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Cyclicity in Dirichlet Spaces
Y. Elmadani and I. Labghail

Abstract. Let y be a positive finite Borel measure on the unit circle and D (u) the associated har-
monically weighted Dirichlet space. In this paper we show that for each closed subset E of the
unit circle with zero c,-capacity, there exists a function f € D(u) such that f is cyclic (i.e.,
{pf : p is a polynomial} is dense in D (p)), f vanishes on E, and f is uniformly continuous. Next,
we provide a sufficient condition for a continuous function on the closed unit disk to be cyclic in

D(p).

1 Introduction

A bounded operator T on a Hilbert space J is called two-isometry if T**T? - 2T* T +
I =0, is called cyclic if there exists x € H such that span{T"x : n > 0} is dense in
X, and is said to be analytic if N,50T"H = {0}. Richter proved in [18] that every
cyclic, analytic, and two-isometry operator can be represented as multiplication by
z on the Dirichlet-type space D(u) induced by a positive finite Borel measure y on
the unit circle. These spaces were later studied by several authors; see, for instance,
[6,9,16,19,20].

In this paper we are interested in the study of the cyclicity in D(p). For the Hardy
space H?, by Beurling’s theorem [1] the cyclic functions are exactly the outer func-
tions. In the classical Dirichlet space D, Brown and Shields proved that every cyclic
function in D is an outer function whose zero set has zero logarithmic capacity. They
conjectured that the converse is also true [3, Question 12]. Some partial results toward
this conjecture were obtained by Hendenmalm and Shields in [16]. They proved that
every outer function f € D n A(D) with countable zero set is cyclic, where A(D) is
the disk algebra . In [11,12], El-Fallah, Kellay, and Ransford gave the first example of
an uncountable closed subset E of T such that every outer function f € D n A(D)
with zero set included in E is cyclic. Furthermore, they provided some sufficient con-
ditions on E to ensure the cyclicity of every outer function f € D n A(D) vanishing
onE.

Carleson [4] proved that for every closed subset E of the unit circle that has zero
logarithmic capacity, there exists a cyclic function in D that vanishes on E. Later,
Brown and Cohn in [2] modified Carleson’s construction and gave a cyclic function
in DN A(D) vanishing on E. Moreover, the problem for cyclicity in D is still open [9].
For a brief history of the cyclicity problem in D(u), we refer the reader to [8].

Our first aim in this work is to extend the Brown-Cohn Theorem to the Dirichlet
spaces D(p). Next, we give a capacitary sufficient condition for cyclicity in this space.
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Let T be the boundary of the open unit disk D in the complex plane C. We denote
by Hol(ID) the space of all analytic functions on ID. Let y be a positive finite Borel
measure on T; the Dirichlet-type space D(y) is given by

D() = {f < Hol(D) : D, (1) = [ IF'()PPLu](2)dA(2) < o0},

where d A is the two-dimensional Lebesgue measure and P[] is the Poisson integral

of
Pl = [ a0, zem.
T[{ -2
The space D(u) is endowed with the norm

(L) [£1k = 1f ()] + Du(f), f € Hol(D).

Note that D(u) is a reproducing kernel Hilbert space. Denote by k* the reproducing
kernel of D(u); we have f(2) = (f, k&), f € D(u), z € D, where (-, - ), is the inner
product in D(y) introduced by norm (1.1). The reproducing kernel k* satisfies the

inequalities

1.2) 2Rekt(z,w)-12>0,
2

(13) o) < [

for each z, w € D (see, for instance, [20, Theorem 2]).
To introduce the capacity associated with D(u), we recall the definition of the
harmonic Dirichlet-type space D" (): the set of functions f € L?(T) such that

ou = [(1%521 4| 42 )P[M](z)dA(z)

is finite, where f(z) := P[f](z) is the harmonic extension for f to ID. The space
D"(u) equipped with the norm

I£1% =)+ Dyu(f),  feLlX(T),
is a reproducing kernel Hilbert space containing D(u) as a closed subspace [6].

