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Abstract

Formulae are given for the variances and covariances for mean squares in anova under the
broadest possible assumptions. The results of other authors are obtained by specializing ap-
propriately: these include ones concerning randomization and/or random sampling models, as
well as additive (linear) models consisting of mutually independent sets of exchangeable effects.
Although the illustrations given refer only to doubly and triply-indexed arrays, the approach
is quite general. Particular attention is drawn to the generalized cumulants (and their natural
unbiased estimators) which vanish when additive models are assumed.

1980 Mathematics subject classification (Amer. Math. Soc.): 62 A 05, 62 J 10.
Keywords and phrases: cumulant, fc-statistic, anova model, component of variance, designed
experiment, treatment mean square, randomization.

1. Introduction

In the earlier papers in this series, Speed (1986a,b), Speed and Silcock (1988),
hereafter referred to as II, III and V, we have defined and studied certain expres-
sions generalizing the classical cumulants and fc-statistics. We refer particularly
to the introduction of III for a general discussion of the background to this work.
The aim of this paper is to present a number of calculations of variances and co-
variances of estimates of components of variance and other mean squares which
demonstrate that the results of the earlier papers can be used to carry out these
calculations quite straightforwardly and under the most general assumptions for
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[2] Cumulants and partitition lattices 363

which the various notions are defined. Our approach is a na tu ra l generalization
of tha t introduced by Tukey (1950). We regard the me thods i l lustrated and the
results given as the most reasonable completion of the program under taken by
Dayhoff (1964) and Carney (1965) t h a t seems possible with existing combinato-
rial theory. All our formulae are readily implemented on a computer and the only
limitation to producing further results of the same kind would be the space it
takes to write them down, for a t the level of generality a t which we are operat ing,
they become lengthy very quickly. They do simplify, of course, for the special
cases such as those arising from linear models wi th mutual ly independent sets of
independent and identically dis t r ibuted effects, and if it were desired expressions
for variances and covariances could be computed for more linear models t h a n
those we consider below.

As we have already remarked, our formulae get complicated ra ther quickly,
and so we would like to emphasize t h a t our a im is not jus t to produce lengthy for-
mulae, bu t to give insight into the assumptions underlying the s t anda rd variance
component models and the usual analyses of s t anda rd designed experiments . In
these contexts we demons t ra te the role played by a number of generalized cu-
mulants (and their associated generalized fc-statistics) which measure various
forms of non-addit ivity and inhomogeneity and which appear in expressions for
the variances and covariances of mean squares under assumptions wider t h a n
the usual ones. The best unbiased est imates of these measures are all readily
computed, and at a later da t e we hope to present a range of tes ts for addit iv-
ity, homogeneity, etc. which will be able to supplement the usual analyses of
variance.

Turning now to a description of the contents of this paper , we begin by point-
ing out t ha t it relies almost entirely on results presented in earlier papers in this
series. One exception to this concerns expressions for the p roduc ts of generalized
^-statistics, and we collect the results of this kind t h a t we need in the Appendix
to this paper .

There are two major classes of results given below. T h e first takes as its
s tar t ing point the formulae for products of generalized ^-statist ics of order 2, for
these are only a s tep from the (co)variances of the same fc-statistics. Following
this we use results from Sections 4, 5 and 6 of III to specialize the results t o
permuta t ion distr ibutions, on the one hand, and linear models consisting of sums
of independent sets of exchangeable effects on the other . We draw par t icular
at tent ion to the generalized cumulants which vanish when addit ivi ty models are
assumed. The second set of results consist of re-derivations of the randomizat ion
variances given by P i t m a n (1937) and Welch (1937), see also Ogawa (1974),
for the t rea tment mean square in randomized block and Lat in square designs.
Not only are our derivations ra ther more compact t h a n those in the references
cited, using the machinery developed in this series of papers , b u t it is also of
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364 T. P. Speed and H. L. SUcock [3]

interest to see the same non-additivity and inhomogeneity measures appearing
in this context as well. We close with the derivation of analogous results for the
treatment mean-squares in the classical split-plot design.

2. (Co)variances of estimates of components of (co)variance

In the following three sections we will compute the variances and covari-
ances of a selection of second order generalized ^-statistics which, as symmetric
unbiased estimators of generalized cumulants, are generalizations of the stan-
dard estimators of components of variance in linear models with random effects.
The method we adopt is the natural extension of that introduced by Tukey
(1950), who showed the power of polykays for deriving such results. We illus-
trated it briefly in II, Section 5, calculating the variance of the sample variance
s2 = (n- I ) " 1 ^{Xi - X.)2, and it is worthwhile giving a brief recapitulation
of that discussion here.

