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SOME ENGEL CONDITIONS ON
INFINITE SUBSETS OF CERTAIN GROUPS

ALIREZA ABDOLLAHI

Let k be a positive integer. We denote by £x(00) the class of all groups in which every
infinite subset contains two distinct elements «, y such that {z,, y] = 1. We say that a
group G is an £f-group provided that whenever X,Y are infinite subsets of G, there
exists £ € X, y € Y such that [z,, y] = 1. Here we prove that:
(1) If G is afinitely generated soluble group, then G € £3(00) if and only if
G is finite by a nilpotent group in which every two generator subgroup
is nilpotent of class at most 3.
(2) If G is a finitely generated metabelian group, then G € £¢(o0) if and
only if G/Z(G) is finite, where Zx(G) is the (k + 1)-th term of the
upper central series of G.
(3) If G is a finitely generated soluble £;(o0)-group, then there exists a
positive integer ¢ depending only on k such that G/Z;(G) is finite.
(4) If G is an infinite £¢-group in which every non-trivial finitely gener-
ated subgroup has a non-trivial finite quotient, then G is k-Engel. In
particular, G is locally nilpotent.

1. INTRODUCTION AND RESULTS

Paul Erdés posed the following question {16]: Let G be an infinite group. If there is
no infinite subset of G whose elements do not mutually commute, is there then a finite
bound on the cardinality of each such set of elements?

The affirmative answer to this question was obtained by B.H. Neumann who proved
in [16] that a group is centre-by-finite if and only if every infinite subset of the group
contains two different commuting elements.

Further questions of a similar nature, with slightly different aspects, have been stud-
ied by many people (see 1, 2, 3, 4, 5, 6, 7, 13, 14]).

For a group G we denote by Z,(G) and v,(G), respectively, the (n + 1)-th term
of the upper central series and the n-th term of the lower central series of G. For
z,Y,T1,-..,%n € G we write

[931,1‘2] = $f1${1$1$2, [xly-“azn] = [[ﬂil,n-,zn—l],zn],
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[Z’O y] =z [.’E,n y] = [[zm—l y]! y]'

Recall that a group G is said to be n-Engel if {z,, 4] = 1 for all 2,y in G. For k a positive
integer, let NV, be the class of nilpotent groups of class at most k; let F be the class of
finite groups and N be the class of all nilpotent groups. We denote by (N, co) ((N, o))
the class of all groups in which every infinite subset contains two distinct elements z,y
such that (z,y) is nilpotent (nilpotent of class at most k, respectively). We also denote by
Ex(c0) (E (oo)) the class of all groups in which every infinite subset contains two distinct
elements z,y such that [z,xy] = 1 ([z,, y] = 1 for some positive integer n depending on
z,y, respectively) and denote by N,f” the class of all groups in which every 2-generator
subgroup is nilpotent of class at most k.

Lennox and Wiegold [13] proved that a finitely generated soluble group G is in
(N, c0) if and only if G is FA. In (3] and [4] Delizia proved that a finitely generated
soluble group or finitely generated residually finite group G is in (A3, 00) if and only
if G/Z,(G) is finite. Longobardi and Maj [14] proved that a finitely generated soluble
group G belongs to £(o0) if and only if G is FN. Also it is proved in [14] that a finitely
generated soluble group G belongs to £2(o0) if and only if G/R(G) is finite, where R(G)
denotes the characteristic subgroup of G consisting of all right 2-Engel elements of G.
Abdollahi [1] improved the later result by proving that a finitely generated soluble group
G belongs to & (co) if and only if G/Z5(G) is finite. In fact this result shows that on
the class of finitely generated soluble groups, we have £;(co0) = (N2, 00). Here we prove
that on the class of finitely generated soluble groups, we also have £3(oc0) = (N, 00), by
proving

THEOREM 1. Let G be a finitely generated soluble group. Then G € &3(0) if
and only if G is FN{®.

