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Cyclicity in Dirichlet Spaces

Y. Elmadani and I. Labghail

Abstract. Let µ be a positive ûnite Borel measure on the unit circle andD(µ) the associated har-
monically weighted Dirichlet space. In this paper we show that for each closed subset E of the
unit circle with zero cµ-capacity, there exists a function f ∈ D(µ) such that f is cyclic (i.e.,
{p f ∶ p is a polynomial} is dense in D(µ)), f vanishes on E, and f is uniformly continuous. Next,
we provide a suõcient condition for a continuous function on the closed unit disk to be cyclic in
D(µ).

1 Introduction

A bounded operator T on a Hilbert spaceH is called two-isometry if T∗2T2−2T∗T +
I = 0, is called cyclic if there exists x ∈ H such that span{Tnx ∶ n ≥ 0} is dense in
H, and is said to be analytic if ∩n≥0TnH = {0}. Richter proved in [18] that every
cyclic, analytic, and two-isometry operator can be represented as multiplication by
z on the Dirichlet-type space D(µ) induced by a positive ûnite Borel measure µ on
the unit circle. _ese spaces were later studied by several authors; see, for instance,
[6, 9, 16, 19, 20].

In this paper we are interested in the study of the cyclicity inD(µ). For the Hardy
space H2, by Beurling’s theorem [1] the cyclic functions are exactly the outer func-
tions. In the classical Dirichlet space D, Brown and Shields proved that every cyclic
function inD is an outer function whose zero set has zero logarithmic capacity. _ey
conjectured that the converse is also true [3, Question 12]. Some partial results toward
this conjecture were obtained by Hendenmalm and Shields in [16]. _ey proved that
every outer function f ∈ D ∩ A(D) with countable zero set is cyclic, where A(D) is
the disk algebra . In [11, 12], El-Fallah, Kellay, and Ransford gave the ûrst example of
an uncountable closed subset E of T such that every outer function f ∈ D ∩ A(D)

with zero set included in E is cyclic. Furthermore, they provided some suõcient con-
ditions on E to ensure the cyclicity of every outer function f ∈ D ∩ A(D) vanishing
on E.
Carleson [4] proved that for every closed subset E of the unit circle that has zero

logarithmic capacity, there exists a cyclic function in D that vanishes on E. Later,
Brown and Cohn in [2] modiûed Carleson’s construction and gave a cyclic function
inD∩A(D) vanishing on E. Moreover, the problem for cyclicity inD is still open [9].
For a brief history of the cyclicity problem in D(µ), we refer the reader to [8].

Our ûrst aim in this work is to extend the Brown–Cohn _eorem to the Dirichlet
spacesD(µ). Next, we give a capacitary suõcient condition for cyclicity in this space.
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Let T be the boundary of the open unit diskD in the complex planeC. We denote
by Hol(D) the space of all analytic functions on D. Let µ be a positive ûnite Borel
measure on T; the Dirichlet-type spaceD(µ) is given by

D(µ) = { f ∈ Hol(D) ∶Dµ( f ) = ∫
D
∣ f ′(z)∣2P[µ](z)dA(z) < ∞} ,

where dA is the two-dimensional Lebesgue measure and P[µ] is the Poisson integral
of µ

P[µ](z) = ∫
T

1 − ∣z∣2

∣ζ − z∣2
dµ(ζ), z ∈ D.