As we have emphasized many times, one of the strengths of our approach
is that we keep all random variables under discussion as distinct as possible,
only identifying them at the last stage if that is desired. Accordingly, we do
not calculate var(s2) where s2 = [.Fia |X ® .X] (notation as in II, repeated in
the Appendix to V), but rather cov(fc12,)fc34) where £12 = [.F12IW ® X],kzi =
[Fs4\Y <g> Z] and ((Wi,Xi,Yi,Zi),i € n) is an exchangeable array of 4-vectors.
At the end we can put Wi = X% = Yi = Zi, i € n. Now we need [F12IW ®
X][-F34|Y ® Z] = [F12 ® F34\W <g) X <8> Y ® Z] to calculate E{/fci2fc34} and so
we are thrown back to Table I of II (repeated in the Appendix below) for an
expansion of F12 <8) .F34. Once we have that done the problem is essentially
solved, for we find

(4.1) COv(fci2, £34) = -/l234 + ^—^{frt\24 + /l4|23> + {/l234 ~ /l2|34>-

All that remains is to substitute expressions for the / 's according to the underly-
ing model being assumed; in this case we might suppose that the (Wi,Xi, Yi,Zi)
are mutually independent and identically distributed, or that they arose by sim-
ple random sampling without replacement, or that they come from a specified
urn model, etc.

The two steps in the line of reasoning just exhibited are: (a) the calculation
of the tensor products of relevant generalized fc-statistics Fa,o € P(2); and (b)
the evaluation of the relevant generalized cumulants fT, T 6 P{4), under a range
of assumptions of interest. We do this below for a selection of a G Hom(P, P{2))
and the associated r e Hom(P, P(4)), for a number of small posets P. More
fully, we consider all possibilities for doubly indexed arrays Wij, Xij, etc. where
either t is crossed with j , or j is nested within i, and we also discuss the 'finest'
component of variance (that is, the bottom line of the anova table) for some
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triply indexed arrays, namely, when i and j are crossed and k is nested within
both i and j (two-way arrays wi th equal replication), when j and k are crossed
and bo th nested within i ( repeated two-way arrays) , and where i nests j which
in tu rn nests k ( three factor hierarchical).

In the Appendix we have t abu la ted a range of tensor p roduc ts of generalized
^-statistics including all of those necessary for the i l lustrations we give. These
were derived using the formula given in Proposi t ion 3.1 of III and a computer
to carry out the calculations. Thus s tep (a) ment ioned above is completed. For
step (b) we begin with the most general exchangeability model appropr ia te to the
index set I under discussion, see III, Section 4 for the not ion of GW(I)-invariance
which defines this generalized exchangeability. T h e most impor tan t submodel
here is what we t e rm the simple sampling model (SSM) involving simple r andom
sampling of all factor levels from finite populat ions, subject, of course, to any
nesting constraints embodied in the poset P . As was explained in III, Section 4,
this is essentially the framework of the Iowa school, K e m p t h o m e (1952), Dayhoff
(1964, 1966), Carney (1967), as well as t h a t of Hooke (1956a,b) in the simple
two-way ( that is, crossed) set-up.

A much more dramat ic specialization is to wha t we call t he general additive
model (GAM) described in III, Section 5, where each of the (mutual ly inde-
pendent) sets of effects in the linear model is a fully exchangeable array in the
classical sense. This specializes to the additive sampling model (ASM) where the
effects in the additive model are all sampled wi thout replacement from a finite
population,Tukey (1956b, 1957), on the one hand , and to the i.i.d. additive
model (IAM) on the other, where the effects are now assumed to b e independent
and identically dis t r ibuted (i.i.d.).

As remarked in the Int roduct ion above, our a im is not jus t to give (complex)
formulae, bu t also to seek greater insight into the assumptions underlying the
usual components of variance analyses, which invariably assume (IAM) wi th com-
mon normal distr ibutions ( = N A M ) . One way of gaining such insight is th rough
noting the form and interpretat ion of the generalized cumulants which vanish
as we specialize our models from the most general th rough (GAM) and (IAM)
to (NAM). For example, it is well known t h a t t he kurtosis t e r m /1234 in (4.1)
generally exists under (IAM), and vanishes under (NAM). Similarly we will find
and interpret various other generalized cumulants which are present in the most
general exchangeability model, b u t which vanish under (GAM), and it will be
natura l to regard these as measures of non-additivity.

