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1. Introduection

Let G be a finite group, and & a field of finite characteristic p, such that the
polynomial x!¢! -1 splits completely in k[x]. Let B be a kG-block which has
defect group D which is cyclic of order p? (d = 1). Brauer showed in a famous
paper [2] that, in case d = 1, thé’decomposition matrix of B is determined by a
certain ‘positive integer e which divides p — 1, and a tree I, a connected acyclic
linear graph of e 4 1 vertices and e edges. Twenty-five years later Dade ([3]) ex-
tended Brauer’s theorem to the general case.

Dade shows that B contains v + (p? — 1)/e simple ( = irreducible) ordinary
characters X,,--, X,and X,(1€ A), where A is an index set containing (p? — 1)/e
elements. B has e simple modular characters ¢, -+, .- ; denote by 7¢,++*,%.—1
the corresponding projective indecomposable characters.

Put X,,, = X, X),. For each i€ {0,---,e — 1} there is an equation
(1.1a) m= Xy + Xiay -

where i(1),i(2) e {1,---, e + 1}, i(1) # i(2) (see [3, section 7]). The Brauer tree T’
of B is defined to have I', = {X,---, X, ,} as set of vertices, I', = {#g,***sNe~1}
as set of edges, and ;€ I, is incident with X ;€ T, if and only if X ;€ {X;), Xi2}-

Let R be a complete discrete valuation ring of characteristic zero, which
has k as residue-class field. An RG-lattice A is an RG-module which is free
and finitely-generated as R-module; A affords a character, which we regard
as ordinary character of G. Let I = {0,---,e — 1},-and let W;(iel) be a full
set of projective indecomposable RG-modules; these are RG-lattices, and we
arrange them so that W, has character #,, for alliel.

The main purpose of this paper is to prove
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THEOREM 2. Let G,B, D,T be as above. Then

(i) The numbering of ng,+,%.- can be so chosen, that there exists a family
(A,)nez of RG-lattices, and a permutation & of the set I = {0,---,e — 1}, such
that there exist RG-short exact sequences

Eyy 004y, ->W;,—24; -0
Eyiv1 10 Ag4 o> Wiy > 454, 0,

for all ieZ. Here i is to be taken mod e, so that W, = W, ,.and A, = A, 3.
Jor all ne Z.

(ii) The 2e RG-modules Agy, -, A3, are mutually non-isomorphic, so that
the sequences E, (n = 0) provide a projective RG-resolution of A, which is
periodic of period 2e:

12a) o Woo Woeusy > Weey = - = Wyy > Wi o Wiy 45— 0.
In case B = By(G) is the principal block of G, we can take Ay = R, which is
regarded as trivial RG-module.

(iii) The character P, of A, belongsto T, for all ne Z.

(iv) Suppose that B is a self-dual block, so that ¢,€ B, for all iel. Define

permutations B,y of I as follows: @, = ¢g,), and y(i) = p3(0) — i (iel). Then
we have

(1.2b) 5=8"7.
From (i) and (iii) one gets equations
(1.20) Noiy = Pai+ Paiygand 4y = Pyyy + Payyo,s

which show that the edges #,;, and 1, join successive pairs of vertices in P,
Py, Pyjyz- Thus the sequence

PO’P13P29"'P2e-1)P0

describes a circular ‘‘walk’’ around T, accomplished in 2e “‘steps’ P,— P,.,

(n =0,:--,2¢ — 1), so that the e edges of I" are each traversed exactly twice, in
the order

(1.2d) Nacuys M1 Na1ys s Ne=15Ns(e—1)> No-

It is clear that every vertex must be reached at least once during the walk.

The permutation & is an interesting invariant of B, since it determines I' as
abstract tree. Indeed I” must be obtained from the cyclic graph of 2e edges, oriented
and labelled as shown, by identifying each pair of edges which carry the same
label in such a way that the two orientations ‘‘cancel each other out’’.
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Of course this procedure can be carried out for any permutation é of the set I, but
will not necessarily give a tree.

We leave the reader to prove the following, as an application of the formula
(1.2b) (see also [2, theorem 14]).

Corollary to theorem 2. Let B be a self-dual block. Then T is an ‘‘open
polygon’ (i.e. anunbranched chain) if and only if either (1) every ¢, is real, so
that (i) = i for alliel, or (2) e is even, and B(i) = Ye + i forall iel.

Recently Alperin and Janusz ([1]) have obtained results for the case
B = B,(G) which are closely related to those in theorem 2. They show that
Ay = Rg has a projective RG-resolution which is periodic of period 2e:

o> U(Eze= )~ -+ = U(Ey) > U(Ep) > 40— 0.

