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GLOBAL DIMENSIONS OF RIGHT COHERENT RINGS WITH
LEFT KRULL DIMENSION

MARK L. TEPLY

The weak global dimension of a right coherent ring with left Krull dimension a > 1 is
found to be the supremum of the weak dimensions of the yfl-critical cyclic modules, where
P < a. If, in addition, the mapping I —* assl gives a bijection between isomorphism
classes on injective left iJ-modules and prime ideals of R, then the weak global dimension
of R is the supremum of the weak dimensions of the simple left .R-modules. These results
are used to compute the left homological dimension of a light coherent, left noetherian
ring. Some analogues of our results are also given for rings with Gabriel dimension.

1. INTRODUCTION

Let R be a ring with unity element and let RM denote a left i2-module. As usual
(for example, see [5]), the weak dimension of RM is

w- dimM = inf{n ^ 0 | Tor*+1 (_, M) = 0}

or oo if Tor*+1 (_, M) ^ 0 for all n ^ 0; the projective dimension of RM is

p - dimM = inf{n ^ 0 | Ext£+1 (M, _) = 0}

or oo if Ext£+1 (M, _) ^ 0 for all n ^ 0. Then the weak and left global dimensions
of R are given by

w.gl. dim R = sup{w — dim M | RM}

and
l.gl.dimiZ = sup{p— dimM | RM}.

Often l.gl.dimiZ is computed by Auslander's classical formula as l.gl. dimii —
sup{p— dimM | RM is cyclic}. For special classes of rings the number of cyclics to be
checked in computing l.gl.dimiZ may be reduced. For example if R is a commutive
noetherian ring, it is sufficient to check the projective dimensions of the simple modules.
Let K — dimM denote the Krull dimension of RM in the sense of [3], and let \K-
dimi? =K— dim^iZ. Recently, Rainwater [5] proved the following related results. If
R is a right coherent, left noetherian ring with 1 Ji — dimiZ ^ 1, then l.gl.dimiZ =
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sup{p—dim M \ RM simple}. (Recall that R is right coherent if each finitely generated
right ideal is finitely presented. See [1] or [6] for some properties of right coherent
rings.) If R is a left fully bounded noetherian, right coherent ring, then l.gl. dim R —

sup{p— d imM | RM simple} .

In this paper we generalise Rainwater's result in several ways: (1) we consider
w.gl. dim R for some nonnoetherian rings as well as l.gl. dim R for left noetherian rings;
(2) we relax the restriction IJC— dimiZ ^ 1; and (3) we relax the boundedness condition
of Rainwater's second result in the nonnoetherian case. Some extensions to certain rings
with Gabriel dimension in the sense of [3] and [4] are also observed. Thus we obtain
new formulae for the weak and left global dimensions of certain right coherent rings.

We frequently use the concept of an a-critical module; that is, a module M with
K— dim M — a and K— dim N < a for every proper homomorphic image TV of M . We
use .annM to denote the annihilator of a module M, assM to denote the assassinator
of a uniform module M, and radR to denote the Jacobson radical of R.

2. RINGS WITH KRULL DIMENSION

We start with two preliminary results that are used in proving our main results on
the weak global dimension of rings.

LEMMA 2.1 . Let R be a ring with left Krull dimension, and let M be a nonzero

left R-module. Then

w — dim M ^ sup {w — dim C | C is a cyclic critical subfactor of M} .

PROOF: Since R has left Krull dimension, any nonzero left R-module contains
a critical submodule. Hence we can form a chain of submodules of M inductively
as follows. Let Co = 0 . For a nonlimit ordinal /?, let Cp/Cp-i be a critical cyclic
submodule of M/Cp_i. For a limit ordinal 0, let Cp = \J C 7 . Eventually this chain

must terminate at some Cs = M.

Let m = sup{w—dim(C/j/C/3_i) | 1 ^ 0 ^ S, /? nonlimit}. To avoid trivialities, we
may assume that TO < oo and use transfinite induction to prove that w — dim Cp ^ TO
for all 0 ^ 6. By hypothesis Tor£+ 1(A, Cp/Cp^) = 0 for all right .R-inodules A;
hence our induction step for nonlimit ordinals follows from the exact sequence

Tor« + 1 (A, C^_,) -f Tor£+ 1 (A, Cp) -» Tor£ + 1 (A,

The induction step for limit ordinals follows immediately from the fact that
^ + 1 (A, _) commutes with direct limits. I
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LEMMA 2.2. Let R be a right coherent ring with left Krull dimension. Let a ^ 1
and let M be an a-critical left R-module with prime annihiiator P. If every singular
cyclic R/P-module has Krull dimension < a, then

w — dim C < sup {w — dim C \ C is a 0-critical cyclic left R-module, 0 < a } .