3. Two indices with nesting

Here we consider doubly-indexed arrays X = (Xij),Y,Z and W where the
3 is nested within i, and our interest is in the variances and covariances of the
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generalized Jfc-statistics fc(12,12) and fc(12,1|2) where (when W - X):

fc(12,l|2) = ±
n m —

These expressions are the best quadra t ic es t imators of the generalized cumulants

/ ( 1 2 , 1 2 ) and / ( 1 2 , 1 | 2 ) respectively, and it will be recalled from the Corollary

to Proposi t ion 5.1 of III and III, Section 6 t h a t under (GAM) these generalized

cumulants are the within and between class components of variance, respectively.

We will continue a pract ice adopted in earlier papers in this series of switching

between fc(<r),/(<r) and ka,fa as convenience dictates.

It is immediate from Appendix B(i) t h a t Cov(fc(12,12),fc(34,34)) is

[/l2|34,12|34 ~ /l2,12/34,34] H /l234,1234 H /l234,12|34

(3.1) + / _ ,x [/l234,13[24 + /l234,14|23]

+ mi _ ^ [/l3|24,13|24 + /l4|23,14|23]

where the / ' s are the fourth-order generalized cumulants fa = fWXYZ of ^
array {(WijXij,Yij,Zij):(i,j) € m/n) whose first four moments (at least) are
invariant under arbitrary finite permutations of i and, independently within each
of a finite number of i, of arbitrary finite permutations of j . If this invariance
holds for the entire joint distribution, we call it Between/Within Exchangeability
(BWE).

Now let us suppose that we have a population array {{WIJ,XJJ,YU,ZM):

(I, J) 6 M / N ) , m < M < 00, n < J V < o o , and that we sample m labels
1(1),..., I(m) from M and, independently within each of the m sampled / ' s , n
labels from N: J ( l , 1 ) , . . . , J ( l , n), J ( 2 , 1 ) , . . . , J(2, n ) , . . . , J{m, 1 ) , . . . , J{m,n).
Here the Wu,Xu, etc. may simply be real numbers or they may constitute
a (BWE) array of random variables, and all sampling is without replacement.
We can define an array ((Wij,Xij,Yij,Zij):(i,j) G m / n ) by putting Wij =
^/(t)j(t,j)i and similarly for Xij,Y{j and Zij, and this sample array clearly has
the (BWE) property. Note that if we have a population of numbers with the
corresponding permutation distribution, the random sampling is unnecessary;
we can simply select the first m labels J = 1, . . . , / = m, and, within each of
these, the first n labels.

It is easy to see that the generalized cumulants fa of the sample coincide
with the population generalized ^-statistics ka in the case where we are dealing
with a permutation distribution over an array of numbers, and in this case—the
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(SRS) model—the covariance of the sample generalized ^-stat ist ics fc(12,12) =
and fc(34,34) = k34,34(Y,Z) is jus t

{3"2) + ( m ( n - l ) " M(N-1)J [ f c l234 '13l24

1 \ -
- l ) J tfc13|24,13|24 + fcl4|23,14|23]

I

Note that this results from expanding 712,12/34,34 = 1̂2,12̂ 34,34 in the first
line of (3.1) by just the same rule that we used to get (3.1) in the first place.
Expansion (3.2) appears in a rather different notation in Dayhoff (1966), where
it was derived by a quite different method.

How can we interpret (3.2)? Using the expansion for (1234,1234) given in
terms of the T-tensors in Section 6 of paper V in this series, and interpreting
it, we find that the first term is a measure of within class kurtosis, for when

Xu = Yu = Zu we have

n 2 (n+ l ) y ^ y ^ - p . ^ 4̂ 3 n ( n - l ) ^ (sT<v Y , \

where X/_ = M ~ 1 ^ ) J X / j . Similarly the terms on the second line of (3.2)
are linear combinations of £ 7 E j ( ^ / J - ^ / ~ ) 4 , E / ( E j ( ^ / J - * / - ) 2 ) 2 and
(E /E j ( -^ / J ~ -^/-)2)2> and the interpretation of the results, for example of
fc(12|34,12|34), as an inhomogeneity measure is evident. See also Section 6
below.

