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QUASI-SIMILARITY ORBIT OF A SUBCLASS OF
COMPACT OPERATORS ON A HILBERT SPACE

N.N. CHOURASIA

In this note we study certain properties of quasi-similarity

orbit of a subclass of compact operators defined on a separable

Hilbert space. This class and i t s quasi-similarity orbit were

introduced and studied by Fialkow in Pacific J. Math. 70 (1977),

151-161.

Preliminaries and notations

We start with some notations and definitions. B(H) will denote the

Banach algebra of all bounded linear operators on a Hilbert space H which

is taken to be separable. For T € B{H) , o(T) is its spectrum, a (T)

its point spectrum, r(T) its spectral radius, N(T) its null space,

R(T) its range and T* is its adjoint. For a complex number X , X* is

its complex conjugate. The closed linear span of a family {M.} . of

00

subspaces of H will be denoted by V M. .

i=l V

W-). of subspaces of H is said to be a basic

Z- I* —X.

sequence if M. and V M, are complementary for each i .
% kU K

A subspace M of H is called hyperinvariant under T if it is

invariant under any operator which commutes with T .
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An invariant subspace M for T is called a spectral maximal

subspace for T if the following condition is satisfied:

If N is another subspace invariant under T such that

a(T/N) c o{T/M) , then N c M . Note that a spectral maximal subspace for

T is hyperinvariant for 3" ([2], Proposition 3.2, p. 18) .

For the properties of spectral and scalar type operators we refer to

[4]. We note here that T € B(H) is spectral if and only if T = S + Q

where S is a scalar type operator and Q is a quasi-nilpotent operator

which commutes with S ([4], Theorem 5, p. 1939). Also, any scalar type

operator on a Hilbert space is of the form BNB where N is a normal

operator ([4], Theorem k, p. 19^7). Thus, any spectral operator on a

Hilbert space is similar to an operator of the form normal plus a commuting

quasi-nilpotent.

For the ideas of single valued extension property of operators,

decomposable operators, quasi-nilpotent equivalence of operators and other

related topics we refer to [2]. We note that compact and spectral

operators are decomposable operators ([2], p. 33).

For an operator T € B(H) with single valued extension property,

consider the subset ?„,(#) of elements X of complex plane such that

there exists an analytic function A -*• x(X) defined on a neighbourhood of

X with values in H , which satisfies (XI-T)x(X) = x for all X in the

neighbourhood.

Take OAx) to be the complement of Cm(a;) in "the complex plane and

define

Xy(6) = {x iH | aJx) c 6}

for any 6 in complex plane.

For the properties of X_(6) and oAx) we again refer to [2].

If X is an isolated point of o(T) , then there is a projection (not

necessarily self adjoint) associated with {X} ([2], p. 26). We denote

this projection by P7,({X}) . If H and ff are two Hilbert spaces,

then A : H •*• H is called quasi-invertible if i t is one to one and has
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dense range.

An operator T € B [li ) i s cal led quasi-similar to T € B \E ) i f

there exist two quasi- inver t ible operators A : H -»• H , B : ff_ -»• H.

such tha t T£ = AT-L and T̂ B = BT2 .

If K is the ideal of compact operators on H then B(H)/K i s

called the Calkin algebra and for T € B(H) , T denotes the canonical

image of T in B(H)/K . Define

a, (T) = n{a(y+X) | K is compact and commutes with T}

and

a7(D = a, (T) u {X | A is a limit point of o(T)} .

Note that a (T) cti^T) c^aAT) and a (T) = a, (21) = oAT) = {0} for a

compact operator.

We reproduce below the definition of the subclass of compact operators

defined by Fialkow.

Let K be a compact operator in B(H) and X be a nonzero scalar in

a(K) . Define

R(K, X) = {x Z H | {K-\)nx = 0 for some n > l} .

Let C be the set of all compact operators K in B(H) which satisfy the

following properties:

oo

( i ) V R. = B (where { X . } . _ i s t h e sequence of d i s t i n c t

nonzero members of a{K) and i?V = R{K, X.)) ;

(ii) n I v A = {o} .

A compact normal injective operator is in C and is C closed under

similarity [5].

