting the prior for the combined regime equal to that of the BC-frequency
regime. This results in 8 possible specifications. Based on the log marginal likelihoods, we find
that the model with 2 regimes and 4 lags provides the best fit, and this serves as our baseline
model.12

The specific priors are set as follows. For the VAR coefficients in the BC-frequency regime, we
follow Planas et al. (2008) and Jarociński and Lenza (2018) and set ρ = 0.7 and τ = 32, imply-
ing a typical BC lasts 8 years. For the transition probabilities, we set αrr′ = 8 if r = r′ and αrr′ = 2
otherwise.13 This specification ensures that each regime is treated symmetrically and exhibits rea-
sonable persistence, with the continuation probability of P(r,r′) = 0.8. Note that, except for the
VAR coefficients, the priors imposed on all other parameters are either the same or symmetric
across the regimes.

3.2. Labeling and regime identification
In Bayesian inference for regime-switching models, a practical and important issue is the label-
ing problem (Frühwirth-Schnatter, 2001). Since the likelihood in these models is invariant
with respect to permutations of the regime labels, without careful and appropriate identifying
restrictions, a model may not be globally identified, which can lead to biased posterior inferences.

To address this issue, a common solution is to impose an identification restriction on themodel
parameters, such as imposing an order on certain parameters. For models with frequency-domain
features, such as ours, another useful approach is to examine the shape of the spectral density. To
illustrate this point, Figure 1 plots the spectral densities for each regime implied by these priors,
along with a standard (unit root type) Minnesota prior.14

As shown in the figure, while the spectral densities decrease with frequency (except for the
high-frequency regime whose densities are flat), and each regime contains other frequency com-
ponents beyond its target frequency ranges, each regime appears to have distinctive spectral
characteristics in terms of shape. Specifically, the spectral densities are relatively more concen-
trated within their respective frequency ranges, with varying degrees of decline: the low-frequency
regime exhibits the steepest decline, followed by the Minnesota prior, and then the BC-frequency
regime. These features allow the construction of simple and reasonable identification criteria
based on the properties of spectral densities.
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Figure 1. Spectral densities implied by priors.
Note: The figure presents the spectral densities implied by the regime-specific priors. The vertical lines indicate the frequency
band associated with typical business cycles, that is, [2π/32, 2π/6].

Specifically, once the normalized frequency domain is divided into two parts, [0, ω̃] and
[ω̃, 0.5], each representing a relatively low- and high-frequency range, respectively, we can com-
pute the difference in the average log spectral density for regime r between these two ranges,
denoted as D(log (SD(r))= log (SD(r))[0,ω̃] − log (SD(r))[ω̃,0.5]. This difference can be roughly
interpreted as the “slope” of the density and the identification condition can then be stated in
terms of this slope as follows:

D
(
log (SD (1))

)
>D

(
log (SD (2))

)
. (28)

After some experimentation, we find that a cutoff frequency of ω̃= 0.083 (corresponding to a
12-quarter cycle) works well and gives reasonable results.15

3.3. Estimated regimes and their key properties
We now present the main empirical results. Figure 2 shows the smoothed probabilities of the BC-
frequency regime from the baseline model, along with the associated spectral densities (the 5%–
95% intervals of the estimated log spectrum), while Table 1 contains the estimates of the model
parameters. For comparison, the results for the constant parameter VAR (CVAR) are also included
in Table 1.16

Figure 2 illustrates clear frequency-dependent regime-switching behavior over time. While the
low-frequency regime generally dominates, the period from the 1970s to the mid-1980s is largely
characterized by the BC-frequency movements. This pattern of frequency shifts is consistent with
the results of other related studies. For example, Aguiar-Conraria et al. (2012) show that, based
on wavelet analysis, there are notable changes in the frequency behavior of economic activity,
inflation, and interest rates during this period. Similarly, Sargent and Surico (2011) show that
the low-frequency relationship between inflation and money growth exhibited distinct behavior
in the 1970s and early 1980s, while Kliem et al. (2016) find a similar pattern in the relationship
between public deficits and inflation. Both studies suggest that these low-frequency changes are
likely related to shifts in the conduct of monetary policy over time.

While several recession episodes roughly align with the BC-frequency regime, the degree of
their association varies across episodes, suggesting that their synchronization is not particularly
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Table 1. Estimates for model parameters

low frequency BC frequency CVAR

A. Error Covariances
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(uy) 0.392 (0.308, 0.462) 0.968 (0.784, 1.346) 0.573 (0.522, 0.633)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(up) 0.145 (0.119, 0.209) 0.342 (0.224, 0.461) 0.194 (0.177, 0.214)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(ui) 0.127 (0.073, 0.148) 0.870 (0.630, 1.208) 0.375 (0.322, 0.445)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , up) −0.027 (-0.049, -0.004) 0.160 (0.061, 0.279) 0.032 (0.011, 0.051)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , ui) 0.039 (0.016, 0.062) 0.240 (0.131, 0.401) 0.128 (0.092, 0.169)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(up, ui) 0.011 (-0.002, 0.028) 0.132 (0.059, 0.256) 0.055 (0.035, 0.082)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Hyperparameters
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1 0.230 (0.126, 0.664) 0.189 (0.121, 0.450)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2 5.472 (1.655, 8.330) 2.035 (0.742, 4.141)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ3 0.184 (0.118, 0.449) 0.208 (0.123, 0.598)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ4 0.327 (0.115, 0.526) 4.005 (0.533, 7.724)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Transition probability
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p11 0.955 (0.934, 0.972)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p12 0.045 (0.028, 0.066)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p21 0.127 (0.070, 0.207)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p22 0.873 (0.793, 0.930)

Note: The table presents the median estimates for the model parameters (in each frequency regime) along with the 16%–
84% credible intervals. uy , up , and, ui represent the (reduced-form) shocks in the GDP, inflation, and interest rates equations,
respectively.

Figure 2. Estimated regimes and spectral densities.
Note: The left panel of the figure shows the (mean) smoothed probabilities of the BC-frequency regimes. The shaded areas
represent NBER recession dates. The right panel shows the 5%–95% intervals of the estimated log spectra for each frequency
regime. The vertical lines indicate the frequency band associated with typical business cycles, that is, [2π/32, 2π/6].

strong. For example, the 1990-1991 and 2001 recessions are either barely or weakly identified as
the BC-frequency regime by the model. Meanwhile, the 1969–1970 recession and the 2007–2009
Global Financial Crisis are identified as the BC-frequency regime, though with some lag.