Each U(E,) is indecomposable, with character E,, and Alperin and Janusz have
observed that

(1.3a) EwEEy -~ ,Ejo_y

are the steps in a ‘‘walk” around I', during which each edge of I" appears exactly
twice; they also give a rule for defining the sequence (1.3a), which is based on
Janusz’s classification of the indecomposable kG-modules in B. In fact the se-
quences (1.2d) and (1.3a) must coincide since by Schanuel’s lemma ([ 10, p. 167])
the terms of any minimal projective resolution of A4, are uniquely determined up
to RG-isomorphism.

Theorem 2 is proved in section 7, and the proof is based on theorem 1, which
is stated and proved in section 6. Theorem 1 gives information on certain in-
decomposable kG-modules, and explains how the permutation & arises. The
proof of theorem 1 does not use Janusz’s classification, but is based on Dade’s
description of the indecomposable kH-modules, where H = Ng(D;_4) and D,
is the subgroup of order p of D ([3, section 5]). This information about kH-
modules is summarised in section 5; in case d = 1, of course, it can be obtained
more directly than by Dade’s general argument. The passage from H to G, which
is made in the proof of theorem 1, uses methods originating with Thompson [12],
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and developed in [6] by Feit. Sections 2, 3, 4, contain a summary of this general
theory, as far as it is needed in this paper.

2, S-projective maps and modules

Throughout this section, G is an arbitrary finite group, and k an arbitrary
commutative ring with 1. Modules, both here and throughout the paper, are right
and finitely-generated.

Let@ = {Sul pe M} be a set of subgroups of G. We recall that a kG-module
U is said to be G- projective if there exists for each ue M a kS,-module 4, so that
U is isomorphic to a direct summand of €, .y AS. U is G-projective-free if it has
no non-zero S-projective direct summand. (If S consists of a single subgroup S,
we write S-projective, S-projective-free rather than &-projective, S-projective-
free, and make a similar convention for all the notation of this section.)

If U,V are kG-modules let (U, V) be the k-module of all k-maps from U to
V.If 0e(U,V) and g G, let 0? € (U, V) be the map u + ((ug=1)0)g (u e U). For
any subgroup S of G, write

(U,V)s = {0e(U,V)|6° = 0, all se S}.
Thus (U, V) is the set of all kS-maps from U to V.

The relative norm map Ts¢ : (U,V)s— (U, V) is the k-map defined by
Ts (o) = 2o’ for ce(U,V)s the sum being over a transversal of the coset-
space G/S = {Sg Ig € G}.

Definition. A kG-map 6 : U — V is G-projective if it belongs to
(U, V)e G = ZM Ts G((U’ V)s,.)-
ne

The S-projective kG-maps form an “‘ideal”” in the category . (kG) of all
kG-modules and all kG-maps, i.e.

2.1) Let U,V,W be kG-modules, and let 0e(U,V)g, ¢ €(V,W)s. Then
0¢ is S-projective, if either 0 or ¢ is S-projective.

In particular (U, U)g ¢ is an ideal, in the usual sense, of the k-algebra (U, U)g.
For proofs of these facts, which are nearly trivial, see [7, section 1].

The following theorem of Higman and Dress gives the connection between
S-projectivity of maps and S-projectivity of modules.

(2.2) (See [4, lemma 51.2] and [5, theorem 1]) A kG-module U is S-pro-

Jjective, if and only if the identity map ty on U is an S-projective kG-map. This
is equivalent to (U,U)g = (U, U)g¢.
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DerINITION. For any kG-modules U,V let (U,V)$ denote the k-module

(U) V)G / (U9 V')G.G'
We can now rewrite (2.2) as

(2.3) A kG-module U is G-projective if and only if (U, U)E = 0.

3. Some homeological lemmas

These are some elementary pieces of homological algebra which are useful
in calculating (U, V)§ in the very special case & = {1}, where 1 is the unit sub-
group of G. In this case we use the term projective (instead of 1-projective). We
shall also assume k is a field. Throughout this section U,V denote arbitrary
kG-modules. '

(3.1) Let t : Q = V be a projective presentation of V, i.e.. Q is a projective
kG-module and = is a surjective kG-map. Let 8 e (U, V). Then 8 is projective if
and only if there exists ¢ € (U, Q)¢ such that 0 = ¢n.

