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STABLE RINGS

BY

S. S. PAGE

I. Introduction. Let R be an associative ring with identity. If R is von-
Neumann regular of a left v-ring, then for each left ideal, I, we have I’=1. In
this note we study rings such that for each left ideal L there exists an integer
n=n(L)>0 such that L"=L""". We call such rings stable rings. We com-
pletely describe the stable commutative rings. These descriptions give rise to
concepts related to, but more general than, finite Goldie dimension and
T-nilpotence, and a notion of power pure.

We begin with an example of a commutative ring with the property that
either I" =0 for some n or I°=1I, and for each n there is an ideal, I, such that
I"=0 but I"'#0.

Since Nakayama’s lemma expresses the existence of maximal and minimal
submodules we obtain an extended version of Nakayama’s lemma for stable
rings and concepts of depth and height formulated in terms of the integer n
such that J"=J"*! where J is the Jacobson radical.

II. The general setting. Throughout R will denote an associative ring with
identity and all modules will be unitary. A left (right) ideal L(H) is stable if
there exists an integer n >0 such that L" =L"*"' (H" = H"""). We call a ring
left (right) stable if each left (right) ideal is stable. We call a set of left (right)
ideals bounded stable if there exists an integer n, such that L"=[""!
(H"=H""") for all left (right) ideals L(H) in the set. A ring is left (right)
bounded stable if its set of left (right) ideas is bounded.

We first note the following

ProposITION 1. A ring is left (bounded) stable iff all the two sided ideals are
(bounded) stable iff it is right (bounded) stable.

Proof. Suppose all two sided ideals are stable. Let L be a left ideal. Choose
n such that (LR)" =(LR)"*'. Then L""'=(LR)"L=(LR)"*' 1=L""?*so L is
stable. Clearly, if n, is a bound for the two sided ideals ny+ 1 is a bound for the
left ideals. Symmetry gives the conclusion of the proposition.

ReMARk. Note in the above the bound for two sided ideals appears in
general to be one less than the bound for one sided ideals. At present I know
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of no ring where this actually occurs. Is it possible that the bound for left ideals
is the bound for right ideals and two sided ideals too?

With the above proposition in mind we shall speak of stable and bounded
stable rings.

We make the following definition and record a proposition as a curiosity as
much as anything.

DerinTioN, A left ideal L is called power pure if for every right ideal H
there exists a positive integer n such that (HL)" =(HNL)".

ProrosrTionN 2. If R is a stable ring each left (right) ideal is power pure.
Proof. Let L be a left ideal. Then (LH)" '=(LH)" for some n. Then
(HL)*=H(LH)" 'L =H(LH)"L =(HL)*"<(HNL)R(HN L))"
< (HL)" = (HL)>"
So (HL)**=(HNL)™.

Remark. Notice in the above that we obtain (HL)" = (H N L)*" for some n.
If we use this to define power pure then all left ideals power pure would be
equivalent to stability of the ring, for letting H= R we have L" = L",

III. The main example. We now construct a ring R with the following
properties: (1) R is stable, (2) for each left ideal L properly contained in the
radical there exists an integer n, depending on L, such that L" =0, (3) for
J =Jacobson radical, J>=J, (4) for each n>1 there exists an ideal L such that
L™=0 but L™ '#0, (5) the ideals of R are linearly ordered. We begin with a
field k and indeterminates x;, x5, X3, ...., X,, . ... Form the polynomial ring
h[x;, x5,...]. Let I be the ideal generated by {x,—x?.,}7, and {x7}. Let
R =h[x,, x5,.... /L. We claim R has the five properties listed above. We start
with property 3 since it’s the easiest. It is easy to see that the ideal, J, generated
by the images of the x;’s is a nil ideal and R/J=k so J must be the Jacobson
radical. In order to verify the rest of the claims we first abuse the notation and let
x; be the image of x; in R so that x7,, =x,. Let 0# y e J. Then there exists a
smallest index i such that y can be expressed as a polynomial in x;. Let p, be
this polynomial (clearly p, uniquely depends on y). Let 6(y)=degree p,/2'.
Note that even if j>i and we write y as a polynomial in x;, p}, say, then degree
p./2'=6(y). If x and y are in J and xy# 0 then we claim 6(xy)= 0(x)+6(y).
To see this, if @(x)=K/2', 8(y)=12" and j>i, then [J2'=12"""/2' hence
0(x)+0(y)=K+12'"/2". We also have degree p,, = degree p, +degree p,/2' ™
so O(xy)=K+1277Y2 = 0(x)+ 0(y). Set 0(0)=0. A little computation shows
that 6(x)+6(y)=1 implies xy=0. 0 defines a function of J into the non-
negative reals with all numbers greater than one identified with zero. Next take
any ideal, I, in R. Since R is local I< J. Let x € I and 8(x) = K/2'. Let j be such
that 1/2° > K/2'. Then x; € L. To see this first write x = p(x;). Then subtracting a

https://doi.org/10.4153/CMB-1980-023-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1980-023-0

1980] STABLE RINGS 175

suitable multiple of x gives xi€ L. Then (x*)x}'=x{ "= x;, where w+K =2"",
Now w=2"7"-K>0 since 2°'>K. It follows that if I#J, then
inf{6(x), xe I}=¢>0. So if I#J for n such that ne>1 I"=0. By similar
arguments we see that if I and H are ideals, then I < H iff image I under 0 is
contained in image H under 6. Notice also, that J is the only infinitely
generated ideal in R and the rest are principal, and J has no minimal or
maximal submodules.