The spectral densities indicate that, while a large portion of the spectra for both regimes
overlaps in the low frequency regions, there is a clear distinction in their slopes. Specifically,
the low-frequency regime exhibits a steeper slope and contains relatively more low-frequency
components.

The sharp shift in frequency regimes (from BC-frequency to low-frequency) around the
mid-1980s is reminiscent of the Great Moderation. As Panel A of Table 1 shows, the BC-
frequency regime is indeed associated with higher volatility, consistent with conventional findings.
The covariances also show clear differences, with shocks being more highly correlated in the
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BC-frequency regime. Notably, while the covariance between output and inflation shocks is pos-
itive in both the BC-frequency regime and the CVAR, it becomes significantly negative in the
low-frequency regime.

Panel B of Table 1 shows that, while the other hyperparameters are roughly similar across the
two frequency regimes, there are clear differences in the two specific hyperparameters. Specifically,
λ2, which controls for shrinkage at longer lags, is much larger in the low-frequency regime, while
λ4, which is associated with co-persistence, is significantly smaller in the low-frequency regime.
These results are intuitive and suggest that: (i) the low-frequency regime is associated with greater
persistence, possibly in the form of an integrated process, where tighter shrinkage at longer lags
may improve the representation of the dynamics in this regime; and (ii) co-persistence or co-
integration properties between variables are more suitable for the low-frequency behavior of the
series.

The transition probabilities (Panel C in Table 1) show strong persistence for both regimes, with
the low-frequency regime having a higher median continuation probability of 0.955, compared to
0.873 for the BC-frequency regime.

To further illustrate the regime-dependent dynamics implied by the model, Figure 3 presents
the impulse responses across the regimes, along with those from the CVAR. The identification is
based on a simple Cholesky decomposition, with the ordering of output, inflation, and interest
rate (the last being the most exogenous). While it is somewhat unclear to discern the economic
implications for some of the responses under this identification scheme, the figure overall reveals
sharply contrasting results across the regimes. Specifically, the responses in each regime are char-
acterized by strong persistence and clear cyclical patterns, respectively, with the responses from
the CVAR falling between those of the two regimes. Beyond these differences, there are several
notable features across the regimes, which we briefly discuss below.

First, in the case of an interest rate shock (which can be viewed as a rudimentary form of a
monetary policy shock), both output and inflation increase persistently and significantly in the
low-frequency regime. In contrast, in the BC-frequency regime, output decreases significantly for
up to six years, while the responses of inflation, aside from an initial short-term increase, remain
largely insignificant over a 2- to 10-year horizon. While the literature often attributes the price
puzzle, that is, the strong positive response of prices following an interest rate shock, to missing
information or omitted variables in VARs, this study suggests that another contributing factor
may be the failure to properly extract relevant frequency-domain information about the shock
and the associated variable dynamics.

Next, following an inflation shock, while output declines persistently and significantly in the
BC-frequency regime (much more so than in the CVAR), its responses in the low-frequency
regime are much smaller and become insignificant after the first several quarters. Finally, for
an output shock, while the responses of output in the low-frequency regime are strongly per-
sistent (more so than those in the CVAR), the responses in the BC-frequency regime are relatively
transitory and become insignificant after a few years. Interestingly, in the low-frequency regime,
the short-run responses of inflation to an output shock are negative, although they quickly turn
positive after a few quarters, in contrast to the BC-frequency regime and the CVAR, where its
short-run responses are significantly positive. This difference in the initial responses reflects the
results of the regime-dependent error covariance matrix, as reported in Table 1.

4. Alternative model specifications
In this section, we explore several alternativemodel specifications, includingmodels with different
volatility specifications and priors, as well as conventional (time-domain) regime-switching mod-
els. This analysis serves two main purposes. First, by exploring alternative models with different
variance specifications and priors, and comparing them to the baseline model, we aim to better
understand the key features of our model and the factors driving the results.
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Figure 3. Impulse responses across frequency regimes.
Note: The figure shows the 16%–84% bands of the impulse responses across frequency regimes (blue solid line), along with
those of the constant parameter VAR (red dashed line).

Second, because regime-switching models, typically studied in the time domain, are widely
used to identify recession periods, and the estimated regimes from the baseline model show
some (albeit rather weak) association with recession periods, it is important to compare this
frequency-dependent switching model with conventional time-domain regime-switching mod-
els. This comparison will emphasize the similarities and differences between the two approaches
and provide further insights into the nature of the frequency-dependent regime-switching model.

4.1. List of alternative models
This subsection briefly outlines the main features of the alternative models, with detailed descrip-
tions provided in the Appendix. First, to assess the role of regime-dependent heteroskedasticity in
the disturbances, we consider regime-switching VARmodels with either homoskedastic shocks or
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stochastic volatility. In the homoskedastic model (denoted as RS-VAR-homo), the error covari-
ances are constrained to be the same in both regimes (i.e., �St =� for all t), while all other
features, including the prior means of the VAR coefficients, remain the same as in the baseline
model (hereafter denoted as RS-VAR-FD).

For the model with stochastic volatility (denoted as RS-VAR-SV), we follow the approach out-
lined in the literature (e.g., Primiceri, 2005). In this model, the (co)variances of the innovations
are assumed to (gradually) evolve over time rather than switching between regimes while all other
features remain the same as in the baseline model. Specifically, the model relies on the standard
decomposition of the (time-varying) error covariance matrix, �t =A−1

t HtA−1′
t , where At is a

lower triangular matrix andHt is a diagonal matrix. We assume that the evolution of the diagonal
elements of Ht and the elements of At follows a (geometric) random walk.

To address the issue of symmetry across the equations associated with the natural conjugate
prior, discussed in Section 2.2, we also consider a model where this restrictive structure is relaxed.
In specifying this model (denoted as RS-VAR-AP), we largely follow the approach of Carriero et al.
(2019) and Carriero et al. (2022) and allow each equation to be treated and estimated individu-
ally. Thus, in this model, each equation as well as each regime is governed by a set of separate
hyperparameters.