_e spaceD(µ) is endowed with the norm

∥ f ∥2
µ = ∣ f (0)∣2 +Dµ( f ), f ∈ Hol(D).(1.1)

Note thatD(µ) is a reproducing kernel Hilbert space. Denote by kµ the reproducing
kernel ofD(µ); we have f (z) = ⟨ f , kµ

z ⟩µ , f ∈D(µ), z ∈ D, where ⟨ ⋅ , ⋅ ⟩µ is the inner
product in D(µ) introduced by norm (1.1). _e reproducing kernel kµ satisûes the
inequalities

2Re kµ
(z,w) − 1 ≥ 0,(1.2)

∣kµ
(z,w)∣ ≤

2
∣1 − zw∣

,(1.3)

for each z,w ∈ D (see, for instance, [20, _eorem 2]).
To introduce the capacity associated with D(µ), we recall the deûnition of the

harmonic Dirichlet-type spaceDh(µ): the set of functions f ∈ L2(T) such that

Dµ( f ) ∶= ∫
D
(∣

∂ f (z)
∂z

∣
2
+ ∣

∂ f (z)
∂z

∣
2
)P[µ](z)dA(z)

is ûnite, where f (z) ∶= P[ f ](z) is the harmonic extension for f to D. _e space
Dh(µ) equipped with the norm

∥ f ∥2
µ ∶= ∣ f (0)∣2 +Dµ( f ), f ∈ L2

(T),

is a reproducing kernel Hilbert space containing D(µ) as a closed subspace [6].
Note also that Dh(µ) is a Dirichlet space in the sense of Beurling and Deny [13].

_e cµ-capacity of a subset E of T is deûned by

(1.4) cµ(E) ∶= inf {∥ f ∥2
µ : f ∈Dh

(µ) and ∣ f ∣ ≥ 1m-a.e. on a neighborhood of E} ,

wherem denotes the Lebesgue measure onT. From (1.4) we havem(O) ≤ cµ(O), for
every open subsetO ofT. Hence any set of zero cµ-capacity ism-negligible. Moreover,
sinceD(µ) ⊂ L2(µ) (see [9, _eorem 8.1.2]), we have for every Borel subset E of T

µ(E) ≤ ( 1 + µ(T)) cµ(E).
_e cµ-capacity satisûes the strong-type inequality, see [5]. Namely,

(1.5) ∫

+∞

0
cµ( ∣ f ∣ > t)dt2 ≲ ∥ f ∥2

µ , f ∈Dh
(µ).

We say that a property holds cµ-quasi-everywhere (cµ-q.e.) if it holds everywhere
outside a set of zero cµ-capacity.
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Recall that the polynomials are dense inD(µ); see [18] and [9, Corollary 7.3.4]. A
function f ∈D(µ) is called cyclic in D(µ) if [ f ]D(µ) =D(µ), where

[ f ]D(µ) ∶= {p f ∶ p is a polynomial}.

Recall also that the outer functions are given by

f (z) = exp∫
T

ζ + z
ζ − z

logψ(ζ)dm(ζ), z ∈ D,

where ψ is a positive function such that logψ ∈ L1(T). If µ = m, then cm is compa-
rable to the logarithmic capacity c, and the space D(m) coincides with the classical
Dirichlet spaceD. Brown and Shields proved in [3] that if f is cyclic in D, then f is
an outer function and c(Z( f )) = 0, where

Z( f ) ∶= {ζ ∈ T ∶ f (ζ) = 0}.

_ey conjectured that the converse is also true. _e generalized Brown–Shields con-
jecture asserts that an outer function f ∈ D(µ) is cyclic if and only if cµ(Z( f )) = 0.
Guillot showed in [15] that this conjecture is true for ûnitely atomic measure. In [7],
El-Fallah, Elmadani, and Kellay proved that this conjecture is also true for measures
with countable support. _e generalized Brown–Shields conjecture remains open.

_e disk algebra A(D) is the set of continuous functions on the closed unit diskD
that are holomorphic in D. Our ûrst result is the following theorem.

_eorem 1.1 Let µ be a positive ûnite Borel measure on T and let E be a closed subset
of T. If cµ(E) = 0, then there exists a function f ∈D(µ) ∩ A(D) that is cyclic inD(µ)
and Z( f ) = E.