Abdollahi and Taeri [2] studied the class (N, co) and proved that a finitely generated
soluble group G is in (Mg, 00) if and only if G is fN,fz). Also, they proved that a finitely
generated metabelian group G is in (N, o0) if and only if G/Zy(G) is finite. Here we
extend the later result to the class of £(o0) (Theorem 2, below). In [2] it is remarked
that if G/Z;(G) is finite then G is .7-'N,§2) but the converse is false for k > 3, even if G
is finitely generated and soluble of derived length three. The examples cited, which are
due to Newman [17], are torsion-free nilpotent.

THEOREM 2. Let G be a finitely generated metabelian group. Then G € Ex(00)
if and only if G/Z(G) is finite.

By [2, Lemma 2], if G is a torsion-free nilpotent (N, 0o)-group then G belongs to
N,SQ), and so G is k-Engel. By a result of Zel'manov [20], G is nilpotent of class at most
f(k), where f(k) is a function of k and independent of the number of generators of G. We
prove a similar result about the torsion-free nilpotent groups in the class £x(oo) (Lemma
4, below), from which we obtain

https://doi.org/10.1017/50004972700018554 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018554

3] Engel conditions 143

THEOREM 3. LetG be a finitely generated soluble group which belongs to £x(c0).
Then there exists a positive integer t depending only on k such that G/Z,(G) is finite.

Let us recall that a group G is said to be locally graded whenever every finitely
generated non-trivial subgroup of G has a non-trivial finite quotient. Delizia, Rhemtulla
and Smith [5] recently showed that if G is a finitely generated locally graded group and
G € (N, 00) then there is a positive integer ¢ depending only on k such that G/Z.(G)
is finite. We have been unable to prove a result similar to that of [5] about finitely
generated locally graded &(o0)-groups, but we obtain a result as follows.

Let k be a positive integer. We say that a group G is an &g-group provided that
whenever X, Y are infinite subsets of G, there exists z € X, y € Y such that [z, y] = 1.
In {18], Puglisi and Spiezia proved that every infinite locally finite or locally soluble
Er-group is a k-Engel group. We improve this result as follows.

THEOREM 4. Let G be an infinite locally graded E}-group. Then G is k-Engel.
In particular, G is locally nilpotent.

2. PROOFS

We need the following easy lemma in the proofs of both Theorems 1 and 2.

LEMMA 1. Let G be a group. Suppose that y,z,,...,z¢ € Zx(G) and a,b,c,d €
Z4(G). Then for alli € {1,2,...,k} and for all integers n.

(1) [.’l:l ey Li—1, LY Tty - o ,Ik] = [.’El, ey T 1y Ty Tig1y e - o ,:Ck]
X [Z1y .oy Ticy s Tig1y - - Tk,
(2) [z1y- s Timty T, Tigty - Zk] = [Z1, -+ 0y Ticyy Tiy Tigry - - - e[

(3) [a,b,c,d] = [ba,c,d]™t.
Also
(i) IfG is metabelian then for all z,,...,z, € G

[z1, T2, ... Tk] = [Z2, 71, T3 - - -, k] 7L

(i) For all permutation o on the set {1,...,k}, for alla € v,(G) and z,, ...,z
inG, [a,z1,22,...,%k = [a,:c,(l),z,(g),...,a:,(k)].

PRoOF: One can check the proofs of parts (1)-(3) of the lemma by some formulas
of the commutator calculus. For the proofs of parts (i) and (ii) we note that v(G) is
Abelian and [a,b,c] = [a,c,b] for all a € v2(G) and b,c € G. Thus we use the later
equality to permute the symbols in positions 3 to k of the commutator in the left hand
side of (ii). 0

We use the following lemma for the proof of Theorem 1. In the proof of this lemma,
we use a result of Gupta and Newman (see {10, Theorem 3.5]) which asserts that every
n-generator 2-torsion-free third Engel group is nilpotent of class at most 2n — 1.
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LEMMA 2. Every torsion-free nilpotent £3(co)-group belongs to Na(z).