We also estimate a conventional regime-switching VARmodel with standard time-domain fea-
tures (denoted as RS-VAR-TD) to identify expansion and recession regimes. While retaining the
same essential structure as the RS-VAR-FD, this model differs in several key respects. First, for the
VAR coefficients, following the literature (e.g., Sims and Zha, 2006; Sims et al. 2008), we impose
a unit root-type Minnesota prior on the VAR coefficients in both regimes. With this symmetric
prior, the dynamic properties of each regime are primarily determined by the data. Second, regime
identification in this model relies on typical time-domain characteristics of recessions, such as
lower output growth and higher volatility. Thus, the associated identification condition (in terms
of model parameters) is that, in the recession regime, the intercept in the GDP equation is lower
and the determinant of the error covariance matrix is larger.

Diebold et al. (1994) and Filardo (1994) argue that constant transition probabilities in regime-
switching models may be too restrictive for many empirical contexts. In the spirit of these studies,
we also examine models with time-varying transition probabilities which are specified as func-
tions of lagged output growth, in both the baseline and conventional (time-domain) models (each
denoted as RS-VAR-FD-TVTP and RS-VAR-TD-TVTP, respectively). Given that both the transi-
tion probabilities and the regime inferences in these models are based on past output dynamics,
this approach may provide additional insights into the nature of regime-switching dynamics.

The alternative models are summarized as follows:

• RS-VAR-homo: Frequency-dependent regime-switching VAR model with homoskedastic-
ity

• RS-VAR-SV: Frequency-dependent regime-switching VARmodel with stochastic volatility
• RS-VAR-AP: Frequency-dependent regime-switching VAR model with an asymmetric
prior

• RS-VAR-TD: Conventional time-domain regime-switching VAR models with constant
transition probabilities

• RS-VAR-TD-TVTP: Conventional time-domain regime-switching VARmodels, both with
constant and time-varying transition probabilities

• RS-VAR-FD-TVTP: Baseline frequency-dependent regime-switching VAR model with
time-varying transition probabilities
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(a) RS-VAR-homo 

(b) RS-VAR-SV 

(c) RS-VAR-AP 

Figure 4. Results for alternative models.
Note: Each panel shows the result for the three alternativemodels. Panel (a) Themodel with homoskedasticity; panel (b) The
model with stochastic volatility; panel (c) the model with asymmetric prior. See notes to Figure 2.

4.2. Comparison with alternative specifications in variances and priors
The main results for these alternative models are summarized in Figures 4 and 5, which show the
smoothed regime probabilities and the associated spectral densities, and in Tables 2 and 3, which
show the estimates of selected model parameters.

In the case of the RS-VAR-homo (Figure 4(a)), the number of periods identified as belonging
to the BC-frequency regime is significantly smaller compared to the RS-VAR-FD; many periods
previously classified as part of the BC-frequency regime in the RS-VAR-FD are now identified
as belonging to the low-frequency regime. This is because, unlike in the RS-VAR-FD (where the
likelihood is relatively flatter and more dispersed in the BC-frequency regime, while more con-
centrated in the low-frequency regime), imposing homoskedasticity increases the likelihood of a
typical shock or data point favoring the low-frequency regime. In other words, data that might
have been identified as belonging to the BC-frequency regime in the RS-VAR-FD are now more
likely to be classified as belonging to the low-frequency regime.

In the case of the RS-VAR-SV (Figure 4(b)), although some weak patterns of frequency switch-
ing are observed during the 1970s to 1980s, the distinction between regimes is less clear. This result
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Estimated regimes and spectral densities (a)

(b) Comparison of spectral densities with the baseline model 

Figure 5. Results for the conventional (Time-domain) regime-switching model (RS-VAR-TD).
Notes: See notes to Figure 2. The figure plots the 5%–95% intervals of the estimated log spectra for the low-frequency and
the expansion regime (left panel) and the BC-frequency and the recession regime (right panel).

seems to be due to two factors. First, the regime-specific errors in this model are likely to have non-
normal and asymmetric distributions. As noted by Hwu and Kim (2024), when the distribution of
the error term deviates from normality, especially in cases of asymmetry, the accuracy of regime
probability inference deteriorates significantly. In addition, the lack of tightly synchronized het-
eroskedasticity across the series (as shown in Appendix Figure A3) may further complicate clear
regime inference.17

Figure 4(c) shows the results for the RS-VAR-AP. Similar to the RS-VAR-homo and the RS-
VAR-SV, this model does not provide clear evidence of distinct frequency switching. As with
the RS-VAR-SV, the lack of a clear distinction between regimes is likely because the dynamics of
each series are not tightly synchronized in terms of their frequency-domain behavior. To illustrate
this, we apply the baseline model to each series, with the estimated regimes shown in Appendix
Figure A4. Each series exhibits distinct frequency-dependent switching patterns, with common
movements observed only during limited periods.

As shown in the figure, in all these models, the spectral densities of the two regimes are not
clearly separated and tend to overlap across the entire frequency range, which is consistent with
the poor or unclear regime inference.

4.3. Comparison with conventional regime-switchingmodels
We now compare the results of the RS-VAR-TD (shown in Figure 5 and Table 3) with those of the
RS-VAR-FD. While the overall results appear similar in terms of the parameter estimates and the
estimated latent regimes, a closer inspection reveals several notable and important differences.
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Table 2. Estimates of parameters for alternative models

(a) RS-VAR-homo

A. Hyperparameters B. Transition probability

Low frequency BC frequency

λ1 0.229 (0.122, 0.879) 0.185 (0.119, 0.475) p11 0.956 (0.937, 0.971)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2 7.088 (2.639, 8.976) 4.561 (1.433, 7.989) p12 0.044 (0.029, 0.063)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ3 0.220 (0.119, 0.682) 0.226 (0.123, 0.709) p21 0.512 (0.335, 0.647)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ4 1.779 (0.196, 7.047) 5.000 (1.686, 8.221) p22 0.488 (0.353, 0.665)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Error Covariances
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(uy) 0.586 (0.530, 0.650) Cov(uy , up) −0.001 (-0.015, 0.012)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(up) 0.066 (0.059, 0.085) Cov(uy , ui) 0.100 (0.070, 0.130)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(ui) 0.377 (0.331, 0.430) Cov(up, ui) 0.011 (0.002, 0.022)

(b) RS-VAR-SV

A. Hyperparameters B. Transition probability

Low frequency BC frequency

λ1 0.165 (0.121, 0.530) 0.147 (0.114, 0.280) p11 0.917 (0.778, 0.956)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

λ2 4.899 (1.351, 8.392) 2.422 (0.760, 7.228) p12 0.083 (0.044, 0.222)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

λ3 0.181 (0.125, 0.741) 0.167 (0.113, 0.424) p21 0.284 (0.160, 0.420)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

λ4 0.311 (0.114, 0.820) 1.875 (0.396, 5.980) p22 0.716 (0.580, 0.840)

Note: The table presents the median estimates for parameters in each frequency regime, along with the 16%–84% credible
intervals. See the notes to Table 1.