We will now specialize to the (GAM). This means that we are supposing that
each of Wij,Xij, Yij and Zij have a representation of the form

(3.3) Xij = n + on + en

where the /I'S are constant, the (ai(W),ai(X),ai(Y),cti(Z)) are (jointly) clas-
sically exchangeable, as are the (etj(W),eij(X),eij(Y),£ij(Z)), and the a; are
independent of the Sij. How does (3.1) simplify in this case? By applying the
results of III, Section 5, especially Proposition 5.1, we find that /(1234,12|34),
/(1234,13|24) and /(1234,14|23) all vanish under (3.3) and so it is natural to
describe these generalized cumulants as measures of non-additivity. Expression
(3.1) becomes

(3.4) [/f234 - /12/I4] + — /l234 + m ( n _ 1) ̂ l£3|24 + /l4|23l

where the superscript e signifies the fact that these / 's refer to the classically
exchangeable array of £'s.
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Next, we assume the model (SAM): that the e's are sampled without replace-
ment from a population of size P. In this case (3.4) specializes to a result first
proved by Tukey (1956b, Section 4) using a different approach:

Finally, we specialize (3.3) to the (IAM). Then (3.4) reduces to

where the /c's are (joint) cumulants of the random vector (£ij(W),£ij(X), £ij(Y),
Sij(Z)). In this form the result may be compared with the single index analogue
due to Fisher (1929). Of course the first term vanishes under (joint) normality
of the e's.

We have considered the various simplifications in (3.1) in some detail to
demonstrate what can be learned from the various formulae. In the remain-
der of this section we wil be more brief, indicating only the new points that crop
up.

We turn now to the variance of the generalized fc-statistic fc(12,1|2) and the
covariance of fc(12,12) and fc(12,1|2). From Appendix B(ii) we have the following
expression for cov(fc(12,1|2), ifc(34,3|4)):

[/l2|34,l|2|3|4 - /l2,1|2/34,3|4] + / _ ^ [/l234,13|24 + /l234,14|23]

+ — [/l234,l|3|24 + /l234,2|4|13 + /l234,l|4|23 + /l234,2|3|14]

1 win — 1 . .
(3.7) + — /1234,1|2|3|4 + mn2(m _ l)(n _ I) l/l3|24,13|24 + /I4|23,14|23j

+ 1 _ .•, [/l3|24,13|2|4 + /l3|24,24|l|3 + /l4|23,14|2|3 + /l4|23,23|l|4]

+ m _ 1 [/l3|24,l|2[3|4 +/l4|23,l|2|3|4]-

Each of these terms except the first bracketed set has the form ca(m, n)fa

for a € Hom(P, £(4)), where P is the 2-element chain, and the line of reasoning
demonstrated above tells us that the corresponding expression under the (SRS)
model is the sum over all the a included in (3.7) of expressions having the
form [ca(m,n) — ca{M,N)\ka, where fa = ka is the corresponding population
generalized cumulant, here coinciding with a generalized fc-statistic.
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Which terms in (3.7) vanish under the (GAM) (3.3) and what do they mean?

As before we use Proposi t ion 5.1 of III, and we find t h a t (3.7) reduces to

r fa tot ta-\ *
U12|34 ~ /12/34J

(3-8)

[/13/I4 + /13/24 + /14/23 + /23/14]

where fa and fe are the generalized fc-statistics of the exchangeable arrays of a's
and e's. If we specialize to the model (SAM) assuming that the a's and e's are
sampled from finite populations of size Q and P respectively, then (3.8) changes
in the following way (cf. (3.5) above): the first bracketed term disappears, all / ' s
are replaced by fc's with the same sub- and superscripts and the multipliers m"1

and (m - I )" 1 become [m~x — Q~x\ and [(m — I)""1 — (Q — I)"1] respectively,
these arising from the expansion of the product k"2k%4

 m t n e first bracket. Again
we agree with Tukey (1956b, Section 4).

Turning to the terms which vanish in the passage from (3.7) to (3.8), we
note that apart from terms of the form /(1234,12|34) which have already been
discussed, there are four terms of the form /(1234,12|3|4). These must also
be non-additively measures, and using V(6.3) we can examine the form of the
corresponding ifc-statistic A;(1234,12|3|4). When W = X = Y = Z it is a. linear
combination of the following sums:

i j i j i j

• i

and

This indeed seems to be (an estimate of) a measure of non-additivity, although
a fairly complicated one. In a later paper we will be examining such measures
in more detail.