PROOF: Let p = sup{u; — dimC | C is a /J-critical cyclic left .R-module, /? < a } .
Let {Mj}jg/ be the set of nonzero submodules of M. Since a ^ 1, M has no simple
submodules; hence M embeds in JJ (M/Mi). Thus we can find a module L such that

is an essential monomorpliism. Since cokerj is a singular R/P-module, it follows from
our hypothesis that every critical cyclic subfactor C of cokerj has K— dim C < a. Thus
by Lemma 2.1, w— dim(cokerj) ^ sup {to— dimC | C is a cyclic critical subfactor of
cokerj} < p. Since K — dim (M/Mi) < «* for each i, then by Lemma 2.1 w -
dim(M/M;) ^ p for each i. For each right .R-module A, write A =—* Ak, where
each Ak is finitely presented. Since R is right coherent, then by [5, Lemma 1]

Tor«+1 [A,

Hence w — dim I J\ (M/Mi) I ^ P- From applying the long exact sequence for Tor to
\iel I

0 —• M ® L -L Yl (M/Mi) —• cokerj —> 0,

»€/

it now follows that w— diinM ^ p as desired. |

We can now give our first theorem on right coherent rings with left Krull dimension.

THEOREM 2.3. Let R be a right coherent ring such that IK- dimi* = a ^ 1.
Then w.gl. dim R = sup{w — dim C \ C is a /3-critical cyclic left R-module, (3 < a} .

PROOF: Let p = sup{t£>— dimC | C is a /3-critical cyclic module, j3 < a) . Clearly
w.gl.dimR > p. Consequently, by Lemma 2.1, it is sufficient to assume that p < oo
and to show that w — dim M < p for each (cyclic) a-critical module M.
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Let M be an a-critical module. By [3, Theorem 8.3] assM = P is a prime ideal
and we may choose a nonzero cyclic submodule N of M such that .annN = P. Since
K — dim(M/N) < a and N is a-critical [3, Proposition 2.3], it follows from Lemma
2.1 that there is no loss of generality in also assuming that annM is a prime ideal P.

By [3, Proposition 6.1], every singular cyclic left R/P-module C has K— dirnC < a.

Hence Lemma 2.2 yields w— d i m M ^ p as desired. |

Specialising Theorem 2.3 to the case a = 1 and using Lemma 2.1 for IK— dimiZ =

0, we obtain the following result.

COROLLARY 2.4. Let R be a right coherent ring with l.K — dimiZ ^ 1. Then

w.gl. dim R = sup{w — dimS | RS simple}.

A left noetherian ring R always has left Krull dimension [3, Proposition 1.3] and
w.gl. dim R — l.gl. dimiZ [6, Theorem 9.22]. Hence we also obtain the following result
from Theorem 2.3.

COROLLARY 2.5. Let R be a left noetherian right coherent ring with IK— dim R =
a > 1. TAen

l.gl.dimR = sup{p— dimC | RC is a j3-critical cyclic, (3 < a } .

For the class of left noetherian right coherent rings with l.K— dim R ^ 1, Corollary

2.5 may be viewed as an improvement of the standard result of Auslander. (See [6,

Theorem 9.12].)

If we specialise Corollary 2.5 to the case a = 1 and use Lemma 2.1 for the case in

which l.K — dimR = 0, we obtain the following result of [5].

COROLLARY 2.6. Let R be a left noetherian, right coherent ring with l.K —

dimR < 1. Then
l.gl.dimR = sup{p— dim5 | # S simple}.

We also note that Corollary 2.6 was known earlier [7] under the additional hypoth-
esis that R is a prime ring.

Next we consider rings whose indecomposable injective modules are uniquely asso-
ciated with their assassinators. Such rings with Krull dimension are studied extensively
in Chapter 8 of [3].