Table 3. Estimates of parameters for the RS-VAR-TD

Expansion Recession

A. Error Covariances
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(uy) 0.332 (0.261, 0.417) 0.944 (0.797, 1.116)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(up) 0.117 (0.104, 0.131) 0.329 (0.271, 0.440)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(ui) 0.126 (0.101, 0.144) 0.853 (0.632, 1.217)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , up) −0.033 (-0.049, -0.017) 0.151 (0.085, 0.257)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , ui) 0.051 (0.035, 0.068) 0.265 (0.164, 0.425)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(up, ui) 0.007 (-0.002, 0.017) 0.140 (0.075, 0.255)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Hyperparameters
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1 0.232 (0.130, 0.764) 0.193 (0.124, 0.517)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2 6.651 (2.462, 8.880) 3.902 (1.066, 7.902)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ3 0.209 (0.120, 0.560) 0.227 (0.127, 0.730)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ4 0.774 (0.209, 6.354) 2.982 (0.633, 7.820)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Transition probability
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p11 0.943 (0.916, 0.964)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p12 0.057 (0.036, 0.084)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p21 0.124 (0.081, 0.183)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p22 0.876 (0.817, 0.919)

Note: The table presents the median estimates for parameters in each regime (expansion and recession), along
with the 16%–84% credible intervals. See the notes to Table 1.
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First, the identified recession regimes (in the RS-VAR-TD, Panel (a) of Figure 5) are more
closely aligned with the NBER reference cycles. For example, while the RS-VAR-FD classifies the
periods of the 1990–1991 and 2001 recessions as either in the low-frequency regime or in between
the two frequency regimes, respectively, the RS-VAR-TD identifies these periods as the recession
regime with much higher probabilities. A similar observation can be made for the early periods of
the 1969–1970 and 2007–2009 recessions.

The differences in regime inference between the two models can be attributed to their different
approaches. In the RS-VAR-TD, regime identification is essentially based on the first twomoments
of the data (i.e., mean and volatility), whereas in the RS-VAR-FD, the transition dynamics around
recessions play a more important role in regime inference. For example, if the transition into
and out of a recession is relatively smooth and entails more low-frequency features, the recession
period is more likely to be classified as a low-frequency regime.18

In this regard, comparing the spectral properties of the two models reveals further differences.
Panel (b) of Figure 5 compares the spectral densities of both models in each regime (i.e., low-
frequency/expansion and BC-frequency/recession, respectively). While the shapes of the spectral
densities for the second regime (BC-frequency/recession) are largely similar across the two mod-
els (with slightly wider intervals in the RS-VAR-FD), there are notable differences in the spectral
densities for the first regime (low-frequency/expansion). Specifically, the spectral densities in the
expansion regime are relatively flatter compared to those in the low-frequency regime. This sug-
gests that, although both regimes contain a substantial amount of low-frequency components,
the low-frequency regime contains relatively more low-frequency components, implying rela-
tively more persistence, whereas the expansion regime features relatively more high-frequency
components, indicating relatively less persistence.19,20

In addition, as shown in Figure 5, although the spectral densities in the RS-VAR-TD do not
show clear differences in slope between the two regimes, a substantial portion of the spectra in
the recession regime appear to lie above those in the expansion regime. This suggests that, in a
rough sense, the spectral densities in the recession regime can be seen as a parallel upward shift
from those in the expansion regime. In other words, the differences in the spectral characteristics
between the two regimes in the RS-VAR-TD are influenced more by the error covariances than by
the VAR coefficients.

Given the several differences between the two types of regime-switching models, an interesting
question arises: What would happen if we applied the recession identification criteria (in the time-
domain model) to the RS-VAR-FD? Conversely, what would happen if we applied the frequency-
domain identification criteria (based on spectral density shapes) to the RS-VAR-TD? Exploring
these questions could provide valuable insights into the role of prior specifications and regime
identification schemes, potentially revealing further differences between the two types of models.

Figure 6 shows the results of these exercises. When the (time-domain) recession identification
is applied to the RS-VAR-FD, the identified regimes are broadly similar to those in the original RS-
VAR-FD (Figure 6(a)). This is not surprising, as the BC-frequency regime is also associated with
higher volatilities, with the minor differences due to the additional consideration of the intercept
term in the GDP equation. In contrast, applying the frequency-domain identification to the RS-
VAR-TD results in poor regime inference, making the results difficult to interpret (Figure 6(b)).
This result is largely due to the fact that, as discussed earlier, the two regimes in the RS-VAR-TD
model are not clearly distinguished in terms of the slope of the spectral densities.21

These results suggest that, despite some similarities between the two types of models in terms of
the volatilities and persistence of each regime, one cannot directly associate expansion/recession
periods with low-/BC-frequency regimes, as each of their spectral properties appears to be differ-
ent between the two models. Moreover, because of these differences, natural frequency-domain
identification cannot simply be applied to identify the recession regime as in conventional
time-domain models; careful and model-specific identification is required in each case.
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(a) When the time domain (recession) identification is applied to the RS-VAR-FD

(b) When the frequency domain identification is applied to the RS-VAR-TD

Figure 6. Results from alternative identification.
Note: In each panel, the figure shows the probability of the BC-frequency (panel (a)) or recession regime (panel (b)).