It is clear that if E is a closed subset of T, then c(E) = limt→0+ c(Et), where Et ∶=
{ζ ∈ T ∶ d(ζ , E) ≤ t} and d denotes the distance with respect to arc-length. El-Fallah,
Kellay, and Ransford proved in [10] that an outer function f ∈ D ∩ A(D) is cyclic in
D if c(Et) goes to zero “suõciently rapidly” as t → 0, where E = Z( f ).

In the following theorem we extend this result to Dirichlet spaces D(µ).

_eorem 1.2 Let f ∈ D(µ) ∩ A(D) be an outer function and let E = Z( f ) and
Et = {ζ ∈ T ∶ d(ζ , E) ≤ t}. If

(1.6) ∫
0
cµ(Et)

log(1/t)
t

dt < ∞,

then f is cyclic in D(µ).

Let K be a closed subset of T. Consider the measure dµ(ζ) = d(ζ ,K)αdm(ζ)
for some α ∈ (0, 1). _e measure µ provides some examples where condition (1.6) is
satisûed. Indeed, by the same calculation as [7, _eorem 5.4], we obtain

cµ(Et) ≲ ( ∫
t

ds
sαm(Es)

)
−1

for every subset E of K. If E is a Cantor-type set, we obtain cµ(Et) = O(tα−σ), where
σ is the Hausdorò dimension of E; hence, (1.6) holds, for all α > σ .
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In the next section, we will give some properties of the cµ-capacity. _e proof of
_eorem 1.1 is given in Section 3. Section 4 is devoted to the proof of _eorem 1.2.

_roughout the paper, we use the following notation:
● A ≲ B means that there is an absolute constant C such that A ≤ CB.
● A ≍ B if both A ≲ B and B ≲ A hold.
● C(T) is the space of all continuous functions on T.
● M+(T) denotes the set of all positive Borel measures on T.

2 Capacity

In this section we state some properties that will be needed in the proof of our results.
First we recall some deûnitions. A function u ∈ L2(T) is called quasi-continuous if for
every є > 0, there exists a subset A of T with cµ(A) < є and such that the restriction
of u to T∖A is continuous. A function v is said to be a quasi-continuous modiûcation
of u if v is quasi-continuous and v = u a.e. on T. We denote by û a quasi-continuous
modiûcation of u.

_eorem 2.1 Each u ∈Dh(µ) admits a quasi-continuous modiûcation û.

Proof See [14, _eorem 23].

It is well known that for a given closed subset E ofT, there exists a uniquemeasure
νE ∈M+(T) supported on E such that c(E) = νE(T), where the energy of νE deûned
by

I(νE) ∶= ∫
T
∫
T
log 1

∣ζ − λ∣
dνE(ζ)dνE(λ)

is ûnite; see e.g., [17, _eorems 13 and 14].
_e following theorem extends this result to Dirichlet spaces D(µ).

_eorem 2.2 Let E be a closed subset of T; then there exists a unique measure νE ∈
M+(T) supported on E such that

cµ(E) = ∥pνE ∥
2
µ = νE(E),

where pνE satisûes the following properties:
(i) 0 ≤ pνE ≤ 1 on T and p̂νE = 1 cµ-q.e on E;
(ii) ⟨pνE , v⟩µ = ∫T v̂(ζ)dνE(ζ), for each v ∈Dh(µ);
(iii) pνE (z) = ∫T ̂(2Re kµ(z, λ) − 1)dνE(λ), for z ∈ D.

_e function pνE is called the potential of the measure νE .

Proof _e proofs of assertions (i) and (ii), in a more general case, is given in [13,
_eorems 2.1.5 and 2.2.2]. For the sake of completeness, we include the proofs here.
Fix a subset E of T. Denote by

S(E) ∶= { f ∈Dh
(µ) ∶ f ≥ 0 and f̂ ≥ 1 cµ-q.e. on E}.
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Note that S(E) is a closed and convex subset of Dh(µ). _en there exists a unique
positive function gE ∈ Dh(µ) such that ĝE ≥ 1 cµ-q.e. on E and cµ(E) = ∥gE∥2

µ . If
pE = min (gE , 1), then cµ(E) = ∥pE∥2

µ , where 0 ≤ pE ≤ 1 and p̂E = 1 cµ-q.e. on E, that
gives the assertion (i).

