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QUASI-SIMILARITY ORBIT OF A SUBCLASS OF
COMPACT OPERATORS ON A HILBERT SPACE

N.N. CHOuRASIA

In this note we study certain properties of quasi-similarity
orbit of a subclass of compact operators defined on a separable
Hilbert space. This class and its quasi-similarity orbit were
introduced and studied by Fialkow in Pacific J. Math. 70 (1977),
151-161.

Preliminaries and notations

We start with some notations and definitions. B(H) will denote the
Banach algebra of all bounded linear operators on a Hilbert space H which

is taken to be separable. For T € B(H) , o(T) is its spectrum, Op(T)

its point spectrum, r(T) its spectral radius, M7T) its mll space,
R(T) its range and T* is its adjoint. For a complex number A , X* is
its complex conjugate. The closed linear span of a family {Mi}z—l of

o

subspaces of H will be denoted by V Mi
=1

oo
A sequence {M-} of subspaces of H 1is said to be a basic

1'7=1
sequence if Mi and |V Mk are complementary for each <
k#i
A subspace M of H 1is called hyperinvariant under T if it is

invariant under any operator which commutes with 7 .
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An invariant subspace M for T 1is called a spectral maximal

subspace for T if the following condition is satisfied:

If N is another subspace invariant under T such that
o(T/N) < o(T/M) , then N S M . Note that a spectral maximal subspace for
T is hyperinvariant for T ([2], Proposition 3.2, p. 18).

For the properties of spectral and scalar type operators we refer to
[4]. We note here that 7T € B(H) is spectral if and only if T =5 + @
where S 1is a scalar type operator and ¢ 1is a quasi-nilpotent operator

which commutes with § ([4], Theorem 5, p. 1939). Also, any scalar type

operator on a Hilbert space is of the form BI\IB—l where N 1is a normal
operator ([4], Theorem 4, p. 1947). Thus, any spectral operator on a
Hilbert space is similar to an operator of the form normal plus a commuting

guasi-nilpotent.

For the ideas of single valued extension property of operators,
decomposable operators, quasi-nilpotent equivalence of operators and other
related topics we refer to [2]. We note that compact and spectral

operators are decomposable operators ([2], p. 33).

For an operator T € B(H) with single valued extension property,

consider the subset ET(x) of elements A, of complex plane such that

0
there exists an analytic function X » x(X) defined on a neighbourhood of

>‘o with values in H , which satisfies (AI-T)x{A) = x for all X in the

neighbourhood.
Take OT(x) to be the complement of CT(x) in the complex plane and
define

Xp(8) = [x €8 | () c &}

for any ¢ in complex plane.

For the properties of XT(G) and OT(x) we again refer to [?].

If A is an isolated point of o(7T) , then there is a projection (not
necessarily self adjoint) associated with {A} ([2], p. 26). We denote

this projection by P ({A}) . 1If H and H, are two Hilbert spaces,

then A4 : H1 +> H2 is called quasi-invertible if it is one to one and has
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dense range.

An operator 11 € B(ﬁl] is called quasi-similar to T2 € B(Hz) if

there exist two quasi-invertible operators A4 : Hl - H2 s B : H2 - Hl

such that T2A = AT, and TlB = BT

1 2"
If K is the ideal of compact operators on H then B(H)/K is
called the Calkin algebra and for T € B(H) , T denotes the canonical

image of T in B(H)/K . Define

o (T) = o(T) ,

3

N{o(T+K) | K is compact and commutes with T}

ch(T)
and

OZ(T) = oh(T) u{X | X is a 1limit point of o(T)}
Note that 03(T) c0,(r) < 0,(T) and 03(T) =0, (1) = 0,(7) = {0} for a
compact operator.

We reproduce below the definition of the subclass of compact operators
defined by Fialkow.

Let K Dbe a compact operator in B(H) and A be a nonzero scalar in
O(K) . Define
R(K, \) ={z € B | (k-2)"¢ = 0 for some n = 1}

Let C %be the set of all compact operators KX in B(H) which satisfy the

following properties:

(i) v Rﬁ = H (where {A.}m

=1 is the sequence of distinct

nonzero members of o(XK) and Rf = R(K, Ai)];
(ii) N Iv R]f) = {0}
i=1 ‘k=i

A compact normal injective operator is in C and is C closed under

similarity [5].

The class of operators quasi-similar to operators in C is called
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quasi-similarity orbit of C . We shall denote it by Cqs

In [ 5] the following characterization of class Cqs appears.