Finally, when the transition probabilities are allowed to vary over time, the estimated regimes
remain broadly similar to those obtained with constant transition probabilities (Appendix Figure
A7). However, the distinction between regimes becomes clearer and more consistent with the
intended regime properties of each model, which is also reflected in a slightly improved model fit,
as indicated by the log marginal likelihoods.

The spectral densities for these models show that, in the second regime (BC-
frequency/recession), there are notable peaks around 0.1 for the BC-frequency and 0.3 for the
recession regime, corresponding to 10-quarter and 4-quarter cycles, respectively. This suggests
that time-varying transition probabilities introduce more uncertainty around these frequency
ranges, where the associated frequencies are also relatively lower in the frequency-dependent
switching model (RS-VAR-FD-TVTP).

4.4. Forecasting performance comparison
Finally, this subsection presents a simple comparison of forecasting performance. Although the
main objective of the study is not to examine the predictive ability of the model, evaluating the
predictive performance of econometric models has become standard practice, and the forecast
evaluation can be thought of as a useful tool for model comparison.

Therefore, we construct a small pool of models for forecasting comparison, including CVAR,
RS-VAR-FD, RS-VAR-TD, RS-VAR-TVTP, and RS-VAR-TD-TVTP.22 For all models, we use a
recursive estimation window to generate pseudo out-of-sample forecasts for h= 1, 2, 3, and
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Table 4. Forecast comparison

RMSE

log predictive
GDP inflation interest rates likelihood

h= 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVAR 1.530 0.580 0.708 -3.959
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD 0.996 0.974∗ 0.945∗∗ 0.176∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD 0.980∗ 0.953∗∗ 0.917∗∗ 0.146∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD-TVTP 0.983† 1.042 0.954∗∗ 0.334†∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD-TVTP 0.989∗ 0.962∗∗ 0.930∗∗ 0.142∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h= 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVAR 1.762 0.970 0.991 -4.604
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD 0.998 0.956∗ 0.870∗∗ 0.503∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD 0.964∗∗ 0.943∗ 0.872∗∗ 0.465∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD-TVTP 1.041 1.094 1.002 −0.416
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD-TVTP 0.980 0.940∗ 0.883∗∗ 0.421∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h= 3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVAR 2.278 1.755 1.253 -6.661
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD 1.089 0.943∗ 0.981∗ −1.670
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD 0.974†∗∗ 0.914∗∗ 0.958†∗∗ −0.453
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD-TVTP 1.137 0.928∗ 0.990∗ −0.043†
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD-TVTP 0.981†∗ 0.945∗ 0.956†∗∗ −0.257†
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h= 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CVAR 2.890 4.012 1.481 -9.198
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD 1.076 0.921∗∗ 0.988 −3.314
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD 0.976†∗∗ 0.912∗∗ 0.967∗ −1.812
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-FD-TVTP 1.117 0.774†† ∗∗ 0.990 0.363††
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD-TVTP 0.975†∗∗ 0.952∗ 0.953†∗∗ −1.266
Notes: At each forecast horizon, the row corresponding to CVAR contains the RMSEs and the average log predictive like-
lihood (in italics) while other entries are values relative to them. Asterisks (∗) and daggers (†) indicate the significance
of the Giacomini and White (2006) predictive ability test against the CVAR at the ∗ 0.10 and ∗∗ 0.05 levels, and against
the RS-VAR-FD at the † 0.10 and †† 0.05 levels, respectively.

4-step-ahead horizons. Starting with the estimation sample up to 1983:Q4, the first available fore-
casts are for 1983:Q4+h. We then proceed by expanding the sample by a quarter and generating
forecasts through the end of the sample. In line with conventional practices and the interests of
policymakers, h quarter-ahead forecasts for GDP and inflation are the cumulative quarterly rates
of change (i.e., the percentage change from period t through t+ h). All the forecasts from each
model are transformed to be consistent with this cumulative data measure. The exercises involve
multi-step forecasting, and we use iterated forecasting to obtain the result, which generally out-
performs direct forecasting (Marcellino et al. 2006). In evaluating the forecasting performance of
the models, we use the root mean squared error (RMSE) and the predictive likelihood as evalua-
tion metrics. In the latter, we measure the log-predictive score using a Gaussian approximation of
the predictive density.

The results of this forecast comparison are summarized in Table 4. We normalize all the results
in the table relative to the CVAR. Specifically, the numbers represent the ratio of each model’s
RMSE to that of the CVAR and the average of the log predictive likelihoods of a given model
minus that of the CVAR, respectively. In addition, to provide a rough indication of the statistical
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significance of the differences in predictive performance, we report the results of the predictive
ability test (Giacomini and White, 2006) for each model against both the CVAR and the RS-VAR-
FD.

As shown in the table, forecasting with the RS-VAR-FD leads to substantial improvement over
the CVAR in most cases. The improvement is more pronounced for inflation and interest rates,
as well as for the density forecast over short horizons, and is often accompanied by strong sta-
tistical significance over the CVAR. Compared to the RS-VAR-TD, the overall performance of
the RS-VAR-FD is somewhat worse, especially for point forecasts. However, the predictive abil-
ity test results show that their performances are not significantly different in most cases and that
the RS-VAR-FD remains strong and competitive over short horizons (h= 1 and h= 2). Despite
their better in-sample fit, the models with time-varying transition probabilities perform slightly
worse than their constant probability counterparts in several cases, indicating the possibility of
overfitting.

5. Concluding remarks
This study presents a simple VAR model to analyze the frequency-dependent regime-switching
dynamics ofmacroeconomic time series. Empirical applications to some keymacroeconomic vari-
ables demonstrate clear regime-switching behavior between the low- and BC-frequency regimes.
We also show that each frequency regime exhibits distinctive characteristics in terms of spectral
properties, persistence, volatility, and impulse responses.

We conclude this section by suggesting some avenues for future research. First, while several
recent studies, including this one, have highlighted a significant shift in the frequency-domain
dynamics of key macroeconomic variables from the 1970s to the mid-1980s, the nature and source
of this change remain unclear. In particular, although this shift appears to be associated with
the Great Moderation, the reduction in volatility is only one aspect of the broader changes in
the frequency domain. Therefore, a more in-depth investigation of the nature and underlying
mechanisms driving this shift is warranted.