PROOF: Let H be a two-generator torsion-free nilpotent £3(00)-group. By induction
on the nilpotency class of H, we may assume H = Z,(H). We prove that H is 3-Engel
and so by [10, Theorem 3.5], H is nilpotent of class at most 3. Let a,b be non-trivial
elements of H; we show that [b, a,a,a] = 1. Consider the infinite subset {ab, ab,a®, .. .}.
Since G € &;3(o0), there exist distinct positive integers i, j such that [a'b, a’b, a’b, a’b] = 1.
Therefore by Lemma 1 (parts (1)-(3))

1 = [a'b,a’b, a’b, a’b] = [a, b, &7, a’}][a’, b, b, a?b][b, a7, &’ ab][b, &7 , b, a7 D]
= [a,b, a,a]"*[a, b, a, b]7[a, b, b, a]’[a, b, b, b]}
x b, a, a, a)’[b, a, a, b)7" [b, a, b, b’ [b, a, b, a]”
= [b,a,a,a]"7’[b, a,a,b"[a, b, b,a]¥[a, b, b, b]}
x b, a, a, a)’[b, a, a, b’ [a, b, b, b] ~7[a, b, b, @] 7"
= [b,a,a,a” " ~Y)[a, b, b, a7 b7

= ([b, a,a,a’ b)[a, b, b, ajb]_l)j_i .

Since H is torsion-free, [b, a, a, a’” b][a, b, b,a’b]~! = 1, and so [a, b, b, a}’[b, a, a, a)’’[b, a, a, b’
= [a, b,b,b]"!. By arguing as above on the infinite set {a/*!b,a?*2b,...} we get

[a,b,b,a]'[b, a,a, a]‘z(b, a,a,b)' = [a,b,b,b]7?,

for some positive integer ¢t > j. Therefore, by the last two equalities, we have
[b,a,a,a]'"*? = [a,b,b,a]"![b,a,a,b]".

By considering the infinite set {a**'b,a'*2},...} and arguing as before, we obtain an
integer s > t such that [b, a, a,a]**’ = [a,b,b,a]7![b,a,a,b]"".

Hence [b, a,a, a)**/ = [b,a,a,a]**? and so [b, a,a,a] = 1, this completes the proof. [

PROOF OF THEOREM 1: By the result of [2], it suffices to prove that every finitely
generated soluble £3(co)-group G is .77/\/3(2). By [14, Theorem 1], there exists a finite
normal subgroup H of G such that G/H is nilpotent. Let T/H be the torsion subgroup
of G/H. Then T is finite and G/T is a finitely generated torsion-free nilpotent group.
Thus by Lemma 2, G/T € N?,(z) and the proof is complete. 0

COROLLARY 1. LetG beann-generator soluble £3(00)-group. Then G/Zy,_,(G)
is finite. In particular, every two-generator soluble group G belongs to £3(c0) if and only
if G/ Z5(G) is finite.

Proor: By Theorem 1, G has a finite normal subgroup T such that G/T is a
torsion-free n-generator N32-group. Thus by [10, Theorem 3.5), G/T is nilpotent of
class at most 2n — 1. Therefore v2,(G) is finite, and hence G/Z,,_,(G) is finite [11]. 0

We need the following key lemma in the proof of Theorem 2. In the proof of this
lemma, we use a result of Gruenberg (see [8, Theorem 1.10] or Gupta and Newman [9}),
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which implies that every torsion-free metabelian k-Engel group is nilpotent of class at
most k.

LEMMA 3. Every torsion-free nilpotent metabelian group in £¢(00) is nilpotent of
class at most k.