ProOF. If such a ¢ exists, then § = ¢n = ¢ - ¢, * 7. But ¢, is is projective by
(2.2), so 8 is projective by (2.1). Conversely, suppose that 6 is projective. Then
0 = T, 4(x) for some a e (U, V). Since Vis a free k-module, there exists fe(V, Q)
such that fn = t,,. Then by a trivial calculation 6 = ¢n, where ¢ = T s(«f).

The category #(kG) is self-dual, by means of the contragredient functor
which takes U to the usual dual kG-module U* = (U, k). Since U* is free, if and
only if U is free, the classes of projective and injective kG-modules coincide. Thus
(3.1) automatically gives a dual version

(3.1%) Let n’ : U— Q' be an injective embedding of U, i.e. Q' is an injective
(= projective) kG-module and n’ is an injective 'kG’-map,. Let 0e(U,V)s. Then 0
is projective if and only if there exists ¢ & (Q', V)¢ such that 6 = n'¢.

Denote by ®(U) the Frattini submodule of U, i.e. the intersection of all
maximal submodules of U; denote by Z(U) the socle of U, the sum of all minimal
submodules of U. We recall that a projective presentation © : Q@ — U is minimal
if @ is minimal (among all such presentations of U); such minimal presentations
always exist, and have the property Ker = < @©(Q).

(3.2) Suppose that U is projective-free, and that 0 : U — V is a surjective
kG-map. Then 0 is not projective unless 6 = 0.

PROOF. Let  : Q — V be a minimal projective presentation of V. If 8 is pro-
jective, then by (3.1) there exists ¢ € (U, Q)¢ such that 6 = ¢n. Thus (Im ¢)n
=Im8 = V, hence Im ¢ + Ker z = Q. But Kér z < ®(Q), hence Im ¢ + ®(Q)
= Q, so by a standard property of Frattini modules, Im ¢ = Q. This implies that
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U has a direct summand isomorphic to Q (see [4, lemma 45.2]), and since U is
projective-free, we must have @ = 0. Therefore ¥ =0, and 6 = 0.
The dual version is

(3.2*) Suppose that V is projective-free, and that 0 : U = V is an injective
kG-map. Then 0 is not projective unless 8 = 0.

(3.3) (U, V), ¢ = 0 in each of the two cases
(1) U projective-free and V simple, or
(2) U simple and V projective-free.

PRroOF. Suppose if possible that 0 e (U, V), ; and 6 # 0. In case (1),  must
be surjective since V is simple; this contradicts (3.2). Similarly, case (2) leads to a
contradiction of (3.2%).

(3.3) has as immediate corollary

(3.4) If U is simple and non-projective, then (U,U)} = (U,U); as k-
algebras.

We conclude this section with a note on Hellers’s Q-functor (Heller, [8]). If
U is a kG-module, define QU to be the kernel of a minimal projective presentation
7 : Q — U, so that there is a kG-short exact sequence

(3.52) 0-QU-Q% U-o.

By Schanuel’s lemma ([10, p. 167]) QU is defined up to isomorphism by (3.5a),
and the fact that = is minimal. We can make exactly the same construction for
RG-lattices, where R is the ring defined in section 1. Heller has proved

(3.5) Let U be a kG-module, or a RG-lattice. Then if U is indecomposable
and non-projective, so is QU.

We say that a kG-module U can be “‘lifted”’ to an RG-lattice M, if M =~ U,
where M = M/p M and p is the maximal ideal of R. Every projective kG-module
Q, can be lifted to a projective RG-lattice P.

(3.6) Suppose there is a kG-short exact sequence
(3.6a) 0-V-0-U-0

with Q projective, and that Q, U can be lifted to P, M as above. Then V can be
lifted to an RG-lattice N, and there is an RG-short exact sequence

(3.6b) 0O-N->P->M-0,
which, in an obvious sense, ‘‘lifts’ (3.6b).

Proor. This follows easily from the projective property of P.
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4. The functors f and g

In this section D is any p-subgroup of G, and H any subgroup of G which
contains N g(D). Define

X={DNnD|geG\H}, D= {HND|geG\H},

so that these are sets of subgroups of H. We state the results below for the case
where k is a field of characteristic p; they hold also with k replaced by the ring R
of section 1. Proofs of (4.1) to (4.4) are in [7].

(4.1) (i) Let U be a D-projective kG-module. Then there exists a Y-pro-
Jective-free k H-module fU, and a Y-projective kH-module U, such that
(4.1a) Uy fUD U,.

(ii) Let L be a D-projective kH-module. Then there exists an X-projective-
free kG-module gL, and an X-projective kG-module Ly, such that
(4.1b) LO~ gL® L,.