Second, while this study assumes discrete changes in the frequency domain, the time varia-
tion might be better characterized by smoother or gradual changes. Examples of such approaches
include VARs with threshold and smooth-transition and (gradually changing) time-varying coef-
ficients (along with stochastic volatilities). A rigorous comparison between the model presented
in this study and these alternative models would be a valuable area for future research and could
provide deeper insights into the nature of time-varying changes in macroeconomic time series.

Notes
1 For example, in structural VARs, neglecting these features leads to poor identification of shocks or the compounding of the
different effects of shocks at different frequencies (Francis and Ramey, 2009).
2 For a comprehensive survey of these priors, see Koop and Korobilis (2010), Karlsson (2013), and Chan (2020b).
3 For an overview of wavelet-based analysis and its applications in economics, see Aguiar-Conraria and Soares (2014).
4 In empirical trend-cycle decomposition, the evolution of the trend component in (3) is sometimes augmented with an
additional disturbance term, ψt , that is, yτt = yτt−1 +μt +ψt , so that (5) becomes �2yτt = δt +ψt −ψt−1. In this case, the
trend component becomes relatively less smooth. Harvey and Jaeger (1993) discuss the empirical relevance of including this
additional disturbance term and show that a model without this term provides a better fit for U.S. output. For comparison,
we also consider later the case of an I(1) prior instead of an I(2) prior for the low-frequency VAR coefficients.
5 As noted by Jarociński and Lenza (2018), specifying the priors in the frequency domain using the cosine function, rather
than in terms of the VAR coefficients, is more intuitive and imposes the dynamics implied by the priors in a more natural
way.
6 While we assume three regimes here, we discuss the choice of the appropriate number of regimes and consider other
possibilities in Section 3.1.
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7 The only exception is λ5, which is fixed to 100, indicating a very loose prior.
8 For a more detailed discussion of the filtering and smoothing algorithm, refer to Früwirth-Schnatter (2006) and references
therein.
9 We have also tried other values such as prior means for β and �, and equal probabilities for P(0) and ξ0|0, but found little
difference in the results.
10 Considering that the GDP deflator is also a commonly used measure of the overall price level and may have different
dynamic properties compared to the CPI, we also estimate models using inflation measured by the GDP deflator. The results,
as shown in the Appendix (Table A2 and Figures A1–A2), are broadly similar to those obtained using the CPI.
11 In Section 4, we also examine a model in which the changes in error variances over time are specified in terms of stochastic
volatility (without COVID-19 dummies).
12 The log marginal likelihoods for these alternative specifications are reported in Appendix Table A1.
13 For the three-regime case (R= 3), we set αrr′ = 16 if r = r′ and αrr′ = 2 otherwise.
14 The spectral densities for all models are computed by evaluating the determinant of the spectral density matrix (implied
by each prior or model) at 200 equally spaced points in the normalized frequency domain, [0, 0.5].
15 We also find that other cutoffs, such as ω̃= 0.05 (corresponding to a 20-quarter cycle), give very similar results. As will
be seen later, because the frequency spectra occasionally exhibit non-decreasing behavior (such as local peaks around the
medium frequency ranges), it seems advisable to use a conservative cutoff value to account for these variations.
16 The CVAR model is a standard VAR without regime-switching features; further details are provided in the Appendix.
17 As shown in Table 2, the contrasting patterns in hyperparameters across the regimes observed in the RS-VAR-FD are still
present in these alternative models.
18 In fact, the two recessions of 1990–1991 and 2001 are generally considered to be relatively mild and short and, thus,
standard regime-switching and recession forecasting models often fail to detect or predict them. See Dueker (2002), Stock
and Watson (2003), and Kauppi and Saikkonen (2008) for further discussions.
19 These differences between the two types of models are also reflected in the impulse responses (shown in Appendix Figure
A5), which are largely consistent with their respective spectral properties. While the responses in the second regime (BC-
frequency/recession) are similar in shape across both models, with slightly wider credible intervals in the RS-VAR-FD, there
are several differences in persistence in the first regime (low-frequency/expansion), depending on the response variables.
Specifically, output responses tend to be significantly stronger and more persistent in the low-frequency regime, while the
interest rate exhibits slightly more persistent behavior in the expansion regime.
20 As part of a robustness check and to assess the effect of different persistence in the prior for the first regime (i.e., I(2) for
the low frequency regime and I(1) for the expansion regime), we also estimate the baseline model with the low-frequency
prior means replaced by a unit root-type Minnesota prior instead of I(2) (denoted as RS-VAR-FD-I(1)). The results (shown
in Appendix Figure A6) are very similar to those of the baseline model, suggesting that the dynamics around several of the
recession episodes discussed above are not consistent with the BC-frequency characteristics.
21 Therefore, the results do not change significantly when the cutoff frequency is adjusted to other values. One way to obtain
results similar to the RS-VAR-TD using frequency-domain criteria is to impose an identification condition over relatively
high-frequency ranges. For example, if the regime identification is imposed so that the average log spectral density in the
recession regime is higher than in the expansion regime over the frequency band such as [0.167, 0.5] (i.e., cycles with peri-
odicity of less than 6 quarters), the resulting regimes are essentially the same as those of the RS-VAR-TD. However, as noted
above, this identification is essentially based on differences in volatility rather than on the spectral shape of each regime.
22 While the previous sections also examine other specifications, including models with stochastic volatility and asymmetric
priors, these models exhibit poor performance overall–not only in terms of in-sample fit, as shown above, but also in out-
of-sample forecasting (often performing worse than the CVAR). Therefore, to save space, we focus here on models with
forecasting performance that is reasonable and comparable to the baseline model.
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Jarociński, M. and M. Lenza (2018) An inflation-predicting measure of the output gap in the euro area. Journal of Money,

Credit and Banking 50(6), 1189–1224.
Kadiyala, K. and S. Karlsson (1997) Numerical methods for estimation and inference in bayesian VAR-models. Journal of

Applied Econometrics 12(2), 99–132.
Karlsson, S. (2013) Forecasting with Bayesian vector autoregressions. In: Karlsson, S. (eds.), Handbook of Economic

Forecasting, pp. 791–897. Amsterdam: Elsevier.
Kauppi, H. and P. Saikkonen (2008) Predicting US recessions with dynamic binary response models. Review of Economic

Statistics 90(4), 777–791.
Kim, C.-J. and C. R. Nelson (1999) Has the U.S. economy become more stable? A bayesian approach based on a Markov-

switching model of the business cycle. The Review of Economics and Statistics 81(4), 608–616.
Kliem, M., A. Kriwoluzky and S. Sarferaz (2016) On the low-frequency relationship between public deficits and inflation.