IV. Commutative stable rings. In this section all rings are commutative. We
start with showing all semi-primitive stable rings are regular in the sense of von
Neumann.

THEOREM 3. Let R be a ring with zero Jacobson radical. If R is stable, then R
is a regular ring.

Proof. Let xc€ R. Then there exists an integer n such Rx"=Rx""'. In
particular x" = rx™*' for some re R. Choose the smallest n so that there is an
reR for which x"=rx""". Then (1-rx)x"=0 so (1—rx)x""1)?=0 if n>0.
But, since R is semi-primitive, R has no nilpotent elements, hence n =1 and R
is regular.

CoroLLarY 3.1. If R is a stable ring and J is the Jacobson radical of R, then
R/T is regular.

Proof. It is routine to check that if R is stable so is R/J so we may apply the
above theorem.
Before proceeding we need to introduce some notation and terminology.

DerFiniTION. Let R be a ring with radical J and x € J. Set i(x) equal to the
index of nilpotence of x.

DerintTION. Let {x;};—; be a sequence in the radical of a ring R. If there is a
bound on the indices of nilpotence of the x;, and if the sequence is T-nilpotent
we say the sequence is bounded T-nilpotent. We say an ideal is bounded
T-nilpotent if each sequence for which there is a bound on the indices of
nilpotence is T-nilpotent.

THEOREM 4. A commutative ring R with radical J is stable iff R and all
homomorphic images satisfy the following (i) R/J is regular, (ii) every countable
direct sum of finitely generated ideals contained in J is nilpotent, (iii) J is bounded
T-nilpotent.

Proof. Suppose R is stable. We’ve seen that R/J is regular. Also it is easy to
see that every homomorphic image of R is also stable. Now suppose there
exists a stable ring R for which J is not bounded T-nilpotent. Take R to be a
minimal counter example in the following sense: Let {x};—, be a sequence in J
for which x;x,---x,#0 for all n; i(x;)=<N for all i and N is as small as
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possible. The idea is to show N =2 and then to show that this is impossible as
well. Clearly we can assume without loss of generality that x}¥ ' # 0 for all i, for
all but a finite number of the x; must have this property by the minimality of N.
Let H be the ideal generated by {x™ '} ,. Now take k so that H* '# H* =
H**'. Let I be the ideal generated by the sequence {x;}~;. We will show that
X%, + - x & IH* for all I, unless N=2. Suppose x,x,---x,€IH* and =

max(3, k). Then xyx, -+ x =Y n(xY7 -+ x¥ Hx; where x,# X, for j=
1,...,i_,, because H*=H' Choose [ so that the m in the above sum is
minimal. Now let h=max{l i,j=1,...1-1,i=1,... m}. Consider
0# XX, xp =, r(xN ' xN Dxx e x,
i=1
where

{i i, .. i 3e{1,2,3,..., 1%

Therefore we can write

m

Xyt X, = Zl r,-(“ (x?'”'))x,-xl Ce X
ji= i=j
Multiplying by x,x,, say, gives that x3x3x, - - - x,, = 0. But then all terms except
the first two in the sum must be zero. But multiplying by x,x; says the second
term is zero and multiplying by x,x; gives the first term zero.
In case N =2 we claim the ideal I is not stable. To see this we claim x, &€ I,
xix, €12, ... . If in fact x,x, -+ x, € I**" then, as before,

m
x1x2'~-xa=z X X, * " X

But each term on the right must be a multiple of some x; with j>a. Let
ji>J2s - - - » jw be those subscripts appearing on the right which are greater than
a. Then x; - - - x,x;, x;, - - - x;, =0 a contradiction so I*# [**" for all a. Since R
is stable, evidently N#2 either, and so the sequence must have been T-
nilpotent. This establishes (iii).

To establish (ii) if @2, A, is a countable direct sum with each A, finitely
generated and not nilpotent then we can find a sequence of integers n,, n, - - -
such that there exists x; € A, with i(x;)>i(x;) for i >j. Then let [ = @Y, Rx,.
I is not stable.