Note also that D" () is a Dirichlet space in the sense of Beurling and Deny [13].
The c,-capacity of a subset E of T is defined by

(14) cu(E) =inf{ ||f|\[24 : f € D"(u) and |f| > 1m-a.e. on a neighborhood of E},

where m denotes the Lebesgue measure on T. From (1.4) we have m(O) < ¢, (O), for
every open subset O of T. Hence any set of zero c,,-capacity is m-negligible. Moreover,
since D(u) c L2(u) (see [9, Theorem 8.1.2]), we have for every Borel subset E of T

u(E) < (1+u(T)) cu(E).
The ¢, -capacity satisfies the strong-type inequality, see [5]. Namely,

15) [ alir> 0de 11 f e ).

We say that a property holds c,,-quasi-everywhere (c,-q.e.) if it holds everywhere
outside a set of zero c,-capacity.
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Recall that the polynomials are dense in D(u); see [18] and [9, Corollary 7.3.4]. A
function f € D(u) is called cyclicin D(u) if [ f]p(u) = D (1), where

[f]p(u) := {pf : pisa polynomial}.
Recall also that the outer functions are given by

7@ =exp [ T Zlogy(Odm(@), zeD,

where v is a positive function such that logy € L'(T). If 4 = m, then c,, is compa-
rable to the logarithmic capacity ¢, and the space D(m) coincides with the classical
Dirichlet space D. Brown and Shields proved in [3] that if f is cyclic in D, then f is
an outer function and ¢(Z(f)) = 0, where

Z(f)={¢eT: f(¢) =0}.

They conjectured that the converse is also true. The generalized Brown-Shields con-
jecture asserts that an outer function f € D(u) is cyclic if and only if ¢, (Z(f)) = 0.
Guillot showed in [15] that this conjecture is true for finitely atomic measure. In [7],
El-Fallah, Elmadani, and Kellay proved that this conjecture is also true for measures
with countable support. The generalized Brown-Shields conjecture remains open.

The disk algebra A(ID) is the set of continuous functions on the closed unit disk I
that are holomorphic in I. Our first result is the following theorem.

Theorem 1.1  Let y be a positive finite Borel measure on T and let E be a closed subset
of T. If ¢, (E) = 0, then there exists a function f € D(u) n A(D) that is cyclic in D(u)
and Z(f) = E.

It is clear that if E is a closed subset of T, then c¢(E) = lim,_¢+ c(E;), where E, :=
{(eT:d({,E) < t} and d denotes the distance with respect to arc-length. El-Fallah,
Kellay, and Ransford proved in [10] that an outer function f € D n A(D) is cyclic in
D if c(E;) goes to zero “sufficiently rapidly” as t — 0, where E = Z(f).

In the following theorem we extend this result to Dirichlet spaces D(u).

Theorem 1.2 Let f € D(u) n A(D) be an outer function and let E = Z(f) and
E;={(eT:d({,E) <t} If
log(1/1)

(1.6) [c#(Et) . dt < oo,
0
then f is cyclic in D(u).

Let K be a closed subset of T. Consider the measure du({) = d({,K)*dm({)
for some « € (0,1). The measure y provides some examples where condition (1.6) is
satisfied. Indeed, by the same calculation as [7, Theorem 5.4], we obtain

ds !
Cy(Et) S ( [m)

for every subset E of K. If E is a Cantor-type set, we obtain ¢, (E;) = O(t*?), where
o is the Hausdorff dimension of E; hence, (1.6) holds, for all « > o.
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In the next section, we will give some properties of the c,-capacity. The proof of
Theorem 1.1 is given in Section 3. Section 4 is devoted to the proof of Theorem 1.2.
Throughout the paper, we use the following notation:

¢ A < B means that there is an absolute constant C such that A < CB.
e« Ax Bifboth A< BandB S Ahold.