PROOF: Let G be a torsion-free nilpotent metabelian £ (oo)-group. By induction
on the nilpotency class of G, we may assume G = Z;,,(G). We prove that G is a k-
Engel group and then by a result of Gruenberg (see (8, Theorem 1.10] or Gupta and
Newman [9]), G is nilpotent of class at most k. Let z and y be arbitrary non-trivial
elements of G. Consider the infinite subset {z"y | n € N}. Since G € £(c0) then
there exist two distinct positive integers 4, j such that [z*y, 27y] = 1. Then by Lemma
1 (parts (1), (2) and (i)) 1 = [[x‘,y],k_l zfy] [[y,xj],k_l:cjy] = [[a:, y],k_lzjy]'—’, and so
[[z,y],k_l zjy] = 1. Therefore, by Lemma 1 (parts (1), (2), (i) and (ii)), we get

}((k~1)!/r!(k—r—1)!)j'

(I) i{[CR -

r=0

Put t, ;= j, K(k-1,r) = [[[z,y],, :c] Y y] and consider the infinite subset {z"y |
n > t;}. Then by arguing as above, there exists a positive integer ¢, > ¢, such that

k-1
(II) H K(k _ 1’T)((k—l)!/r!(k—r—-l)!)t; =1.

r=0

Suppose that
M(r,a,...,a5) =

(k— 1 r -1 ip—2~1 .
r—i; -1 n—u—l ig—-iz—1 iy-2—is~1—-1 i,_ 1
B T > I e

11=85—-21i2=5-3 1,-1=0
and N(r,ay,...,a;5) = (as ~ 6,1 )M (r,0a1,...,a,), for all integers s > 1,3-2 < r < k-1
and ay,...,a,. We note that

N('I", ay,.. 'saa+1) = M(T, Qry. . 1as—-1)aa+1) - M(T‘ al,. .. 10'8)1

for all integers s > 1,s -2 r<k—-1anda,...,0,4.
k=1
By (I) and (II), we have ] K(k—1,r)""%#) = 1 and since G is torsion-free,
r=1

k=1
T K(k — 1,7)M"4) = 1 We note that from arguing as before, there exists an integer

r=1
t;3 > ¢y such that I'[ K(k-1, r)M" *003) = 1 Now suppose, inductively, that there exists
a sequence &), < tz < t3 < --- < ty—1 < t, of positive integers such that

k=1
(*) H K(k — 1’T)M(r,¢1,...,t.) =1.

r=3s
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Also, there exists an integer t,4; > t, such that

k-1
(**) H K(k -1, T)M(r,tl,...,t,_l,t,.,.]) =1.

r=8
k-1 N(rtlyeats tat1) i

By (+) and (s+), we have TI K(k—1,r)" 44 = 1. Since N(r,ta, .., tys) has
r=s

k=1
a factor of the form t,,; — t; and G is torsion-free, [ K(k— l,r)M("“"“""““) =1.
r=s+1

Therefore, we have a sequence ¢; < t2 < --- < tg4; of positive integers such that

k-
l’[l K(k - l,T)N(r’h""’tk+l) =K(k-1k- I)N(k—l,tl,...,tk_,_,) =1

r=k—1

But N(k—1,ti,...,tks1) = tegs —tx > 0and K(k =1,k = 1) = [[g, g}e-1 2] = [y 2]
Hence [y, z]~*+17%) =1 and so [y,x ] = 1. This completes the proof.

PROOF OF THEOREM 2: If G/Z,(G) is finite then G is in (N}, o) and so G belongs
to & (00). Conversely, by [14, Theorem 1], there exists a finite normal subgroup H of G
such that G/H is nilpotent. Let T/H be the torsion subgroup of G/H; then T is finite
and G/T is a torsion-free nilpotent metabelian group. Thus by Lemma 3, 741(G) < T
and so 7{(G) is finite. Hence G/Zx(G) is also finite [11]. 0

To prove Theorem 3, we need the following key lemma, whose proof is similar to
[15, Proposition 5].

LEMMA 4. Every torsion-free nilpotent E(0o)-group has nilpotent class bounded
by a function of k.