The class of operators quasi-similar to operators in C is called
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quasi-similarity orbit of C . We shall denote i t by C
qs

In [5] the following characterization of class C appears.
qs

THEOREM A ( [ 5 ] , Theorem 5.1). An operator T € B(H) is quasi-

similar to an operator in C if and only if T satisfies the following
properties:

(i) there exists a basic sequence {M . } . of finite

dimensional hyperinvariant subspaces of T ;

(ii) o{T/M.) = {X.} , X. # 0 and X. + 0 ;
I* Is If I'

an) n v M, = {0} .
00 , ..

an) n v MA =
i=i ^i K>

We first give an alternative proof of the necessary part of Theorem A.

Then we prove that the family {M.} obtained in the above theorem is in

fact unique. Also we give a simple characterization of spectral operators

in C . W e also study as consequences some other properties of operators
qs

in the orbit.

Main results

We first observe that for a compact operator K , f$ = N\[K-X.)

for some n . Also Fp. = R[PJ\.}) ([3], p. 579) which implies that

R11- = X r ( { M ) (CZ3> Proposition 3.10, p. 26 and Theorem 1.5, p. 3l) .

We start with a lemma which will be useful in our work.

LEMMA 1. If T has single valued extension property and TA = AT

with A injective, then T. has single valued extension property and

AK (6) c X (6) for any subset 6 of the complex plane.
1

The proof of Lemma 1 is routine.

THEOREM 1. If T 6 C g , then there exists a family {w.}™ of

finite dimensional spectral maximal subspaces of T which form a basic
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sequence such, that

and

{0}n f v MA =

Proof. Suppose T is quasi-similar to K (. C so that

•TA = AK

and

BT = KB

for some quasi - inver t ib le operators A and B .

Observe that a (T) = a (K) and a (K) i s countable, so that T has

single valued extension property ( [ 2 ] , p. 22). Take X. + 0 in a(X) .

Then, by Lemma 1,

and

Since ^({A.}) = ̂ (^(l^--})) 5 which is finite dimensional and A and B

are injective, we note that X ({X.}) is also finite dimensional and we
'J. 1/

actually have equality in the above two inclusions. Thus we have the

family

0 n . « op(T)}

of finite dimensional subspaces.

By applying Proposition 3.8 on p. 23 of [2], it can be seen that this

is a family of spectral maximal subspaces of T (hence hyperinvariant

subspaces of T ). Further, this proposition states that

As -^({^v}) ̂  ^°^ (being the range of a nonzero projection),
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}) * <0} by ( 1 ) . Hence

To complete the proof, i t remains to be shown that the family

{XT{{^}) I 0 * \ i €ap(T)}

is basic and

n [ v x ({A })) = {0} .

00

U s i n g t h e f a c t s X { A . } = AX {{X.}} , V i ? ? = H a n d A h a s d e n s e r a n g e ,
X % A % . _ %•

u—X

i t can be easily checked that

V I M ) + V X ({A }) = H
1 % kti T K

OO

(note that this also gives us V X ({X.}) = H ). If
• _ J. t/
^=l

x i X ({A }) n ( V X ({A })) ,
1 % k+i J K

then

Bx € B X ^ } ) =Xk({^})

and

Bx € B( V X ({A })) c V BX ({X })
kU f K kU f K

= V X ({A }) .
kU K

Define

6 = {0} u{ U {Xv}) .

It is easily seen that 6 is closed and X^({A,}) C X^6) if k t i

Thus

kti

so that
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a ABx) c 6 n ({X.}) = 0

which implies that x = 0 , B being injective. Thus the family

{X ({X.}) | 0 # X. € a (T)} is a basic family. Finally suppose

x ' A [Zi K^h^ •
Then

Bx € n ( V BK ({X }))

= n ( v x ({x }))

But *K{{\}) = R* and

n v i?5 = {o} .

Hence x = 0 . This completes the proof.

COROLLARY 1. If T is a compact operator In C then T Is in

C .

Proof. Suppose T is quasi-similar to K in C . As in the proof

of the theorem above,

V X ({A }) = H
i=X

and

n ( v x ({x })) = o ,

i=l k>i K

where {^.}. is the set of nonzero points of a {T) . This set is the

same as the set of nonzero points of o(T) , T being compact. Also

Xy({Xfe}} = £ , T being compact. This implies T is in C .