THEOREM A ([5], Theorem 5.1). An operator T € B(H) is quasi-
similar to an operator in C <if and only 7f T satisfies the following
properties:

}co

izl of finite

(i) there exists a basic sequence {Mi
dimensional hyperinvariant subspaces of T ;

(i) o(z/m;) = {x}, A, #0 and A >0

(i) N [V Mk) = {0} .
1=1 “k=1

We first give an alternative proof of the necessary part of Theorem A.

Then we prove that the family {M&} obtained in the above theorem is in

fact unique. Also we give a simple characterization of spectral operators

in Cqs . We also study as consequences some other properties of operators

in the orbit.

Main results
. n
We first observe that for a compact operator K , Rf = NI:(K—)\i)]
for some 7 . Also R‘;{ = R(PK{}\i}] ({37, p. 579) which implies that

R‘;{ = Xx({)\i}) ([2], Proposition 3.10, p. 26 and Theorem 1.5, p. 31).

We start with a lemma which will be useful in our work.
LEMMA 1. If T has single valued extension property and TA = ATl
with A injective, then T, has single valued extension property and

axXp (8) XT(G) for any subset & of the complex plane.
1

The proof of Lemma 1 is routine.
THEOREM 1. If T ¢ C o » then there exists a family {Mi}: of

finite dimensional spectral maximal subspaces of T which form a basie
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sequence such that

i
and
©
n [V.Mk] = {o} .
=1 ‘kzi
Proof. Suppose T 1is quasi-similar to X € C so that
TA = AK
and
BT = KB

for some quasi-invertible operators A and B .

Observe that Up(T) = O?(K) and cp(K) is countable, so that T has
single valued extension property ([2], p. 22). Take Ai # 0 in ofK)
Then, by Lemma 1,

aX (1D < x (12D

(1) and

Since XK({Xi}) = R(PK({Xi})) , which is finite dimensional and A and B
are injective, we note that XT({Xi}) is also finite dimensional and we

actually have equality in the above two inclusions. Thus we have the

family
X (A1) | o# A; € op(T)}
of finite dimensional subspaces.

By applying Proposition 3.8 on p. 23 of [2], it can be seen that this
is a family of spectral maximal subspaces of T (hence hyperinvariant

subspaces of T ). Further, this proposition states that
o(rix (D) o n (A} = (A} .

As XK({Ai}) # {0} (being the range of a nonzero projection),
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XT({Ai}) # {0} vy (1). Hence

oz (1) = 11,1

1

To complete the proof, it remains to be shown that the family
{X,({ 1) lo# A, € op(T)}

is basic and

(o]

no(v X (Ia1) = fo} .
i=1 k=1

Using the facts XT{X.} = ax ({r».}) , V RK =H and A has dense range,
T K i=1

it can be easily checked that
({A})+VX({A =H

fe -]

{(note that this also gives us V X ({Az}) =H ]. Ir
i=1
= xp0) 0 (v xy(0))
then
B ¢ %, (1) = %, (02,)
and
Bz € B(kli.XT({Ak})) s v BX, ({7, 1)
T K -
Define

= {0} v
o U fy]

It is easily seen that &8 1is closed and XK({Ak}) c X L8) if k# .

Thus
kxi XK({Ak}) < XuL6)

so that
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o fBx) < & n ({Xi}) =g

9l

which implies that x = 0 , B being injective. Thus the family

{XT({Ai}) | 0# A; € Op(T)} is a basic family. Finally suppose

x € igl (k;i XT[{AR}))
Then
Bz ¢ 1 (v oxg(y])
= (k;i X )

K
But XK({Ak}) = Rk and

n [ v Riﬂ = {0} .
1=l ‘k>7

Hence x = 0 . This completes the proof.

COROLLARY 1. If T <s a compact operator in Cqs

Proof. Suppose T is quasi-similar to X in C .

of the theorem above,

izl XT({Ai}) =H
and
D (k;i X1 H) = o,

(o]

where {Ai}i=l is the set of nonzero points of OP(T) .

then T 1is in

As in the proof

This set is the

same as the set of nonzero points of o(T) , T being compact. Also

XT({Ak}] = Rg , T bveing compact. This implies T is in C

COROLLARY 2. Suppose T is in C

gs 1
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extension property and X ({A}) =X, ({A}) for all scalars X . Then T
1

s in C__ .