+ C(T) is the space of all continuous functions on T.

o M*(T) denotes the set of all positive Borel measures on T.

2 Capacity

In this section we state some properties that will be needed in the proof of our results.
First we recall some definitions. A function u € L?(T) is called quasi-continuous if for
every € > 0, there exists a subset A of T with ¢, (A) < € and such that the restriction
of u to T \ A is continuous. A function v is said to be a quasi-continuous modification
of u if v is quasi-continuous and v = u a.e. on T. We denote by U/ a quasi-continuous
modification of u.

Theorem 2.1 Each u € D" (u) admits a quasi-continuous modification .
Proof See [14, Theorem 23]. [ |

It is well known that for a given closed subset E of T, there exists a unique measure
vg € M*(T) supported on E such that c(E) = vg(T), where the energy of v defined
by

1
I(vg) = [T [T log 77— rdve(Odve (1)

is finite; see e.g., [17, Theorems 13 and 14].
The following theorem extends this result to Dirichlet spaces D(y).

Theorem 2.2  Let E be a closed subset of T; then there exists a unique measure vg €
M*(T) supported on E such that
cu(E) = [pve ly = v (E),
where p,, satisfies the following properties:
(i) 0< py, <lonTand p,, =1c,-q.eon E;

(i) (pug v = JrV(Q)dve (L), for eachv € D*(p);
(iii) py,(z) = [; (2Re k#(z, 1) —1)dvg(A), for z € D.

The function p,, is called the potential of the measure vg.
Proof The proofs of assertions (i) and (ii), in a more general case, is given in [13,

Theorems 2.1.5 and 2.2.2]. For the sake of completeness, we include the proofs here.
Fix a subset E of T. Denote by

S(E):=={feD"(y): f>0and f> lcy-q.e.on E}.
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Note that S(E) is a closed and convex subset of D" (). Then there exists a unique
positive function gg € D"(y) such that g¢ > 1 c,-q.e. on E and ¢, (E) = | gg Hf: If
pe = min (gg,1), then ¢, (E) = | pg |7, where 0 < pp <1and pg = 1¢,-q.e. on E, that
gives the assertion (i).

To prove (ii), let v € D" (1) be a positive function; then pg +ev € D" (), for each
€ > 0. By consequence, 2{pg, v), + €[v|2 > 0. Letting € — 0, we obtain (pg,v), > 0
for any non-negative v € D" (u). This implies the existence of a unique positive Borel
measure vg € M*(T) supported on the closure E of E such that

@1 (por- ¥ = (perv) = [ V(Ddva(0),

for each v € C(T). To extend (2.1) for D" (), let v € D" (u). There exists a sequence
v, € DM(u) n C(T) that is convergent to v and a subsequence v,, that converges
cu-q.e. on T to V. We have from Fatou’s lemma that

S - va@ave(@) = [ timing v, (0) - ()] v (©)
<liminf fT |V (0) = v ()] dve(0)

ng—+00
<timint | pug a1, ~ il
= cu(B)* limin vy, - vl
This implies that m c L'(vg), where W is the set of the quasi-continuous
functions belonging to D" (), and we have

(Pl = [FOdve(0), veD"(w).

This gives (ii). To prove (iii), we need the following lemma.
Lemma 2.3 Let f € D"(u), then f(z) = (f,2Rek*(z, -) - 1), z € D.

Proof Let P be the Riesz projection of D" () into D(u). Obviously, we have
(2.2) (Pf.8)u = (f-Pg)u

for every f and g in D" (u). Fix f € D" (u); we consider f* := Pfand f~ := f - Pf.
Using (2.2), we have

f@)=f(2)+ [ (2)
= (R )+ (R (2 )

= (fo k(2 )+ (kK (2 ) = (s PRE(2, )
= (f,2Rek¥(z, ) ~1),.