COROLLARY 2. Suppose T is in C , T has single valued
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extension property and Xy({X}) = Xf ({X}) for all scalars X . Then T

is in C
qs

Proof. As T is in C , the family {X ({X.}) | 0 # X. i a (T)}

satisfies the conditions of Theorem 5-3 of [5] (by Theorem l). Now

consider the family {Xy ({X^}) | 0 f X^ € a {T)\ . This is a family of

finite dimensional subspaces. As T has single valued extension

property, (by [2], Proposition 3.8, p. 23) all these subspaces are spectral

maximal, hence hyperinvariant, for T and

(as in Theorem 1 ) . As X̂ , ({X.}1 = X ^ X . } ] for a l l X. , a l l the other

requirements of Theorem A are sa t i s f i ed . Thus T is in C

COROLLARY 3. Suppose T is in C and T is quasi-nilpotent

qs
equivalent to T . Then T is also in C

Proof. We have only to observe that 3" has single valued extension

property as T has and

X ({X}) = X ({X})
1

for all scalars X ([2], Theorem 2.3, p. lh and Theorem 2.h, p. 16).

Let us note that if T is in C , then there exists a basic
qs

sequence {l4.} . of hyperinvariant finite dimensional subspaces such that

o[T/M.) = {X.} . Hence T/M. = X .1 + N. where N. is a nilpotent

operator. Hence T/M. is spectral. By applying Theorem 5-7 of [5], we

get that T is quasi-similar to a spectral operator. Without any loss of

generality we can take this spectral operator to be of the form normal plus

a commuting quasi-nilpotent. This motivates the study of spectral
operators in C . First we start with a general result.qs

THEOREM 2. Suppose T is a spectral operator quasi-similar to a
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compact operator K . Then the scalar part S of T is compact.

Proof. As both T and K are decomposable, a(T) = a(K) ( [ 2 ] ,

Theorem h.k, p. 55). Hence oA_T) = oAK) ( [ / ] , Corollary 2) . But

oAK) = {0} , K being compact, which implies that a AT) = {0} . Let

T = S + Q be canonical decomposition of T . Then taking the canonical

image in the Calkin algebra, T = S + Q . As S commutes with Q ,

o{T) = 0{S) . But o(T) = 0 (T) = {0} . Hence a(S) = {0} . Let

—1 ~
5 = BNB where N i s normal. Then IF is a normal element of Calkin

algebra with {o} as spectrum. Since r(N) = \N\ ( [ 6 ] , Theorem 11.28

(b) ) , N = 0 . Thus N i s compact, which implies that S i s a l s o '

compact.

We note tha t i f S i s the scalar part of a spectral operator T ,

then S and T are quasi-nilpotent equivalent to each other ( [ 2 ] ,

Corollary 2.1*, p. k3) • Hence we obtain the following

THEOREM 3. A spectral operator T is in C if and only if its
qs

scalar part S is in C .

Proof. Sufficiency is obvious by Corollary 3. To prove necessity,

note that S is in C but 5 is compact by Theorem 2. Hence by using
qs

Corollary 1, we get that S is in C .

THEOREM 4. Every operator in C is injective.
qs

Proof. Suppose T € C . Let T be the spectral operator which is
qs 1

quasi-similar to T . We take T = N+ Q where N is normal. By

Theorem 3, N is in C . Now Miff,) \lt(N.-\.) for all nonzero \.

in 0 (A? ) . But as N is normal operator

' M = 4 •
00 CO

Hence N[N ) I V FP. . As N^ € C , V Fp. = fl . Thus i t follows that
1 i=l % 1 £=l 1

tffwj = {O} . Hence ^ is injective. Now T is also injective (by

[4], Corollary k, p. 1956). Hence quasi-similarity between T and T
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implies that T is also one to one.

Now we are in a position to give another simple characterization of

spectral operators in C , the proof of which we omit.
qs

COROLLARY 4. If T is a spectral operator, then T is in C if

qs

and only if its scalar part S is compact, injective with countably

infinite spectrum.

Next we prove the uniqueness of the family \M.\ . , of hyper-

invariant subspaces, obtained in Theorem A.

THEOREM 5. Suppose 1 € C . Then there exists one and only one

family {M.}. of finite dimensional hyperinvariant subspaces for T

which form a basic sequence, such that

oiT/Mj = {Xj , \* 0 , \ - 0

and

CO

n ( v MA = {o} .
i=l k±i

Proof. Suppose T € C . B y Theorem 1, one such- family, with the
qs

properties stated in the theorem is

{xr({e}) | o * e g ap(T)} .