Journal of Applied Econometrics 31(3), 566–583.
Koop, G. and D. Korobilis (2010) Bayesian multivariate time series methods for empirical macroeconomics. Foundations and

Trends in Econometrics 3(4), 267–358.
Krolzig, H. (1997)Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle

Analysis. Berlin: Springer-Verlag.

https://doi.org/10.1017/S1365100524000786 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100524000786


24 Y. Hwang

Kurmann, A. and E. Sims (2021) Revisions in utilization-adjusted TFP and robust identification of news shocks. Review of
Economic Statistics 103(2), 216–235.

Litterman, R. B. (1986) Forecasting with bayesian vector autoregressions: five years of experience. Journal of Business &
Economic Statistics 4(1), 25–38.

Marcellino, M., J. H. Stock and M. W. Watson (2006) A comparison of direct and iterated multistep AR methods for
forecasting macroeconomic time series. Journal of Econometrics 135(1-2), 499–526.

McConnell, M. M. and G. Perez-Quiros (2000) Output fluctuations in the United States: what has changed since the early
1980’s? American Economic Review 90(5), 1464–1476.

Planas, C., A. Rossi and G. Fiorentini (2008) Bayesian analysis of the output gap. Journal of Business & Economic Statistics
26(1), 18–32.

Primiceri, G. E. (2005) Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies
72(3), 821–852.

Raftery, A. and S. Lewis (1992) How many iterations in the Gibbs sampler?. In: Raftery, A. and S. Lewis. (eds.), Bayesian
Statistics, pp. 763–773, Oxford University Press.

Sala, L. (2015) DSGE models in the frequency domains. Journal of Applied Econometrics 30(2), 219–240.
Sargent, T. J. and P. Surico (2011) Two illustrations of the quantity theory of money: breakdowns and revivals. American

Economic Review 101(1), 109–128.
Sims, C. A., D. F. Waggoner and T. Zha (2008) Methods for inference in large multiple-equation Markov-switching models.

Journal of Econometrics 146(2), 255–274.
Sims, C. A. and T. Zha (1998) Bayesian methods for dynamic multivariate models. International Economic Review 39(4),

949–968.
Sims, C. A. and T. Zha (2006) Were there regime switches in U.S. monetary policy? American Economic Review 96(1), 54–81.
Smets, F. and R. Wouters (2007) Shocks and frictions in US business cycles: a bayesian DSGE approach. American Economic

Review 97(3), 586–606.
Stock, J. and M.Watson (2003) How did leading indicator forecasts perform during the 2001 recession? Federal Reserve Bank

of Richmond Economic Quarterly 89(3), 71–90.Summer.
Teräsvirta, T., D. Tjøstheim and C. Granger (2010) Modelling Nonlinear Economic Time Series. Oxford: Oxford University

Press.
Tkachenko, D. and Z. Qu (2012) Frequency domain analysis of medium scale DSGE models with application to Smets

and Wouters, 2007. In: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pp. 319–385,
Emerald Group Publishing Limited.

Villani, M. (2009) Steady-state priors for vector autoregressions. Journal of Applied Econometrics 24(4), 630–650.
Watson, M. W. (1986) Univariate detrending methods with stochastic trends. Journal of Monetary Economics 18(1), 49–75.

Appendix A. Details of Alternative Models
This section describes the alternative models presented in Section 4 in more detail. First, CVAR
and RS-VAR-homo are nested versions of the baseline model where the regime dependence of
(some) parameters is shut-off. The CVAR is a standard VAR model with constant parameters and
no regime-switching. That is, βSt = β and �St =� for all t. In this model, the prior means of the
VAR coefficients are set as in the Minnesota prior, i.e., the means of the first lag of each variable
are set to one, while the means of all other coefficients are set to zero, with other specifications
remaining the same as in the baseline model (RS-VAR-FD).

In the model with homoskedasticity (RS-VAR-homo), we assume that the error covariances are
identical across regimes, i.e.,�St =� for all t. All other features, including the prior means of the
VAR coefficients and the estimation procedure, remain the same as in the RS-VAR-FD.

For the model with stochastic volatility (RS-VAR-SV), we follow the conventional framework
outlined in the literature (e.g., Primiceri, 2005). In this model, the (co)variances of the innovations
are assumed to (gradually) evolve over time rather than switching between regimes. Specifically,
it relies on the standard decomposition of the (time-varying) error covariance matrix:

�t =A−1
t HtA−1′

t , (A.1)
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where At is a lower triangular matrix with (i, j) element αij,t and Ht is a diagonal matrix with ith
element hi,t , and we assume the evolution of hi,t follows geometric random walks:

ln hi,t = ln hi,t−1 +wi,t , i= 1, · · · , n, (A.2)

and the elements of the matrix At , collected in αt = (α21,t , · · · , αn(n−1),t), evolve as driftless
random walks:

αt = αt−1 + ζt , (A.3)

where wt = (w1,t , · · · ,wn,t)′ ∼N(0,Vw) and ζt ∼N(0,Vζ ). For the priors on the new hyperpa-
rameters, Vw and Vζ , we use the same values as in Primiceri (2005). All other features, including
the prior means of the VAR coefficients, remain the same as in the RS-VAR-FD. While in this
specification we assume that all elements in �t are time-varying, we also explore alternative sce-
narios where the elements in At are either constant or regime-dependent. We find that the overall
results are largely unchanged under these alternative specifications.

In specifying the model with asymmetric prior (RS-VAR-AP), we largely follow Carriero et al.,
(2019). First, using the factorization of a regime-dependent (reduced-form) error covariance
matrix, �St = ÃSt Ã′

St , where ÃSt is a triangular matrix, we can recover the structural innova-
tions, εt = Ã−1

St ut , with εt ∼N(0, In). The equations in the (reduced-form) VAR model then can
be rewritten in terms of structural shocks:

yt = β ′
StXt + ÃStεt , (A.4)

with the ith equation being

yit −
∑i−1

j=1
α̃ij,Stεjt = β ′

i,StXt + α̃ii,Stεit , (A.5)

where α̃ij,St is the (i, j) element of ÃSt , and βi,St is the part of the VAR coefficients associated with
the equation i. This model then can be easily estimated by sampling the posterior of the VARs
coefficients equation by equation.