To prove (ii), let v ∈Dh(µ) be a positive function; then pE + єv ∈Dh(µ), for each
є > 0. By consequence, 2⟨pE , v⟩µ + є∥v∥2

µ ≥ 0. Letting є → 0, we obtain ⟨pE , v⟩µ ≥ 0
for any non-negative v ∈Dh(µ). _is implies the existence of a unique positive Borel
measure νE ∈M+(T) supported on the closure E of E such that

(2.1) ⟨pνE , v⟩µ ∶= ⟨pE , v⟩µ = ∫
T
v(ζ)dνE(ζ),

for each v ∈ C(T). To extend (2.1) for Dh(µ), let v ∈ Dh(µ). _ere exists a sequence
vn ∈ Dh(µ) ∩ C(T) that is convergent to v and a subsequence vnk that converges
cµ-q.e. on T to v̂. We have from Fatou’s lemma that

∫
T
∣ v̂(ζ) − vn(ζ)∣dνE(ζ) = ∫

T
lim inf
nk→+∞

∣vnk(ζ) − vn(ζ)∣dνE(ζ)

≤ lim inf
nk→+∞∫T

∣vnk(ζ) − vn(ζ)∣dνE(ζ)

≤ lim inf
nk→+∞

∥pνE ∣∣µ∥vnk − vn∥µ

= cµ(E)1/2 lim inf
nk→+∞

∥vnk − vn∥µ .

_is implies that D̂h(µ) ⊂ L1(νE), where D̂h(µ) is the set of the quasi-continuous
functions belonging to Dh(µ), and we have

⟨pνE , v⟩µ = ∫T
v̂(ζ)dνE(ζ), v ∈Dh

(µ).

_is gives (ii). To prove (iii), we need the following lemma.

Lemma 2.3 Let f ∈Dh(µ), then f (z) = ⟨ f , 2 Re kµ(z, ⋅ ) − 1⟩µ , z ∈ D.

Proof Let P be the Riesz projection ofDh(µ) into D(µ). Obviously, we have
⟨P f , g⟩µ = ⟨ f ,Pg⟩µ(2.2)

for every f and g in Dh(µ). Fix f ∈ Dh(µ); we consider f + ∶= P f and f − ∶= f − P f .
Using (2.2), we have

f (z) = f +(z) + f −(z)

= ⟨ f + , kµ
(z, ⋅ )⟩µ + ⟨ f − , kµ(z, ⋅ )⟩µ

= ⟨ f , kµ
(z, ⋅ )⟩µ + ⟨ f , kµ(z, ⋅ )⟩µ − ⟨ f ,Pkµ(z, ⋅ )⟩µ

= ⟨ f , 2 Re kµ
(z, ⋅ ) − 1⟩µ .

_e last equality holds, because Pkµ(z, ⋅ ) = 1.

Now we return to the proof of (iii). Since pνE ∈D
h(µ), by Lemma 2.3 we have

pνE (z) = ⟨pνE , 2 Re kµ
(z, ⋅ ) − 1⟩µ = ∫

T
̂

(2Re kµ(z, λ) − 1)dνE(λ).
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Finally, if E is closed, then νE is supported on E and we have

∥pνE ∥
2
µ = ⟨pνE , pνE ⟩µ = ∫T

p̂νE (λ)dνE(λ) = νE(E).

_is completes the proof of _eorem 2.2.

As an immediate consequence, we obtain the following corollary.

Corollary 2.4 Let K be a closed subset of T; then

cµ(K) = sup{ν(K) ∶ ν ∈M+
(T), supp ν ⊂ K , p̂ν ≤ 1 cµ-q.e. on T}.