qs

Proof. As T is in Cqs , the family {X,({r,}) [o0#2, ¢ cp(T)}

satisfies the conditions of Theorem 5.3 of [5] (by Theorem 1). Now

consider the family {XT ({r.}) | 0# A, €0 (7)} . This is a family of
IR i P

finite dimensional subspaces. As Tl has single valued extension

property, (vy [2], Proposition 3.8, p. 23) all these subspaces are spectral

maximal, hence hyperinvariant, for T and

O(Tl/XTl({Xi})) = {Xi}
(as in Theorem 1). As X, ({Xi}) = XT({Ai}] for all A, , all the other
1

requirements of Theorem A are satisfied. Thus Tl is in Cqs

COROLLARY 3. Suppose T 1is in Cqs and T is quasi-nilpotent

equivalent to T . Then T <is also in Cqs

Proof. We have only to observe that Tl has single valued extension

property as I has and

XT({A}) = le({x})

for all scalars A ([2], Theorem 2.3, p. 14 and Theorem 2.4, p. 16).

Let us note that if T 1is in Cqs , then there exists a basic

sequence {Mi}?_ of hyperinvariant finite dimensional subspaces such that

1=1
O(T/Mi) = {Ai} . Hence T/Mi = AiI + N, where N, is a nilpotent
operator. Hence T/Mi is spectral. By applying Theorem 5.7 of [5], we
get that T is quasi-similar to a spectral operator. Without any loss of
generality we can take this spectral operator to be of the form normal plus
a commuting quasi-nilpotent. This motivates the study of spectral

operators in Cqs . First we start with a general result.

THEOREM 2. Suppose T is a spectral operator quasi-similar to a
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compact operator K . Then the scalar part S of T 1is compact.

Proof. As both T and K are decomposable, of(T) = o(k) ([2],
Theorem 4.4, p. 55). Hence OZ(T) = OZ(K) (C1], Corollary 2). But

OZ(K) = {0} , K being compact, which implies that 03(T) = {0} . Let

T =S5+ @ be canonical decomposition of T . Then taking the canonical
image in the Calkin algebra, T =5 +§ . As S commtes with & ,
o(T) = o(S) . But o(?T) = o,(7) = {0} . Hence o(3) = {0} . Let

S = BNB_l where N is normal. Then v is a normal element of Calkin
algebra with {0} as spectrum. Since r(¥) = |ﬁ] ([6], Theorem 11.28
(b)), ¥ =0 . Thus N is compact, which implies that S is also’

compact.

We note that if S 1is the scalar part of a spectral operator T ,
then S and 7T are quasi-nilpotent equivalent to each other ([2],

Corollary 2.4, p. 43). Hence we obtain the following
THEOREM 3. 4 spectral operator T <is in cqs if and only if its
scalar part S s in C .

Proof. Sufficiency is obvious by Corollary 3. To prove necessity,

note that S 1is in Cqs but § is compact by Theorem 2. Hence by using
Corollary 1, we get that § is in C .

THEOREM 4. Every operator in Cqs is injective.

Proof. Suppose T € cqs . Let Tl be the spectral operator which is

quasi-gimilar to T . We take Tl = Ni + ¢ where Nl is normal. By
Theorem 3, N, is in C . Now N(Nl) l_N(Nl-Ai) for all nonzero A
in O(Nl) . But as Nl is normal operator

N -x) = Rﬁ .

o -]

Hence N(Nl] 1l v Rg . As N € ¢, v BY =5 . Thus it follows that
(=1 i=1 *

N(Nl) = {0} . Hence Nl is injective. Now T1 is also injective (by

[4], Coroliary 4, p. 1956). Hence quasi-similarity between T and Tl
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implies that T 1is also one to one.

Now we are in a position to give another simple characterization of

spectral operators in Cqs , the proof of which we omit.

COROLLARY 4. If T <s a spectral operator, then T is in C if

gs
and only if its scalar part S is compact, injective with countably
infinite spectrum.

Next we prove the uniqueness of the family {Mi}:ﬂ_ of hyper-
invariant subspaces, obtained in Theorem A.

THEOREM 5. Suppose T € Cqs . Then there exists one and only one

Family {Mi}:zl of finite dimensional hyperimvariant subspaces for T
which form a basic sequence, such that

o(z/my) = A}, a 20, A >0

and

©0
n (v m) ={o}.
=1 k=t
Proof. Suppose T € Cqs . By Theorem 1, one such family, with the

properties stated in the theorem is

{Xxp({6}) | o# e EGp(T)} .

Let {M}),

i=1 be any other family with these properties. Then we will show

that this family coincides with the family

{Xxp({e}) | o# 6 ¢ op(T)} .