PROOF: Suppose that G is a torsion-free nilpotent £;(co)-group. Let G be nilpotent
of class ¢. Then 7y/2)(G) is Abelian, where [c/2] equals (¢ + 2)/2 if ¢ is even and (c + 1)/2
if ¢ is odd. Let A denote the isolator of /2)(G) in G. Then A is also Abelian since G is
torsion-free. For any 1 # z € A and y € G, consider the infinite subset {zy, z%y, 2%, ...}.
Since G € &k(o0), there exists two distinct positive integers i, j such that [zy,, z7y] = 1.
Since A is a normal Abelian subgroup of G, we have

1= [e'yu 27y] = [z ¥) [V, @)1 9] = [y 20 9] = [0 9]

Therefore [z,,y] = 1, since G is torsion-free and ¢ — j # 0. Hence, we have [4,,y] = 1.
Since G is torsion-free, it follows from a result of Zel'manov (see [20] p. 166) that A lies
in Z;x)(G), where f(k) is a function of k and independent of the number of generators of
G. Thus the nilpotency class of G is at most [¢/2] + f(k) and hence ¢ < 2(f(k) + 1). 0

PROOF OF THEOREM 3: By (14, Theorem 1], there exists a finite normal subgroup
H of G such that G/H is a torsion-free nilpotent group. Thus by Lemma 4, there exists
a positive integer ¢ depending only on & such that 4;(G) < H and so 4;4+1(G) is finite.
Hence G/Z;(G) is also finite [11}. |
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Following [12}, we say that a group G is restrained if (z)¥) = (z"‘ i€ Z> is finitely
generated for all z,y in G.

REMARK 1. Note that an £f-group G with infinite centre Z is k-Engel. For, consider
the infinite subsets Z,yZ for any z,y € G. There exist 2,t € Z such that [z, yt] =1
and so {zxy] = 1.

LEMMA 5. Every &;-group is restrained.

PROOF: Let G be an £f-group and z,y in G. We must show that H = (z)* is
finitely generated. Assume that y is of infinite order. Consider the two subsets X =
{z¥" [n € N} and Y = {y™ | m € N}. If X is finite then the centre of K := (z,y)
is infinite and so by Remark 1, K is k-Engel. Therefore, by [12, Lemma 1(i)}, H is
finitely generated. Thus, we may assume that X is infinite. Since G € £}, there exist
n,m € N such that [x”" " y"‘] =1 and so |z,x y™] = 1. Thus, arguing as in (12, Lemma
13i)], (:c)“’m) is finitely generated. Therefore H = (x”i TS km). This completes the
proof. 0

REMARK 2. We note that by {18, Remark 1.2], every infinite residually finite £-group
is k-Engel.

We are now ready to prove Theorem 4.

ProOOF OF THEOREM 4: Let G be an infinite locally graded £;-group and suppose
that z,y € G. We must prove that [z,0y] = 1. Assume that there exists an infinite
finitely generated subgroup H of G which contains z,y. Let R be the finite residual of
H. Then H/R is a finitely generated residually finite group in £ and so, by Remark 2,
H/R is k-Engel. Thus by a theorem of Wilson (see {19, Theorem 2)) H/R is nilpotent.
By Lemma 5, H is restrained, therefore by repeated application of [12, Lemma 3], R is
finitely generated. If R is finite then H is residually finite and so is k-Engel. Suppose,
for a contradiction, that R is infinite. Since G is locally graded, R has a normal proper
subgroup of finite index in R, so the finite residual subgroup T of R is proper in R.
Therefore R/T is residually finite k-Engel group and so H/T is nilpotent-by-finite. Thus
H/T is residually finite and R C T, a contradiction.

We may assume that every finitely generated subgroup of G containing z, y is finite.
Thus there exists an infinite locally finite subgroup L which contains z,y and so by [18,
Theorem B|, L is k-Engel. Therefore in any case, [z,xy] = 1 and this completes the
first part of Theorem 4. By a result of Kim and Rhemtulla (see [12, Corollary 6)) which
asserts that every locally graded bounded Engel group is locally nilpotent, G is locally
nilpotent. 0
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