For the converse suppose R has the properties (i)—(iii) and is not stable. Let
L be an ideal such that L2 L?>2L*>- - -. Let J be the Jacobson radical. Then
take H=JNL. We claim H2 H’2H>2 - - . Suppose k>0 and x, € L* with
x, € L' If x, € J then there exists a, € R such that x,a,x, — x, € J, since R/J is
von Neumann regular. Also, x.a.x —x ¢ L for if it did then x, e L**!
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which it doesn’t. Now x, =Y/ rl; - - - [ where for i=1,2,...mo=m, L €L,
I, L? for all i; and if i >m, at least one [, € L. We have that m,=1. Consider
each term separately. For each i=<m, there exists a;,a;,...,a;, such that
la,l,— I, € H. For each i=m,, we have

e

k K
].-[ (liiai,-li,.'_lii)GLkH iff n li; e Lk,
i=1 et

Since x, € L*** it follows that [T{_, [ a,l, — 1, € H<™" for at least one i <m,. In
this manner we can construct a sequence y, € H* and y, € H**' and hence
H* 2 H**! for all k. Now suppose H—H? is not of bounded index. Choose
h,e H—H? with i(h;)=n,>3. Take h,e H-—H? with i(h,)=n,>n3+n,.
Then h; and h5*' do not belong to the ideal generated by h,h,. Now choose
hse H—H? so that i(h;)=n;>(n;+n,)?+(n,+n,). Then h%*' does not be-
long to the ideal generated by (h,h,, h,hs, h hs). In general choose h, so that
i(h,) = h, is large enough so that hj*—*! does not belong to the ideal generated
by A, ={mh}{;_.. This can be done since each A, is finite and hence
generates a nilpotent ideal. Let

Let B be the ideal generated by B, and take R/B. Letting h; be the image of h;
in R/B gives the sequence {h;} where @Y (R/B)h; is direct and there is no
bound on the index of nilpotence violating (ii). Consequently we can assume
the set H—H? is of bounded index.

If H— H? is of bounded index and H*# 0 for all k using (iii) there exists in
H—H? subsets Ny, N,, ... such that |N;|=n, NN, =, n,<n; if i<j and
[l.=: b #0 where N;={h.y, hi»,..., h.,}. Let K be the ideal generated by
{hijhg: i#Lj=1,...,n,g=1,...,n,i=1,2,...,1=1,2,...}. Then in the
ring R/K the ideals N; generated by the images of the N;’s are an independent
set but (N;)™ # 0 which violates (ii) in R/K. Therefore H must be stable and the
proof of the theorem is complete.

ProposITION 5. Let R be a stable ring and {I.}..A be a set of indempotent
ideals contained in the radical of R. Then the set is independent only if A is
finite.

Proof. We proceed in the manner as we did to prove (i) for if H is
contained in J, with H = H?, and n is any integer we will show that H contains
an element x such that i(x)> n. To see this if H is of bounded index it must be
T-nilpotent. But if {m;};,.. generate H then m,=) r;(m;m;) so for some jec
there exists an i so that m;m;#0. But for this j, since m; is in H>=H there
exists h and [ so that mym,m;# 0, and again since m, € H*> we can find g and f
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so that m,mgm,m;# 0. Since m, € H> we can continue and in this manner we
construct a non T-nilpotent sequence, a contradiction. Hence H is not of
bounded index. The rest follows as did (ii).

To show the independence of (ii) and (iii) in Theorem 4 let k be a field of
characteristic two and take indeterminates {x,, x,, . ..}. Form k[x;, x,,...]=
R. Let I be the ideal generated by the set {x2}7,. Let R = R/I. Then R has
property (ii) but not (iii). To construct a ring satisfying (iii) but not (ii) simply
take H to be the ideal generated by {x;x;, xi, i=1,...,j=1,2,...,j#i}. Then
R/H is a ring with the desired property.

ProrosiTION 6. If R is stable and A a set of bounded index, then the ideal
generated by A is nilpotent.

Proof. If H is the ideal generated by A and H is not nilpotent let
H*=H""'#0 for some k. From this it is easy to see we can assume H = H>.
Now proceed as in the proof of Proposition 5.

ProrosiTiON 7. Let R be a stable ring. If ®Y ... H, is a direct sum of ideals
in J, then there is a finite subset A’ of such that Y o a-a- H, is nilpotent.

Proof. If for infinitely many o, HX#0 for all k, we would contradict
proposition 5 so let A’ be the finite subset of A such that a € A’ iff HX # 0 for
all K. If for each integer n >0, there exists an a« € A — A’ such that H. # 0 we

can easily construct an ideal L< ), . H, such that L2 L*2L>- - - so there
exist a integer N such that HY=0 for all a€ A—A’' which proves the
proposition.

RemArk. This says that if R is stable and of infinite Goldie dimension it
must be ‘“almost everywhere’ of bounded index.

ProposITION 8. Let R be a stable ring with Jacobson radical J. If J* ' #J" =
J"** Y then, foreach module M, M>JM>J*M>-- - J"M>M,>M, --->M, =0
where M,/M, , | = socle M/M, . ; unless M = 0.

Proof. This is merely a restatement of Nakayama’s lemma. For stable rings
“one can apply Nakayama’s lemma n-times from the top or bottom”, with the
middle term having no maximal or minimal submodules.
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