Notice that fU, gL are determined up to isomorphism, by the Krull-Schmidt
theorem.

Now define 9 to be the set of all subgroups S of D, which are not G-conjugate
to a subgroup of any X in X.

(4.2) Suppose that U,L above are both indecomposable, and have vertices
Dy, D, e N. Then fU, gL are both indecomposable, and have vertices Dy, D,
respectively. Moreover

(4.2a) g(fU) = U, and
(4.2b) flgL) = L.

This shows that f,g determine a one-one, vertex-preserving correspondence
between the kG-isomorphism classes of indecomposable kG-modules with vertex
in U, and the kH-isomorphism classes of indecomposable kH-modules with vertex
in . This module correspondence determined by (G, H, D) is closely connected
with Brauer’s famous block correspondence (see [4, theorem 58.3]) between the
kG-blocks of defect group D, and the kH-blocks of defect group D.

(4.3) Let U,L be as in (4.2). Let B,B’ be, respectively, kG,kH-blocks of
defect group D, which correspond under Brauer’s block correspondence. Then

(4.3a) U belongs to B if and only if fU belongs to B’, and
(4.3b) L belongs to B’ if and only if gL belongs to B.
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(4.3) is proved in [7, theorem 5.8]. (It is clear from (4.2) that each of (4.3a),
(4.3b) implies the other.)

Finally we may apply f and g to maps, in a functorial way. For each kG-
module U, choose a decomposition (4.1a), with projection py : Uy —fU and
injection iy : fU — Uy. If U,V are kG-modules and 8 : U —» V is a kG-map, we
define the kH-map f0 : fU — fV by

SO =iy 04" py.
Here 0, is 0, regarded as kH-map.

(4.4) Let U,V be D-projective kG-modules, and let § : U = V be an arbitr-
ary kG-map. Then

@) fig = tpp. )
(ii) 0 + f9 induces a k-isomorphism
(4.4a) ' (U, NE = (U, [V

In case U = V, this is an isomorphism of k-algebras.

One can also define go : gL — gM, for any kH-map « : L> M (L,M kH-
modules), and prove an analogue to (4.4). However we do not need this, and so
we do not give it.

Our final lemma (4.5) shows that f, g ‘‘commute” with the functor Q. We
leave the proof to the reader. (In fact we shall need only the formula (4.5b), and
only in a case where X = {1}. This can be proved by an application of Schanuel’s
lemma.) .

(4.5) Let U be a D-projective kG-module, and L a D-projective kH-module.

Then
(4.5a) fQU = QfU, and
(4.5b) gQL = QgL.

5. Indecomposable kH-modules in B’

From now on, G,B,D,k,R are as in section 1. Let H = Ns(Dy~), where
D,_, is the subgroup of D of order p. Since H = N (D), the correspondences of
section 4 apply.

Let B’ be the kH-block corresponding to B. In this section we give Dade’s
results on indecomposable kH-modules in B’.

Let C = Cg(D;-,)'". Dade shows ([3, section 1]) that there is a kC-block b

(1) The table below gives equivalents in [3], for notations used in section 5.

Section 5:d ¢ Dy, H C F B’ b
Bla p* Doy Nyoy Couy ECoy By b4y
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such that b? = B’, and that all such kC-blocks are conjugate in H. The stabilizer
F of bin H has the form F = E - C, where E is a certain subgroup of N4(D); F/C
is cyclic of order e dividing p—1, because it is a subgroup of H/C which is isomor-
phic to a subgroup of Aut(D,_). We may use this as our definition of e, or al-
ternatively use Dade’s definition in [3, section 1], and use [3, lemma 1.4].

Write g = p’,and I = {0,1,---,e — 1}.

(5.1) (i) B’ contains e simple kH-modules S;(iI), such that every simple
kH-module in B’ is isomorphic to exactly one S;. Let T;(iel) be projective in-
decomposable kH-modules, numbered so that T;/O(T)) = S;(iel).

(ii) There is a multiplicative isomorphism o & (a€ D) of D into the
centre of kC, such that if o is a generator of D then for any iel

Gla) T >TE-1)>T@E-1)’>>TE-1)'>T@E-1)"=0
is the unique kH-composition series of T;.

(iii) Every indecomposable kH-module in B’ is isomorphic to exactly
one of the following

Ti,v = Tl/Tl(& - 1)' (l € I’ Ve {1, "%y q})-
In particular S; = T,y and T; = T,,, for all iel.
Proor. For each g € D, take & to be the residue class mod p - OC of the element

& defined in [3, (5.3)]. We may interpret & as an element in kC. All parts of (5.1)
now follow from [3, section 5].