Proof Denote by

M(K) ∶= {ν ∈M+
(T) ∶ supp ν ⊂ K , p̂ν ≤ 1 cµ-q.e. on T} .

By _eorem 2.2, there exists νK ∈ M+(T) such that supp νK ⊂ K and p̂νK ≤ 1 cµ-q.e.
on T. _is gives that νK ∈ M(K). Let ν ∈ M(K), and by _eorem 2.2, we have

ν(K) = ∫
K
p̂νK (ζ)dν(ζ) = ⟨pνK , pν⟩µ = ∫ p̂ν(ζ)dνK(ζ) ≤ νK(K) = cµ(K).

3 Proof of Theorem 1.1

In our proof we will use an analogue argument given in [2, 4].
Let E be a closed subset of T such that cµ(E) = 0; then there exists a decreasing

sequence En of closed subsets of T such that

∑
n
cµ(En)

1/2
< ∞.

By _eorem 2.2, for each n ∈ N, there exists νn ∈ M+(T) such that supp(νn) ⊂ En
and cµ(En) = ∥pνn∥

2
µ = νn(En). Set µn = νn/νn(En), and put ϕµn = Ppµn , where P

is the Riesz projection of Dh(µ) into D(µ). We have ∥ϕµn∥
2
µ ≤ ∥pµn∥

2
µ = 1/cµ(En).

Now consider
ϕ(z) = ∑

n
cµ(En)ϕµn(z), z ∈ D.

Since ∣ϕµn(z)∣ ≤ 1√
cµ(En)

∥kµ
z ∥µ , for any z ∈ D, ϕ is well deûned and

∣ϕ(z)∣ ≤ ∑
n
cµ(En)

1/2
∥kµ

z ∥µ .

Furthermore,

∥ ∑
n
cµ(En)ϕµn∥ µ

≤ ∑
n
cµ(En)

1/2
< ∞.

_en ϕ ∈ D(µ). Now set f (z) = exp(−ϕ(z)), for each z ∈ D. Clearly, f ∈ D(µ).
On the other hand, by _eorem 2.2 we have p̂µn(ζ) = 1

cµ(En) cµ-q.e. on En , for each

252

https://doi.org/10.4153/CMB-2018-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-039-3


Cyclicity in Dirichlet Spaces

n ∈ N. Using this fact with (1.2), we obtain

Re(ϕµn(z)) = ∫T

1 − ∣z∣2

∣ζ − z∣2
Re (ϕµn(ζ))dm(ζ)(3.1)

≥
1
2 ∫En

1 − ∣z∣2

∣ζ − z∣2
pµn(ζ)dm(ζ)

≥
ϖ(z, En ,D)

2cµ(En)
, z ∈ D, n ∈ N,

where ϖ(z, En ,D) denotes the harmonic measure of En at z. _erefore,

∣ f (z)∣ ≤ e
−∑

n
ϖ(z ,En ,D) .

It is well known that lim
z→ξ

ϖ(z, E ,D) = 1, for each ξ ∈ E; it follows that f vanishes on E.

Now we will modify the construction presented above to obtain the continuity on
D ∖ E. From (3.1), we can choose a sequence (rn) increasing to 1 such that

Re(ϕµn(rnζ)) ≥
1

2cµ(En)
, ζ ∈ E .

Now set ϕn(z) = ϕµn(rnz), for z ∈ D, ϕ = ∑n cµ(En)ϕn , and f = exp(−ϕ). Since
Dµ(ϕn) ≤ Dµ(ϕµn) (see [9, Lemma 7.3.2]), we obtain f ∈ D(µ). Hence, for large N ,
we get that

lim inf
z→ζ

Re(ϕ(z)) ≥
N
∑
n=1
cµ(En)Re(ϕn)(ζ) ≥

N
∑
n=1

1
2
=

N
2
, ζ ∈ E .