THEOREM 2.7. Let R be a right coherent ring with left Krull dimension. As-

sume that the mapping I —* assl gives a bijection between the isomorphism classes of

indecomposable injective left R-modules and the prime ideals of R. Then

w.gl. dimR = sup{u>— dimS \ S is a simple left R-module}.
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PROOF: Let q = sup{to — d i m 5 | S is a simple left R-module}. Clearly
w.gl.dimiZ ^ q. By Lemma 2.1, it is sufficient to assume that q < oo and prove that
w — dim M ^ q for every (cyclic) critical module M. We use induction on K — dim M.

Since the result is trivial for O-critical modules, we assume that a ^ 1, M is a-
critical, and to— dim C ^ q for every /^-critical module C with /? < a. By our induction
hypothesis and the argument in the proof of Theorem 2.3, there is no loss of generality
in assuming that annM is a prime ideal P. By our correspondence hypothesis and [3,
Theorem 8.6], K- dim R/P = K- dim M = a. It now follows from [3, Proposition 6.1]
that every cyclic singular i?/P-module C has K— d imC <K— dim R/P = a. Lemma
2.2 and our induction hypothesis now imply that

w- d i m M < sup{u>— dimC | C is a /3-critical cyclic ft < a } = q.

Since a ring with left Krull dimension whose prime factor rings are left bounded
satisfies the correspondence hypothesis of Theorem 2.7, we have the following result of
[5] as an immediate corollary.

COROLLARY 2.8. If R is a right coherent, left fully bounded noetheri&n ring, then

l.gl. dimiZ = sup{p— dim S | 5 is a simple left R-module}.

To illustrate the use of Theorem 2.7, we give the following elementary example.

Example 2.9. .Let Z denote the integers, let p be a fixed prime, let E = Zp(oo) be
the indecomposable p-priinary divisible abelian group, and let P = Z[xi, x-i, . . . , xn]

be the polynomial ring in n indeterminates. Then E is a P-module via Ex< = 0 for
each i. Let

R
R =

be a ring with the usual matrix operations. It is easy to see that R is neither left nor
right noetherian, but \.K — dimi? = i.K — dimiZ = n + 1. Since

0 0

0 Xi

has non-finitely generated left annihilator

"Z E

then R is not left coherent. However, it is not hard to verify that each element of
R has finitely generated right anniliilator and that the intersection of any two finitely
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generated right ideals is finitely generated; thus R is right coherent by [1, Theorem,
2.2]. Since iZ/radR is commutative, every prime factor ring of R is bounded.

Now we compute w.gl. dim R. First note that any simple left R-module 5 ' anni-
hilated by a (projective) left ideal of the form

qJL E
0 P

has w — dim 5' < 1. Hence we may let 5 be a simple left jR-module that is annihilated
by A. Since the left iZ-module structure and the .Z-module structure of A coincide,
Torf (B, A) £ 0 for some BR and Torf (_, A) = 0. Since RP ^ R/A, we must have
Torf (_, RP) = 0. Since l.gl. dimP = n + 1, then there is a finitely generated free
resolution

o - P n + 1 - pn -*!• pn_, d^i > p0 -» s -> o

of P-modules by a Theorem of Quillen and Suslin [6, Theorem 4.63]. Letting each Pi be
a left R-module via AP{ = 0, we get Tor^ (_, Pi) = 0 for all k ^ 3. Using dimension
shifting, we obtain Tor£+4 (_, 5)' S Torf (_, Pn+i) = 0. Hence w - dimS ^ n + 3 ,
and thus Theorem 2.7 implies that w.gl. dim R < n + 3.

n
On the other hand, if M = Pp + £) Pxi, then there is a resolution

t=i

(*) o —• p ; + 1 —»p'n —•

of finitely generated projective P-modules P/ (t = 0 , 1 , . . . , n + 1). Since

0 0
0 P

is a direct summand of R as a right R-module, we may also regard (*) as a projec-

tive resolution of right i2-modules. Note that there is an inclusion i?-homomorphism

i: P/M —> A. If fi denotes the left multiplication map of A by I I , then

is a projective resolution of right R-modules in which P^+j is the first flat kernel. Thus
w.gl. dim R ^ n + 3 as desired.
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3. RINGS WITH GABRIEL DIMENSION

In this section we observe that all of our proofs in the previous section can be
extended to give results about certain rings with Gabriel dimension. Two examples are
given to illustrate the use of these more general results.