In estimating this model, we essentially follow the algorithm in Carriero et al., (2019) and
Carriero et al., (2022). Unlike the baseline model, where the hyperparameters are only regime-
specific, this model features distinct sets of hyperparameters for each equation and each regime.
Therefore, the step of drawing hyperparameters is divided into two blocks, where the first block
draws λ1, λ2, and λ3 (i.e., those not related to co-persistence) for individual equations, and given
these draws, the second block draws λ4 (related to co-persistence) for the entire VAR model.

For the RS-VAR-TD, we impose the same unit root-type Minnesota priors on the VAR coef-
ficients in both regimes, while the other prior specifications and estimation procedure remain
the same as in the RS-VAR-FD. Letting β(0)1,St denote the intercept term in the GDP equation, the
regime identification condition can be stated as follows: β(0)1,St=2 <β

(0)
1,St=1 and

∣∣�St=2
∣∣> ∣∣�St=1

∣∣.
In both the RS-VAR-FD-TVTP and RS-VAR-TD-TVTPmodels, we follow Filardo and Gordon

(1998) and specify the transition probabilities using a probit model, Pr (St = 1)= Pr (S∗
t < 0),

where S∗
t is a continuous unobserved variable with

S∗
t = γ0 +

∑p

l=1
γlzt−l + φSt−1 + vt , vt ∼N(0, 1) (A.6)

and zt represents the GDP growth rate. The lag order is set to 2 based on the log marginal like-
lihoods. The sampling algorithm for this model includes additional steps to draw S∗

t and the
parameters (γ0, γ1, . . . , γp,φ). We sample the latent variable from truncated normal distributions
(Albert and Chib, 1993) and draw the coefficients in the probability equation using the standard
approach, as in a simple linear regression with a known error variance.
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Appendix B. Additional Tables and Figures

Table A1. Log Marginal Likelihoods

A. The frequency-dependent switching VARs (with varying R and p)

(R= 2, p= 2) (R= 2, p= 3) (R= 2, p= 4) (R= 2, p= 5)

−1291.11 −1297.39 −1285.24 −1317.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(R= 3, p= 2) (R= 3, p= 3) (R= 3, p= 4) (R= 3, p= 5)

−1354.87 −1334.19 −1369.60 −1406.67
B. Other models

RS-VAR-homo RS-VAR-SV RS-VAR-AP CVAR

−1398.50 −1383.29 −1378.36 −1375.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RS-VAR-TD RS-VAR-FD-I(1) RS-VAR-FD-TVTP RS-VAR-TD-TVTP

−1298.42 −1289.22 −1264.69 −1289.39
Note: The log marginal likelihood for each model is computed using the algorithm proposed by Chan and Eisenstat (2018), which
is based on the integrated likelihood. A large part of the computation relies on the MATLAB codes that accompany their paper.

Table A2. Estimates for Model Parameters: Model with GDP Deflator Inflation

A. Error Covariances

low frequency BC frequency CVAR

Var(uy) 0.396 (0.304, 0.474) 0.993 (0.816, 1.248) 0.601 (0.548, 0.663)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(up) 0.050 (0.043, 0.060) 0.106 (0.088, 0.132) 0.065 (0.059, 0.071)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Var(ui) 0.118 (0.078, 0.142) 0.842 (0.672, 1.101) 0.392 (0.337, 0.447)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , up) −0.010 (−0.021, 0.003) 0.010 (−0.031, 0.057) −0.001 (−0.013, 0.012)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(uy , ui) 0.054 (0.029, 0.080) 0.173 (0.073, 0.293) 0.135 (0.092, 0.178)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(up, ui) 0.009 (0.004, 0.016) 0.012 (−0.024, 0.044) 0.013 (0.003 0.024)

B. Hyperparameters

low frequency BC frequency C. Transition prob.

λ1 0.176 (0.117, 0.471) 0.151 (0.112, 0.342) p11 0.954 (0.926, 0.974)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2 4.808 (1.540, 8.352) 1.969 (0.659, 3.782) p12 0.046 (0.026, 0.074)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ3 0.267 (0.133, 0.721) 0.180 (0.118, 0.468) p21 0.118 (0.064, 0.203)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ4 0.270 (0.096, 0.464) 0.651 (0.227, 2.472) p22 0.882 (0.797, 0.936)

Note: See notes to Table 1.

 

Figure A1. Estimated regimes and spectral densities (with GDP deflator inflation).
Note: See notes to Figure 2.
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(a) Low-frequency regime 

(b) BC-frequency regime

 

Figure A2. Impulse responses from the model with GDP deflator inflation (Full result).
Note: See notes to Figure 3.
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Figure A3. Estimates of stochastic volatilities.
Notes: The figure plots the median estimates of the time-varying stochastic volatilities,

√
hi,t , in each series in RS-VAR-SV,

along with 16%–845% credible intervals.
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Figure A4. Estimated regimes for individual series.
Note: See notes to Figure 2.
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(a) Regime #1 (Low frequency/Expansion)

 

(b) Regime #2 (BC frequency/Recession)

 

Figure A5. Impulse responses of the conventional regime-switching model.
Note: In each panel, blue solid lines represent the 16%–84% credible interval for the impulse responses for the low-frequency
and the BC-frequency regime, respectively (in the RS-VAR-FD); red dashed lines represent those for the expansion and
recession regime, respectively (in the RS-VAR-TD).

Figure A6. Estimated regimes and spectral densities for the RS-VAR-FD-I(1).
Note: See the notes to Figure 2.
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(a) RS-VAR-FD-TVTP

(b) RS-VAR-TD-TVTP

Figure A7. Models with time-varying transition probabilities.
Note: Each panel in the figure shows the estimated probabilities of the second regime (BC-frequency and recession) with
the time-varying transition probabilities. On the right of each panel are 5%–95% intervals for the spectral densities for each
regime.
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