So E ⊂ Z( f ).
_e function f is continuous inD∖ E. Indeed, let z0 ∈ D∖ E; then d(z0 , E) > 0, it

follows that for n suõciently large,

d(rnz, En) ≥ δ > 0

for all points z in some open disk centered at z0 denoted byD(z0) . By_eorem 2.2(ii)
and (1.3), we obtain

∣ϕn(z)∣ = ∣ ⟨pµn , k
µ
(rnz, ⋅ )⟩µ ∣ = ∣ ∫

T
̂kµ(rnz, λ)dµn(λ)∣

≤ ∫
T
∣ ̂kµ(rnz, λ)∣dµn(λ) ≤

2
d(rnz, En)

.

_erefore,

cµ(En)∣ϕn(z)∣ ≤
2cµ(En)

δ
.

From Weierstrass’ test the series ∑n cµ(En)ϕn converges uniformly to ϕ on D(z0).
_en ϕ is continuous on D(z0). And thus we deduce that Z( f ) = E.
Finally, we prove that the function f is cyclic. Let

fn = exp ( − ∑
i≥n
cµ(E i)ϕ i) .
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_en we have Dµ( fn) ≤ (∑i≥n cµ(E i)
1/2)2 → 0, as n → +∞. Also, fn converges

pointwise to 1 as n → +∞, and fn/ f = exp(∑n
i=1 cµ(E i)ϕ i) is a bounded function. So

fn ∈ [ f ]D(µ). We deduce that 1 ∈ [ f ]D(µ). _e proof is complete.

4 Proof of Theorem 1.2

_e proof of _eorem 1.2 is based on an adaptation of a technique due to El-Fallah,
Kellay, and Ransford in [10, 12]. _e ûrst key of the proof is the following converse of
the strong-type inequality (1.5).

_eorem 4.1 Let E be a closed subset of T, and let h ∶ (0, π] → (0,+∞) be a contin-
uous and decreasing function such that h(0) = +∞. _en there exists a real function
f ∈Dh(µ) such that
(4.1) lim inf

z→ζ
f (z) ≥ h(d(ζ , E)) , ζ ∈ T,

if and only if the function h satisûes

(4.2) ∫
0
cµ(Et)∣dh2

(t)∣ < ∞.

To prove_eorem 4.1, we need the following elementary lemma.

Lemma 4.2 Let (H, ∥ ⋅ ∥) be a Hilbert space, and let (ψn)n be a sequence of H such
that ψn − ψm�ψm , for all n ≥ m. _en ∑n≥1 ψn/∥ψn∥

2 belongs to H if and only if
∑n≥1 n/∥ψn∥

2 is ûnite.

Proof See [9, Lemma 3.4.4] and [10].

Proof of_eorem 4.1 Suppose that there exists a real function f ∈Dh(µ) satisfying
(4.1). By [5,_eorem 1.3], we have limz→ζ f (z) exists cµ-q.e. then f (ζ) ≥ h(t) cµ−q.e
on Et . So

∫

π

0
cµ(Et)∣dh2

(t)∣ ≤ ∫
π

0
cµ(∣ f ∣ ≥ h(t))∣dh2

(t)∣ = ∫
+∞

h(π)
cµ(∣ f ∣ ≥ s)ds2 < ∞.

_e last integral is ûnite, because the cµ-capacity satisûes the strong-type inequal-
ity (1.5).

To prove the converse, we ûrst observe that

∫

π

0
cµ(Et)∣dh2

(t)∣ ≥
+∞
∑

n=n0+1
∫

δn−1

δn
cµ(Eδn)∣dh

2
(t)∣

=
+∞
∑

n=n0+1
cµ(Eδn)(n

2
− (n − 1)2

)

≍
+∞
∑

n=n0+1
ncµ(Eδn),

where n0 ∈ N with n0 ≥ h(π) and δn ∶= h−1(n) for n ≥ n0. By (4.2), we have
+∞
∑

n=n0+1
ncµ(Eδn) < ∞.
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Otherwise, according to _eorem 2.2, for each n ≥ n0, there exists a measure νn ∈
M+(T), such that supp(νn) ⊂ Eδn and cµ(Eδn) = νn(T).