The properties of Gabriel dimension can be found in [3] and [4]. We use G—dim M

to denote the Gabriel dimension of a module M, and \.G— dimi? — G — dim^ R. For a
nonlimit ordinal a , a module M is called a-simple if G— d i m M = a and every proper
homomorphic image N of M has G — dim N < a. If M is a-simple for some a , then
M is called Gabriel simple.

If we replace the a-critical modules by a-simple modules, then the proofs of Lem-
mas 2.1 and 2.2 are easily modified to give the following analogues for rings with Gabriel
dimension.

LEMMA 3.1. Let R be a ring with left Gabriel dimension, and let M be a nonzero
left R-modtde. Then

w— dimM ^ sup {it;— dim 5 | 5 is a cyclic Gabriel simple subfactor of M} .

LEMMA 3.2. Let R be a right coherent ring with left Gabriel dimension. Let
a ^ 2, and let M be an a-simple left R-module with prime annihilator P. If every
singular cychc left R/P-module C has G— dim C < a , then

w - dim M ^ sup{w — dim S \ RS is a /3-simple cyclic, /? < a}.

If we use [3, Proposition 6.2] in place of [3, Proposition 6.1], it is trivial to modify
the proofs of Theorems 2.3 and 2.7 to obtain the following two results.

THEOREM 3.3. Let R be a right coherent ring with left Gabriel dimension a ^ 2.

Assume that

(1) each a-simple module S contains a nonzero submodule S' such that
annS* = assS1, and

(2)- R/assS has finite uniform dimension for each a-simple module S.

Then

w.gl. dim R = sup {w — dim S | Sis a /?-simple cychc left R-module , f3 < a} .

THEOREM 3.4. Let R be a right coherent ring with left Gabriel dimension. As-
sume that

(1) each Gabriel simple R-module S has a nonzero submodule S' such that
annS* = assS*,
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(2) R/assS has finite uniform dimension for each Gabriel simple module S,
and

(3) G — dim S =G— dim (R/assS) for each Gabriel simple S .

Then
w.gl. d i m R = s\ip{w — dim 5 | S is a simple left R-module}.

To illustrate the results of this section we mention the following two examples.

Example 3.5. Let Z denote the integers, let P = Z[zi, X2, •••, xn] be the commu-
tative polynomial ring in n in determinates, and let F be the quotient field of P. Let

oo
B = ® F, and make B into a module over the polynomial ring F[y) via By = 0. Let

t=i

R-\P B

[0 F[y]

be a ring with the usual matrix operations. It is rather straightforward to verify the
following statements:

(i) l .G-dim.R:=r.G-dimiJ = n + 2;
(ii) R is right coherent, but not left coherent;

(iii) hypotheses (1) - (3) of Theorem 3.4 are satisfied, as R/r&dK is a commu-
tative noetherian ring and (radR) = 0;

(iv) by Theorem 3.4,

w.gl.dimiZ = sup{w— dimS | RS simple} = n + 1;

(v) since the ideal
0 B'
0 0

is a direct sum of infinitely many left and right i?-modules, then \K —
dimi? and TK— dimi! do not exist.

Example 3.6. Let F be an universal differential field with derivation d, and let
C — F[y, d] be the ring of differential polynomials. In [2] it is shown that C is a simple,
hereditary y-domain with exactly one simple left C-module (up to isomorphism). Let
D be the quotient division ring of C. The let

be the ring with the usual matrix operations. This it is rather straightforward to verify
the following facts:

(1) i i is neither left nor right noetherian;
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(2) l .G-dim.R= r.G-dim.R = 2;

(3) i? is left and right coherent;

(4) hypotheses (1) and (2) of Theorem 3.3 are satisfied, as

i?/radR S C © C and (r.adR)2 = 0;

(5) by Theorem 3.3,

w.gl. dimiZ = sup{w— dim 5 | R,S simple} = 1;

(6) if M is a maximal left ideal of C, then

/ AM D]\ [0 D] ( ,[0 D]\

H o c ) " . c — - ( " . c\)-ass

so there are 1-simple modules and 2-simple modules with the same assas-

sinator; thus Theorem 3.4 does not apply to R in this case;

(7) \.K- dimR and i.K - dim.R do not exist, for / has

infinite uniform dimension.
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