The last equality holds, because Pk#(z, - ) = 1. [ |

Now we return to the proof of (ii). Since p,, € D"(u), by Lemma 2.3 we have

Pop(2) = (prgr2Re kb (2, ) — 1), = fT (2Rekt(z, 1) — 1) dvi(M).
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Finally, if E is closed, then vg is supported on E and we have

Ipvel = (Pors s = [ B ()dve(d) = vi(E).

This completes the proof of Theorem 2.2. ]

As an immediate consequence, we obtain the following corollary.
Corollary 2.4 Let K be a closed subset of T; then
cu(K) = sup{v(K) :v e M*(T),suppv c K, p, <1c,-q.e. on T}.
Proof Denote by
M(K):={veM"(T):suppvcK,p, <lc,-qe. onT}.

By Theorem 2.2, there exists v € M*(T) such that supp vk ¢ K and p,, <1c,-qe.
on T. This gives that vg € M(K). Let v € M(K), and by Theorem 2.2, we have

W(K) = [ Fr(Odv(@) = (puopd= [ F(Odvi(0) < vi(K) = cu(K).

3 Proof of Theorem 1.1

In our proof we will use an analogue argument given in [2, 4].
Let E be a closed subset of T such that ¢, (E) = 0; then there exists a decreasing
sequence E,, of closed subsets of T such that

S cu(En)V? < oo,

By Theorem 2.2, for each n € N, there exists v, € M*(T) such that supp(v,) c E,
and ¢, (E,) = | py, ||f, = Vn(En). Set yy = vy /vy (E,), and put ¢, = Pp,,, where P
is the Riesz projection of D" (y) into D (). We have |¢,, % < pw, s =1/cu(En).
Now consider

$(z) = ZCH(En)¢Hn(Z)r zeD.

1

vV eu(En)

Since |¢,, (2)] < |kE||,i» for any z € D, ¢ is well defined and
[$(2)] < 3 cu(En) 2 1KE

Furthermore,

HZCH(En)%,, ”SZC#(En)1/2<OO,

Then ¢ € D(u). Now set f(z) = exp(—¢(z)), for each z € D. Clearly, f € D(u).

On the other hand, by Theorem 2.2 we have p, ({) = (B Cumde on E,, for each
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n € N. Using this fact with (1.2), we obtain

\Zl

(31) Re(9y,(2) = [ = Re (¢, (0)) dm(()

1 IZI2

2 E, |( |2pﬂn(()dm(c)

@(z,E,, D)
2¢,(En)

, z€D, mneN,

where @(z, E,;, D) denotes the harmonic measure of E,, at z. Therefore,

_Z‘D(Z’En »D)

[f(2) <e
It is well known that lin}a)(z, E,D) =1, for each & € E; it follows that f vanishes on E.
zZz—

Now we will modify the construction presented above to obtain the continuity on
D \ E. From (3.1), we can choose a sequence (7, ) increasing to 1 such that

Re(¢y, (rn()) 2 {€E.

1
2c,(En)’
Now set ¢,,(2) = ¢y, (rnz), forz € D, ¢ = ¥, cu(En)¢n, and f = exp(—¢). Since
Du(¢n) <Du(u,) (see [9, Lemma 7.3.2]), we obtain f € D(u). Hence, for large N,
we get that

N

lim nf Re($(2)) > S cu(En) Re(¢) () 2 >

n=1 n=1

N\Z

(eE.

NM—‘

So E c Z(f). B B
The function f is continuous in D \ E. Indeed, let zy € D \ E; then d(z, E) > 0, it
follows that for n sufficiently large,

d(ryz,Ey) 28>0

for all points z in some open disk centered at zy denoted by D(z) . By Theorem 2.2(ii)
and (1.3), we obtain

[60()] = |{pus K (2o M| =] [ BTz N )din (1)

o 2
< JIRTED () < s

Therefore,
2¢y (E )

cu(En)lpn(2)] <

From Weierstrass’ test the series ), ¢, (E,)¢, converges uniformly to ¢ on D(z).
Then ¢ is continuous on D(zy). And thus we deduce that Z(f) = E.
Finally, we prove that the function f is cyclic. Let

fu= exp( - Z c,,(E,-)</),~).