(5.2) Let S,S’ be simple kH-modules in B', such that Sp =~ S;. Then S = S'.

PRrOOF. Any simple component of S¢ or S¢ is the unique (up to isomorphism)
simple kC-module in some H-conjugate of b, and hence has F as its stabilizer in
H. Now (5.2) follows from Clifford’s theorem (see [4, theorem 14.1]).

We need information on the order of the composition factors in (5.1a). Let
a be a generator of D, and let «; = a?“~". Since H normalises D,_, = («, ), there
is a linear representation ¥ : H — k*, given by

(5:32) Y(h) = n(h) - 1, (heH),
where n(h) € Z is defined up to congruence mod._p by
(5.3b) af =ai®  (heH).

Evidently $(c) = 1, for all ¢ C, and hence yt¥:€! = 1, the trivial representation
of H.
Now let z be an element of E. Since z normalises D,
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(5.3c) oF = o"®,

where n(z) € Z is defined up to congruence mod p. Since (5.3¢) implies o = a,"“’,
there is no conflict between (5.3b) and (5.3c). From [3, (5.3)] we find thzt (6)* = o7,
for all 6 € D. Taking o = « and using (5.3c) we have

(5.3d) & =aq® (ze2).

In the next theorem, y*(v € Z) denotes, abusively, a 1-dimensional kH-module
which affords the representation ¥*; ® = ®, is the usual ‘‘external tensor product’’
of kH-modules. In particular, ¢* = Yy ® --- ® Y (v factors ¥), if v > 0.

(54) @ Let S, =T@—"/T@= D", for given iel and
VE{O ey q — 1}. Then Si_v = l/"'@Si'

(ii) Write S, =Y"® Sy, for all neZ. Then S,, = S, if and only if
m = n mod e, and we can take Sy, -+, S._, for the set of simple kH-modules in
B’ mentioned in (5.1) (i).

(iii) With the notation just given, the composition factors of T, (see
(5 la)) are SDS;+1’ ot St+q 1 E S

ProOOF. (i) Let teT; and ze E. Then using (5.3a) — (5.3d) one finds
H@— 1)z = tz(@D = 1) = tz@— )"l +& + -+ + 3"@~ )
tz@—1)" - n(z)* mod T,&—1)"*!,

and hence
(5.4a) t@—1"z = y"(2) - tz(@—1)" mod Tya~1)"*?,

for all z € E. But (5.4a) holds also for all z € C, since then z commutes with &, and
¥(2) = 1. Hence (5.4a) holds for all zin F = E- C and it is easy to deduce that
(S;)r = (U ® S))p. Therefore S;, = ¥"® S, by (5.2).

(i) Since Y11 = 1, we have S, = S, if m = nmod [H : C]. Now [H : C]
divides p — 1, therefore is less than g, and so it follows from (i) that all the modules

(5.4b) S0,S1,8,,

are composition factors of T, and hence lie in B’. Conversely, let S be any simple
kH-module in B’, By Brauer’s theorem [4, theorem 46.2] there exists a finite
sequence of elements ig,i,,":*,i,€l, such that S; = S,, S, = S, and for each
pe {1 -,1}, S, is a composition factor of T;,_,.Then (i) shows that for each
p, S;, = n/z““”@S,, , for some v(p) € Z. Therefore S = " ® S, for some ne Z,
and hence S is isomorphic to some module in (5.4b). We now know (by (5.1)(i))
that (5.4b) contains exactly e non-isomorphic modules, and all the statements of
(i1) follow.
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(iii) is an immediate consequence of (i), (ii) and (5.1a).
(5.4) (ii) allows us to adopt, as we shall do henceforth, the following

NOTATION. S; is defined for all i € Z, in such a way that S; =~ ' ® S,; hence
Site 2 S; (i€ Z). Similarly T;, T, , are defined for all i € Z, in such a way that (5.1)
hOldS, and Ti+e = Ti’ Ti+e‘v = T,‘_v (iGZ, ve{l,"' q}).

(5.5) Let iel, ve{l,---,q}. Then

@) T;, is projective if and only if v = q.

(ii) There is a kH-short exact sequence
(5.5a) 0-Ti4yquv=>Tig— T;,—0.

(i) If12v=qg—1, QT = Tyyyqe

@iv) Q%S; = Sy

Proor. (i) and (ii) follow from (5.1), (5.4). (iii) follows from the definition
of the Q-functor, and the fact that T; , — T , is a minimal projective presentation
if 1 £ v £ q— 1. Then (iv) follows from (iii) and the fact that S; = T;,, all i.