.00

Let {Mi . be any other family with these properties. Then we will show

that this family coincides with the family

{xr({e}) | o * e € a AT)} .

If x € M. , then
1s

jx) a a (x)so[T/M.) = {A.} .
^

Thus ^ c XydA^.}) . Suppose K i s an operator in C which i s quasi-similar

to T and l e t KA = AT for some quasi- inver t ible operator A . Then, by

Lemma 1 9
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so that

As M. * {0} and A i s one t o one , X ({X.}) ± {o} . Hence X. €
Is IX Is Is

Being nonzero, X. i s in a (K) = a (T) . Thus we have M. c X.f{A.})
Is IP P is -I is

for some 0 + X. i a {T) . Also since X ({X.}) is finite dimensional, so
% P A. 7,

is Xmli^-j) As T is in C , it is quasi-similar to a spectral
1 % QS

operator T = N + Q where N is normal, compact and injective.

Suppose T B = BT and CT = TC , for some quasi-invertible operators B

and C . Then, as "before,

BXr({X.}j = X ({X^}) ,

cxTi({x.}) = xT({x.}) .

If M. is properly contained in X ({X.}) , then BM. is properly
U J. Is Is

contained in £X_({\.}) = X ({\.}] . As 71/ i s quasi-nilpotent

equivalent to T , X ({X.}) = X.. ({X.}) ( [ 2 ] , Theorem 2 . 1 , p . ho). But

as tf i s normal

Thus BM. c N[N -X.} (containment i s proper) . Therefore there exis ts a

nonzero x € tfftf-X.) such that x I BM. . Similarly BM. c N(N -X .)

( j = 1, 2, 3 , . . . ) . As x € N^-Xj) and N^-X^) J_ i l /^-X .) for

j ?s i (^ being normal) , x \_BM. ( j = 1, 2, . . . ) . Thus
-*- 3

CO

x J_ V BM. .

f./ .__ being a basic sequence,
3 J—1
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V M. = H .
0=1 °

This gives us that x = 0 . This contradiction proves that

Mi = K T ^ h ^ ' ° * h
 e a

P
(T) • Thus

To complete the proof, we must show that the above two families are in fact

the same. Again we show this by contradiction.

Suppose that X ({6}) , for some 0 + 6 € a (T) , is not a member of

the family {M.} . . Since X ({6}) i- {0} , we can choose a nonzero x

in Xy({e}) . As {XT({Q}) \ 0 # 6 € O (T)} forms a basic sequence,

{6i}) | 0 + Bi € ap(D and 9̂  # 6} .

But the family ^W.|. i s contained in the family

{Xy({e^}) | 0 * Qi € ap(T) and 9^ / 6}

oo

and V M. = H , \M-l-_-, being a "basic sequence. Thus we ar r ive at the
• -, 1r If I?—-L

^=l

contradiction that x | H . This completes the proof.
We close this paper by making one more observation on the operators of

class C .
qs

THEOREM 6. If K is in C , then K* is also in C .

Proof. Suppose KB = BT and AK = T A for some quasi-invertible

operators A and B where 21. is a spectral operator whose scalar part

N is normal compact and injective (such T exists as K € C ). If

O # L E o (K*) then ffT = •^({^J) and K*A* = A*T£ , B*X* = T*B*

imply that i?7 = A**^ ({A^}) (note that 4, S are also quasi-

invertible). Now
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= N[N-\*.)

• \

Thus i? f = A*X ({X|}) .
1 i l l

As {X™ ({X*}) | 0 # X. € a (K*)} forms a basic sequence, we can show
1 l ^ P

that

V R1) = H .

I f a: € V i?J ( i = 1 , 2 , 3 , . . . ) , t h e n

OO 00

B*x 6 V S"/?5 = V B*i4*X2,),({Xfe})
/c=i k=i 1

OO

~ k=i Tl

as BM* commutes with T* and X-^fjX, }] i s hyper invar iant subspace for
1 l± K

1 "

Now

So

S*a: € fi I V X {{\*})) .

This last intersection is {0} as in Theorem 1. Hence x = 0 . Therefore

K* (. C .
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COROLLARY 5. It T (. C , then T* also belongs to C
qs ^ qs

Proof. Since T is quasi-similar to K € C , T* is quasi-similar

to K* but by Theorem 6, K* € C . This completes the proof.
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