Now, taking µn ∶= νn/νn(T), we have ∥pµn∥
2
µ =

1
cµ(Eδn )

, for n ≥ n0 and

⟨pµn − pµm , pµm ⟩µ = ⟨pµn , pµm ⟩µ − ⟨pµm , pµm ⟩µ

= ∫
T
p̂µm(ζ)dµn(ζ) −

1
cµ(Eδm)

= 0.

_e last equality holds, because p̂µm = 1
cµ(Eδm )

cµ-q.e. on Eδm and Eδn ⊂ Eδm , for
n ≥ m. _erefore, by Lemma 4.2, we get that the function

f (z) ∶= n0 + ∑
n≥n0

cµ(Eδn)pµn(z), z ∈ D,

belongs to Dh(µ).
Finally, we will prove (4.1). If d(ζ , E) ≥ δn0 , then

lim inf
z→ζ

f (z) ≥ n0 = h(δn0) ≥ h(d(ζ , E)).

Otherwise, let N ∈ N, with δN+1 < d(ζ , E) ≤ δN . We have

f̂ ≥ n0 + N + 1 − n0 = N + 1, cµ-q.e. on EδN .

_us,
f (z) ≥ h(d(ζ , E))ϖ(z, EδN ,D), ζ ∈ EδN .

Letting z → ζ , we obtain conclusion (4.1), and this completes the proof.

_eorem 4.3 Let f ∈D(µ)∩A(D) be an outer function and E = {ζ ∈ T ∶ f (ζ) = 0}.
If there exists a function g ∈D(µ) such that ∣g(z)∣ ≲ d(z, E)4, z ∈ D, then g ∈ [ f ]D(µ).

_eorem 4.3 is a D(µ)-analogue of [11, _eorem 3.1] and [12, _eorem 2.1]. We
will use the same basic technique here. First, we introduce some notation. Let Γ be a
Borel subset of T. We denote by ∂Γ the boundary of Γ in T. We associate with a given
outer function f the function fΓ deûned by

fΓ(z) ∶= exp ( ∫
Γ

ζ + z
ζ − z

log ∣ f (ζ)∣dm(ζ)) .

Lemma 4.4 Let f be a bounded outer function. For every Borel set Γ ⊂ T, we have

∣ f ′Γ(z)∣ ≲ ∣ f ′(z)∣ + d(z, ∂Γ)−4 , z ∈ D.

Proof See [12, Lemma 2.2].

Proof of_eorem 4.3 Let (I i)i≥1 be the complete set of components of T ∖ E and
set Jn ∶= ⋃n

j=1 I j . We claim that
(i) fT∖Jn g converges pointwise to g, as n → +∞,
(ii) lim inf n→+∞Dµ( fT∖Jn g) < ∞,
(iii) fT∖Jn g ∈ [ f ]D(µ), for all n,
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and thus the theorem is proved.
_e assertion (i) is obvious. To prove (ii) by Lemma 4.4, we get that

Dµ( fT∖Jn g) ≲Dµ( f )∥g∥2
∞ + ∥ f ∥2

∞Dµ(g) + ∫
D
(

∣g(z)∣
d(z, ∂T ∖ Jn)4 )

2
P[µ](z)dA(z)

≲Dµ( f )∥g∥2
∞ + ∥ f ∥2

∞Dµ(g) +Dµ(z).
_en

lim inf
n→+∞

Dµ( fT∖Jn g) < ∞.