We conclude with a remark on the dimensions of the modules S;. Let
dim Sg=N,. Thendim S;= N, forall i,since S; = ' ® S,. Let n(n), for any positive

integer n, denote the exponent of the highest power of p which divides n. A gen-
eral theorem of Brauer on blocks ([4, theorem 61.6 (2)]) now gives at once

(5.6) n(No) = n(|H]) - d.

6. The pernutation

Take G,D,H,B,B’ as in section 5. We shall apply the module correspon-
dence of section 4, using the notation f,g,¥, %), A there. In our case X = {1},
since it is clear that D N D? = 1 for any g € G\H. In general 9 # {1}. The set %
consists of all the subgroups of D except 1.

THEOREM 1. (i) B contains e simple kG-modules V;(iel), such that every
simple kG-module in B is isomorphic to exactly one V. Let W, (i I) be projective
indecomposable kG-modules such that W; | ®(W)) = V,(iel).

(ii) The numbering of the V,(ieI) can be arranged so that

(6.1a) (fV;Sdu = (V;,9S8) & k or zero, according as i = j or i # j,and
there is a permutation 6 of I such that

(6.1b) (SuSV)u = (95, V)6 = k or zero, according as 6(i) = j or 6(i) # J,
for all i,jel.
(iii) For each i€l there exist kG-short exact sequences
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F,: O*Qgsi_’Wo(i)—’gSi—’O-
Fyis1:0 9S8, » W1 »QgS, -0,

Theorem 1 is proved below, in a series of lemmas. Let ¥;(j e J) be a full set
of mutually non-isomorphic simple kG-modules in B, indexed by a suitable finite
set J. All the S; and V; are D-projective, since they belong to blocks with D as
defect group ([4, theorem 54.10]). On the other hand no S, V; is projective, since
a simple, projective kG-module S (for any finite group G), must lie in a block of
defect group 1¢¥, Therefore each S, V; has vertex in U, and we can apply (4.2),

(4.3) to prove

(6.2) fV; is indecomposable, non-projective and lies in B’. gS, is indecom-
posable, non-projective and lies in B. .

We have now, for any i1, jeJ, that (S,fV))k = (¢S, V)L by (4.2), (4.4a).
But (3.3) gives also (S,,f V,-)}, = (SufV)u, and (gS,, Vj)é = (gS;, V). This pro-
ves the first part of (6.3) below, and the second part is proved similurly.

(6.3) (S, V)u = (955 Vy)g and (fV;, Sy = (V},9S)e-
(6.4) There is a map h : J — I such that for all iel,jeJ,

(6.4a) h(j) = i if and only if (fV;,S)u # 0. Moreover h is a bijection, and
hence IJI = |I| =e. .

Proor. Take any jeJ. By (6.2), (5.1), (5.5) we have fV; = T, ,(; for some
h(j) €I and some v(j) € {1,--+,q — 1}. Since T};, ,(; is uniserial, with *‘top”’ com-
position factor S, ;), one has by Schur’s lemma

(6.4b) (fV;,S)y = k or zero, according ds h(j) = i or h(j) # i.

This establishes the existence of h, and proves (6.4a).

Now suppose i€l is given. Take any minimal submodule S of gS,. Since S
is in B, there exists jeJ such that ¥; = S. This implies (V},¢S,)¢ # 0, hence
(fV;,S)u # 0 by (6.3). Thus h(j) = i. We have now proved that h is surjective.

Suppose j,j € J are such that h(j)=i=h(j ). Then fV;=T,, and f V. =T .
for some v,v' e€{l,---,q —1}. We may assume v = v'. But then there exists a
surjective kH-map 0 : T;,—~T,,,,, and by (3.2) 0 is not projective. Therefore
(fV;fVi)u #0. By (4.4a) (V;,V;)§ # 0, hence (V;,¥;)s+# 0. Schur’s lemma
now gives j = j'. Therefore h is a bijection. .

We have now proved part (i) of theorem 1. From now on we take J = I and
© (2) Because S is projective, its dimension is divisible by p® (@ = & ({G])); also S can be lifted to

an RG-lattice M, for the same reason. The character X of M must be simple, because S is simple.
Since p® divides X(1), X, and hence also S, lies is a block of defect zero, i.e. of defect group 1.
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arrange notation of the ¥ so that the map h : I — I is the identity. This means
that we have for each jeI

(6.4¢) fV; = Ty Jor some v(je{l,--,q —1}.