If x € Mi , then

op(z) © cT/Mi(x) co(r/m) = {x}

Thus Mig XT({)‘i}) - Suppose X is an operator in C which is quasi-similar

to T and let K4 = AT for some quasi-invertible operator A4 . Then, by

Lemma 1,
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AXT[{A,;}) = XK{ )‘i}
so that

;€ % (00
As M, # {0} and 4 is one to one, XK({Ai}) # {0} . Hence A € o(X)
Being nonzero, Ai is in Op(K) = Op(T) . Thus we have Mi E_XT({Ai})
for some O # Ai € Op(T) . Also since XK[{Xi}) is finite dimensional, so
is XT({li}) . As T is in Cqs » it is quasi-similar to a spectral

operator 7. = Nl + Ql wvhere N is normal, compact and injective.

1 1
Suppose TlB = BT and CTl = TC , for some quasi-invertible operators B

and C . Then, as before,

ZA(R)

n
>
|
~~
—_—
>
I
—r—t
.
w

l
>
~3
—
——
>
o
——
~—

ox, (1)
1
Ir Mi is properly contained in XT({Ai}) , then BMi is properly

contained in BXT({Ai}) = XTl({Ai}) - As WV, is quasi-nilpotent

equivalent to 7, , X, ({A;}) =X, ({x,;}) ([2], Theorem 2.1, p. 40). But
1 1

as Nl is normal

le({xi}] = N(Nl—Xi]

Thus BMi E_N[Nl—ki) (containment is proper). Therefore there exists a
nonzero x € N(Nl-li) such that « l_BMi . Similarly BMB g_N(Nl—Aj)
(=1,2,3, ...) . As =z € zv(zvl-xi) and N(Nl_}‘i) J_Iv(zvl-xj) for

J# 1 (A& being normal), zx l_qu (4 =1, 2, ...) . Thus

o]
x| v BM, .
g=L 7

o
{Mb}j=l being a basic sequence,
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(o]

VvV M. =H .

g=1 ¢
This gives us that a = 0 . This contradiction proves that
M, = XT({xi}) , 0# ) € op(T) . Thus

(o]

{Mi}i=l c {XT({e}) | 0# 06 ¢ op(T)}
To complete the proof, we must show that the above two families are in fact
the same. Again we show this by contradiction.
Suppose that XT({B}) , for some O # 6 ¢ cp(T) , is not a member of
the family {Mi}:=l . Since XT({G}) # {0} , we can choose a nonzero =z

in XT({G}) . As {XT({B}) | o#£ 0 ¢ op(T)} forms a basic sequence,
z ¢ VX ({e;}) | oze; ¢ op(T) and 0, # 8} .
But the family {Mi}:=l is contained in the family

{xT({ei}) lo#6, ¢ op(T) and 6 # 6}

(o]

[es]
and v Mi =H , {Mi}i=l being a basic sequence. Thus we arrive at the
=1
contradiction that = ¢ H . This completes the proof.

We close this paper by making one more observation on the operators of

class C .
qs

THEOREM 6., If Kk is in C , then K* g also in C .
Proof. Suppose KB = BTl and 4K = ZiA for some quasi-invertible
operators A and B where T1 is a spectral operator whose scalar part

Nl is normal compact and injective (such T

1 exists as K € C ). If

e

0 # A; €0 (K*) then Ry = Xu(1;}) ana k%t = asms | pexs = 73t
. RK* *

imply that = A XT{({Ai}) (note that A, B are also quasi-

invertible). Now

https://doi.org/10.1017/50004972700006365 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006365

Quasi-similarity orbit of compact operators 97

XTi({Ai}] = XNE({Xi})
= W(wi-r;)
= 8N -23)
= %, ()
- %, (123)
Thus BY = A%, ({A2})

1

As {XTl[{Ag}) | 0 # A € op(K*)} forms a basic sequence, we can show

that

o
4
If =z € V Rf (¢ =1, 2, 3, ...) , then

k=1
oo * (o2
B*z € VB = v parx ({3 ])
k=i K k=t 11 K
c Xos (M} (£ =1,2, ...)
k=i 11 K
as B** commutes with Ti and XT*({Ak}) is hyperinvariant subspace for
1
*
Tl
Now
XT*({Ak}) = XT ({Ai})
1 1
So
Bz € N |V X ({A*})]
i=1 W=t T1 K

This last intersection is {0} as in Theorem 1. Hence x = 0 . Therefore
K* ¢ C .
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COROLLARY 5. It T ¢ Cqs , then T* also belongs to Cqs .

Proof. Since T is quasi-similar to K € C , T* 1is quasi-similar

to K* but by Theorem 6, X* € C . This completes the proof.
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