i>n
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Then we have D, (f,) < (Zisn cu(Ei)Y?)? - 0, as n — +oo. Also, f, converges
pointwise to 1 as n — +oo,and f,,/f = exp(¥i_; ¢, (Ei)¢:) is a bounded function. So
fn € [f]D(u)- We deduce that 1€ [ f]p,). The proof is complete. [ |

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on an adaptation of a technique due to El-Fallah,
Kellay, and Ransford in [10,12]. The first key of the proof is the following converse of
the strong-type inequality (1.5).

Theorem 4.1 Let E be a closed subset of T, and let h: (0, ] — (0, +o0) be a contin-
uous and decreasing function such that h(0) = +oo. Then there exists a real function
f € D"(u) such that

(4.1) limi?ff(z) >h(d({,E)), (eT,
if and only if the function h satisfies
(4.2) Acﬂ(Et)|dh2(t)| < oo,

To prove Theorem 4.1, we need the following elementary lemma.

Lemma 4.2 Let (H,|-|) be a Hilbert space, and let (y,), be a sequence of H such
that Yy, — Y LWm, for all n > m. Then Y 51 Wa/|wa|? belongs to H if and only if
Yzt 1/ [yal? is finite.

Proof See [9, Lemma 3.4.4] and [10]. [ |

Proof of Theorem 4.1 Suppose that there exists a real function f € D" () satisfying
(4.1). By [5, Theorem 1.3], we havelim,_,; f(z) exists c,-q.e. then f({) > h(t) c,—q.e
on E;. So

[aElanr ] < [" el ne]ano) - /h(f cu(If] > )ds? < .

The last integral is finite, because the c,-capacity satisfies the strong-type inequal-
ity (L.5).
To prove the converse, we first observe that

T too Sn1
[ e@ldr@lz ¥ [ e (s, )lan (o)

n=np+1 n

+o00
= > cu(Bs,)(n? = (n-1)%)
n=ng+1
+0oo
< Z ncy(Es, )s
n=ng+1
where ng € N with ng > h(r) and §,, := h™*(n) for n > ny. By (4.2), we have
+o00
> ncu(Es,) < oo.
n=nop+1
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Otherwise, according to Theorem 2.2, for each n > 1y, there exists a measure v, €
M*(T), such that supp(v,) c Es, and ¢, (Es,) = va(T).

Now, taking g, := v, /v, (T), we have | p,, |7 = T}fa)’ for n > ng and
[ n

(Pun = Putw> Pat Yt = (P> Pit du = <pym,pym>

= [ PO (©) - ey =0

The last equality holds, because p,, = cu-qe. on Es, and Es, c Es,, for

1
Cu (Eém)
n > m. Therefore, by Lemma 4.2, we get that the function

f(2)=no+ Y cu(Es,)pu,(2), zeD,

n>ngy

belongs to D" ().
Finally, we will prove (4.1). If d({, E) > 8,,, then

lirzn_glff(z) >ng =h(8n,) > h(d({,E)).

Otherwise, let N € N, with 841 < d({, E) < 8n. We have
fz ng+N+1-ng=N+1, cy-q.e. onEsy.

Thus,
f(2) 2 h(d({,E))@(z, Esy, D), (€ Es,.

Letting z — {, we obtain conclusion (4.1), and this completes the proof. ]

Theorem 4.3  Let f € D(u)nA(D) be an outer functionand E = {{ € T : f({) = 0}.
If there exists a function g € D(u) such that |g(z)| S d(z,E)*, z € D, then g € [ f ] ().

Theorem 4.3 is a D(p)-analogue of [11, Theorem 3.1] and [12, Theorem 2.1]. We
will use the same basic technique here. First, we introduce some notation. Let I be a
Borel subset of T. We denote by oI' the boundary of I' in T. We associate with a given
outer function f the function fr defined by

fr@ e ([ S og (Ol D).