To check (iii) it is suõcient to show that fT∖I g ∈ [ f ]D(µ), where I is a connected
component of T ∖ E, say I = (e ia , e ib). Let ρ > 1, deûne

ψρ(z) = (z − 1)4
/(z − ρ)4 and ϕρ(z) = ψρ(e−iaz)ψρ(e−ibz),

let є > 0, and set Iє = (e i(a+є) , e i(b−є)), and

ϕρ ,є(z) = ψρ(e−i(a+є)z)ψρ(e−i(b−є)z).
By Lemma 4.4 again, we have

Dµ(ϕρ ,є fT∖Iє) ≲Dµ(ϕρ ,є) + ∥ϕρ ,є∥
2
∞Dµ( f ) +Dµ(z).

_en
lim inf
є→0

Dµ(ϕρ ,є fT∖Iє) ≲Dµ(ϕρ) + ∥ϕρ∥
2
∞Dµ( f ) +Dµ(z).

On the other hand, it follows fromboundedness of ∣ϕρ ,є fT∖Iє ∣/∣ f ∣ onT that ϕρ ,є fT∖Iє ∈
[ f ]D(µ) . Since ϕρ ,є fT∖Iє converges pointwise to ϕρ fT∖I , as є → 0, we have ϕρ fT∖I ∈
[ f ]D(µ) . We multiply by g. As g ∈D(µ)∩H∞, ϕρ fT∖I g ∈ [ f ]D(µ) . Again, according
to Lemma 4.4, we have

Dµ( fT∖Iϕρ g) ≲Dµ( f )∥g∥2
∞ +Dµ(z) + ∥ f ∥2

∞Dµ(ϕρ g).

Using ∣g(z)∣ ≲ d(z, E)4, it is easy to check that Dµ(ϕρ g) is bounded as ρ → 1.
_ese imply that fT∖I g ∈ [ f ]D(µ) . As a similar argument to that above gives fT∖Jn g ∈
[ f ]D(µ).

_e last ingredient of the proof of _eorem 1.2 is the following theorem due to
Richter and Sundberg [19, _eorem 4.3].

_eorem 4.5 Let f be an outer function and γ > 0. If f , f γ ∈D(µ), then [ f γ]D(µ) =
[ f ]D(µ).

Now we are ready to prove_eorem 1.2.

Proof of_eorem 1.2 To see that f is cyclic, we prove that 1 ∈ [ f ]D(µ) .
Using _eorem 4.1 for h(t) = log(1/t), the condition ∫0 cµ(Et)

log(1/t)
t dt < ∞

implies that there exists a real function v ∈ Dh(µ) such that lim inf z∈ζ v(z) ≥

h(d(ζ , E)), ζ ∈ T. Now set u ∶= v + iṽ, where ṽ is the harmonic conjugate for
v. By the Cauchy–Riemann equations, we get that ∣u′(z)∣ = ∣∇v(z)∣, for all z ∈ D.
Hence, Dµ(u) = 2Dµ(v), then u ∈ D(µ). We put gλ(z) = e−λu(z), for λ ≥ 0. We
have ∣gλ(z)∣ = e−λv(z) ≤ 1 and ∣g′λ(z)∣ ≤ λ∣u′(z)∣. _en Dµ(gλ) ≤ λ2Dµ(u). Hence,
lim inf λ→0Dµ(gλ) = 0 and gλ ∈ D(µ) for all λ ≥ 0. Since gλ converges pointwise to
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1, as λ → 0, we obtain that gλ converges weakly to 1. Otherwise, for almost all ζ ∈ T,
we have

∣gλ(ζ)∣ = e−λv(ζ)
≤ e−λh(d(ζ ,E))

= d(ζ , E)λ .
_at gives ∣gλ(z)∣ ≤ (π/2)λd(z, E)λ , for all λ ≥ 0. Using _eorem 4.3 we obtain
g4 ∈ [ f ]D(µ), and by _eorem 4.5 we get that [gλ]D(µ) = [g4]D(µ), for all λ ≥ 0.
Hence gλ ∈ [ f ]D(µ), for all λ ≥ 0. _en 1 ∈ [ f ]D(µ).
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