Formula (6.1a) in theorem 1 is now a consequence of (6.4b) and (6.3). But we may
now prove a ‘‘dual”’ version of (6.4), which in the present notation will show that
there is a map J : I — I, such that for all i,je I, we have 6(i) = j if and only if
(Suf V) # 0; moreover § is a bijection, i.e. it is a permutation of 1. The proof is
exactly parallel to that of (6.4). In place of (6.4b) one has, using the uniseriality
of fV; = Tjwiy

(6.4d) (SofVu = k or zero, according as 5(i) = j or 8(i) # j.

Now (6.4d) and (6.3) yield (6.1b), and we have proved part (ii) of theorem 1.
(6.1a), (6.1b) tell us that, for all ie !,

2(gS;) = V;and gS,/®(gS)) = V).

From the second of these, and using the projective property of W, one can
make a projective presentation W, — ¢gS;. This must be minimal, since W,,(,-) is
indecomposable. Therefore there exists a kG-short exact sequence F,;.

From 2(gS;,,) = W;,,> and using the injective property of ¥, ,, one can
make an injective embedding gS;,; — W, ,. Hence there is some kG-module v,
and a short exact sequence

(6.4¢) 0> gSis; =Wy, -V 0.

On the other hand we deduce from (4.5b) and (5.5)(iv) that Q(QgS,) = g(Q2S)
=~ ¢8S;+.. So there is a short exact sequence

0-9gS;4; »W-QgS, -0,

where W is projective. The dual form of Schanuel’s lemma now gives V =~ QgS,,
and hence we can take (6.4¢) as F,,, ;. We have now proved all parts of theorem 1.

ReEMARK. The integers v(j) in (6.4¢) satisfy the condition
(6.5a) For each jel, either 1 S v(j) S e,orq—e=<v(j)<q—1.

This result is due to Feit, and is proved by applying a lemma of Passman [6,
lemma 4] to the condition (T ¢y Ty & k., which in turn follows from
Schur’s lemma, and (4.4a) in the case U = V = V. Now gT, ,;, = V,, by (6.2),
(4.2a), so that

(3) We extend the definition of W‘. to any i€ Z, by the convention ﬁ/i te= ﬁ/‘ (ieZ).
See section 7.
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(6.5b) Tjvp® 2 V@ U,,

where Uy is a projective kG-module. By (5.1), (5.5), (5.6) we have dim T; j)G
= v(j)* N, where N = Ny - [G : H}, and

(6.5¢) n(N) = a —d (a = n(/G])).

On the other hand, dim U, = 0 mod p°? ([4, lemma 59.6]). So taking dimensions
on both sides of (6.5b), we have

(6.5d) dim ¥; = v(j) - N mod p°.

Taking (6.5d) with (6.5a), we get a strengthened form of a theorem of Rothschild
[11]. Feit points out in [6], that this theorem shows that all the V; have vertex
D. However this is not necessary for the proof of theorem 2.

7. Proof of theorem 2

Define projective indecompos.ble RG-lattices W, such the module 7, in
theorem 1 lifts to W, for all iel. Then define W, for all i€ Z, by the rule W,
= W;,.for all i e Z. With the notations of section 5, we can siy that the kG-short
ex.ct sequences Fy;, F;;,, of theorem 1 exist for all ieZ, and that F, = F,,,
(n€Z), with the usual isomorphism of short exact sequences. Write B,; = ¢S,,

By = QgS,, all ieZ.

(7.1) Let M be an RG-lattice and m a fixed element of Z such that M = B,,
Then we can construct RG-lattices A, and sequences E,, with A, = M, and
A, = B, and E, “‘lifts” F,, for all ne Z.

Proor. By (3.6) we can lift F, to an RG-short exact sequence E,, in which
A, = M, and 4,,,, = B,+,. Now we can repeat the process with m + 1 in place
of m. So we define, inductively, E, for all n = m. Now we can apply (3.6) to the
“‘dual” of F,_,, and regard the result as the dual of an RG sequence F,,_ |, which
lifts F,, . Proceeding in this way, we can define E, for alln < m.

(7.2) Let M, A, be as in (1.1), and assume that the character P, of M = A,
lies in I',. Then the character P, of A, lies in T, for allneZ. Also P,,,, = P,,
Sorallne Z.

ProoF. We have equations (1.2¢), for all ie Z. Taking these together with
equations (1.1a), it is clear that all the P, lie in I,, as soon as P,, does. To prove
the final statement of (7.2), suppose first that n = 2i (/e Z). From (1.2¢) we have

Noiy = Pn +Pn+1’

Ni+1 = Puyr + Poya,
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No(i+e-1) = P yre-2+ Prize-ys
Nite = Pn+2e—l + Pn+22°

Form the alternating sum of these 2e equations. We find 0 = P, - P,,,., as
required. A similar argument works in the case n = 2i + 1 (i € Z).