Lemma 4.4 Let f be a bounded outer function. For every Borel set I c T, we have
@I sIf (@) +d(z.a0)™, zeD.
Proof See [12, Lemma 2.2]. [ |

Proof of Theorem 4.3 Let (I;);>; be the complete set of components of T \ E and
set J, = U}Ll I;. We claim that

(i) fr.j,g converges pointwise to g, as n — +oo,

(ii) liminf, o0 Dy(frag, &) < 00,
(iii) frs,8 € [f]p(u), forall n,
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and thus the theorem is proved.
The assertion (i) is obvious. To prove (ii) by Lemma 4.4, we get that

D, (0.8 3 DNl + 11220+ [ (75 2) Pll(2)AG)

SDu(Hlghe + 1f 1% Du(g) + Du(2).
Then
liminf D, (fr.,g) < co.
n—+oo
To check (iii) it is sufficient to show that fr.;g € [f]p(u)> where I is a connected
component of T \ E, say I = (e’?,e'?). Let p > 1, define

W) = (=D p) and $y(2) = yple "Dy (e 2),
let e > 0, and set I, = (e?(¢+) /(=€) ‘and

¢p,€(z) = V’p(e_i(a+e)z)‘//p(e_i(h_e)z)'

By Lemma 4.4 again, we have

Dy(‘lsp,sz\Ie) S D/4(‘l‘>p,s) + H(pp,EHioDy(f) + D,u(z)'
Then
lil;riiglfgy(ﬁbp,Ef'ﬂ\Ie) p ®M(‘/’p) + H(pp HzoDH(f) + DH(Z)'
On the other hand, it follows from boundedness of [¢,, c fr1.|/| f| on T that ¢, ¢ fr.1, €

[flD(u)- Since ¢, e fr.1, converges pointwise to ¢, fr1, as € — 0, we have ¢, fr s €
[f]rD(,,). We multiply by g. As g € D(u) nH™, ¢, fruig € [f]D(y). Again, according

to Lemma 4.4, we have

Dy (frar$pg) $ Du(Hglo + Du(2) + [ 1% Du(¢pg)-

Using |g(z)| S d(z,E)*, it is easy to check that D,(¢,g) is bounded as p — 1
These imply that fr.;g € [f]p(4)- As a similar argument to that above gives fr.j, g €

[f1D(u)- =

The last ingredient of the proof of Theorem 1.2 is the following theorem due to
Richter and Sundberg [19, Theorem 4.3].

Theorem 4.5  Let f be an outer functionandy > 0. If f, f € D(u), then [f¥]p(u) =
[f]D(y)

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 To see that f is cyclic, we prove that 1 € [ f]p ().

Using Theorem 4.1 for h(t) = log(1/t), the condition f; cﬂ(Et)wdt < o0
implies that there exists a real function v € D"(y) such that liminf,;v(z) >
h(d({,E)), { € T. Now set u := v + iv, where V is the harmonic conjugate for
v. By the Cauchy-Riemann equations, we get that |u'(z)| = |Vv(z)], for all z € D.
Hence, D, (u) = 2D, (v), then u € D(u). We put g)(z) = e M) for A > 0. We
have |g)(2)| = e*®) < 1and |g}(z)| < Mu'(2)|. Then D, (g2) < A*D,(u). Hence,
liminf, o D,(gr) = 0and gy € D(u) forall A > 0. Since g, converges pointwise to
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1, as A — 0, we obtain that g; converges weakly to 1. Otherwise, for almost all { € T,

we have

Q)] = O < D) ()
That gives |g)(2)| < (n/2)*d(z,E)*, for all A > 0. Using Theorem 4.3 we obtain
84 € [flp(u)> and by Theorem 4.5 we get that [gy]p(,) = [g4]D(u)> forall A > 0.
Hence gy € [f]p(u), forallA > 0. Then 1€ [f]p(u)- [ |
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