(7.3) Let M,A, be as in (7.2). Then A, ,. = A,, foi allne Z.

Proor. Let ie Z, and let K be the quotient field of R. From (1.1a) it is clear
that K ®g W; has unique KG-submodules, Yyy), Y, say, with characters X,
X3 respectively, and that these are the only KG-submodules of K ® x W; which
have characters in I',. Thus W; N Y,,, W, N Y,,, are the only R-pure RG-sub-
modules of W;, which have characters in I',. Fix ne Z. Then E,_, shows that A,
is isomorphic to an R-pure RG-submodule of some W,, similarly E,,,,_, shows
that A,, ,, is isomorphic to an R-pure RG-submodule of W,,, = W,. But (7.2)
shows that these submodules of W, have the same character. So they coincide,
ie Aypie = A,

(7.1), (7.2), (7.3) allow us to prove parts (i) and (iii) of theorem 1, as soon as
we have an RG-lattice M such that &/ = B, for some m, and M has character in
[,. If B = By(G), the princip.l block of G, we just take M = A, = Ry. In general
we proceed as follows.

Let M be the indecomposable RG-lattice in B, which has character X 1, and
is defined in [3, p. 39]. By [3, lemma 6.2] there is an indecomposable RH-lattice
L such that

(7.4 My=L&Q,d&Q,”

where the Q; are indecomposable RH-modules, each of which is either projective,
or lies in a block other than B'. Both 47, L are shown to be indecomposable and
it follows by taking (7.4) mod p, and using (4.1), (4.2), (4.3) that L =~ f#7, and
hence 7 = gL. But ([3, p. 39]) L has character either X, (iel) or X X,, where
Xo,» X1, X, (A€ A) are the ordinary characters of B'; now [3, theorem 4]
and (5.5)(iii) show that L is isomorphic either to S, or to QS,, for some iel.
Therefore M is isomorphic either to gS,; or to QgS,, i.e. to some B,. Now (7.1),
(7.2), (7.3) allow us to prove parts (i) and (iii) of theorem 1.

To prove part (ii) of theorem 2, observe that the construction used for (7.1)
shows that 4y, 4y, -, Ae~ 3, A2~ are isomorphic to

gSO’QgSO: ""gse—bggs -1

These modules are mutually non-isomorphic, provided q = IDI # 2, for in this
case S, QSy,**,S.—1, QS,._, are easily seen to be non-isomorphic. Hence 4,,

(4) M, L, Q, are denoted by corresponding script capitals in [3].
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-+, A,,.1 are non-isomorphic, which proves (ii) in case g # 2. If g = 2, then
Ag = Ay, but an ad hoc argument proves that 4, % A; anyway. For we have
p =2, e =1 and (q — 1)/e = 1. Therefore equations (1.1a) reduce to the single
equation 1, = X; + X,. But (7.2) gives no(= n50,) = Po + P,. Hence {P,, P,}
= {Xy, X,}, which shows that P, # P, therefore 4, Z A4,. So (ii) holds in all
cases.

It remains to prove part (iv) of theorem 2. We assume B is self-dual, and that
B is the permutation of I given by ¢,= ¢y,,. Evidently p = f~'. We have also

7.5) W = Wy

for all ie I, and by an obvious extension of 8, we can say that (7.5) holds for all
ie Z. Apply the dual functor to F,;_,, and use (7.5). We get the kH-short exact
sequence

(1.6) 0—(QgS)*— Wﬂ(i) = (gS)*—-0.

It is trivial that the functor g commutes with %, hence B’ is self-dual, and so
Sy~ S, for some mel.Then by(5.5)one hasforanyiel, Sf= (J'® Sp)* =2 ¢¥'®

S, = S,-; Hence (¢S))* = ¢gS,,—;- Now compare (7.6) with
F2(m—i) 10-5gS,-i— d(m-i) QgS,-i—0.

Schznuel’s lemma gives Wy, = Wyn-;), and therefore f(i) = 6(m — i) mod e,
for all ie Z. Repl..ce i by m — i; we have

.7 6(i)=p(m—i)mode,allicZ.

If we put i = 0 in (7.7), we find 6(0) = B(m), so m = B~15(0) = B5(0). Thus
(7.7) is the formula (1.2b) which we want.
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