Under the (IAM) (3.8) simplifies by simply replacing the fourth-order terms of
the form /13|24 by products /13/24 of the corresponding second-order cumulants,
that is, (co)variances.

Our final results in this section concern the covariance between k(12,12) and
fc(34,3|4). Once more referring to the Appendix, this time B(iii), we find that
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under the most general assumptions th is covariance is

[/l2|34,12|3|4 - /l2,12/34,3|4] + ~[/l234,123|4 + /l234,124|3]

(3.9) - / _ i) t/l234,13|24 + /l234,14|23 + /l3|24,13|24 + /l4|23,14|23]

+ — /l234,12|3|4-

As before, if we specialize to the (SRS) model, the first bracketed terms disap-
pear, / ' s become fc's, and coefficients c(m, n) of / 's become coefficients c(m, n) —
c(M, N) of it's. Again, if we drop down to the (GAM), we find that /(1234,123|4)
and /(1234,124|3) vanish, as well as /(1234,12|3|4), /(1234,13|24) and /(1234,
14|23) which we have already met. Furthermore, /(12|34,12|3|4) factorizes into
/e(12)/a(34) and cancels with the other product in the first bracket. Expression
(3.9) then becomes

(3-10)

Noting that this agrees with Tukey (1956b) when we assume a (SAM), and
that there is no finite population correction in this case, we close with a brief
mention of the measure /(1234,123|4) of non-additivity. The leading term in its
corresponding fc-statistic fc(1234,123|4) is (when W=X = Y-Z)& multiple
of i(1234,123|4) = m-'n-1 £ . XV(*y - Xi.)3(Xi. - X..).

4. Two indices with crossing

Now that we have given such a thorough discussion of the reuslts for two
indices with nesting, the form of the results and the methods of derivation are
now quite clear. Our task in this section will be to comment upon the form of
the variances and covariances of
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[10] Cumulants and partitition lattices 371

1

n m — J
t

» 3

fc(l|2,12) = i
i

1

Here A" = (X^-) is a two-way array of random variables whose moments of order
up to two are invariant under independent finitary row and column permutations
of the subscripts. For the derivation of our results, however, we will be using
a similarly indexed array of vectors ((Wij,Xij,Yij,Zij):(i,j) e m x n) and
assuming the invariance property for joint moments up to order four. If the
same invariance holds for the whole joint distribution, the array is termed row
and column exchangeable (RCE), see Aldous (1981).

The crossing rule of III, Proposition 3.2 gives us an easy method of expand-
ing products of generalized fc-statistics using single index results of this type,
and for this reason we have not tabulated expansions of products in this case.
Using this method we find that under the most general invariance assumptions
cov(ife(12,12), fc(34,34)) is the sum of the following 17 terms.

[/l2|34,12|34 - /l2,12/34,34] H /l234,1234 H /l234,12|34 H /l2|34,1234
TtXTh Tft TX

^ 7——jr[/l234,13|24 + /l234,14|23] H -. —pr[/l3|24,1234 + /l4|23,1234]

(4.i) "y p m

H r[/l2|34,13|24 + /l2|34,14|23] + — [/l3|24,12|34 + /l4|23,12|34]
Tt — J. Tft X

~*~ 7 — i)(—~7T I/l3|24,13|24 + /l3|24,14|23 + /l4|23,14|23 + /l4|23,13|24]-

By now we should find it possible to interpret the various bracketed terms in
(4.1) as ones which remain right down to the (IAM) and are in essence a kurtosis
or product of variances within rows and columns, as ones which measure non-
additivity, and the first which vanishes under all assumptions less general than
the invariance model.

For the corresponding sampling model (SRS), termed bisampling by Tukey,
suppose we are given an array ((WIJ,XU, Yu, Zu): (/, J) G M x N ) of numbers,
where m < M < oo, n < N < oo, and independently sample m row labels

https://doi.org/10.1017/S1446788700032158 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032158
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1(1),..., / (m) , and n column labels J ( l ) , . . . , J(n), thereby defining a jointly
sampled array (W,X, Y, Z) by putting Wij = WJ^J^, and similarly for X, Y
and Z. The generalized cumulants fa of this bisampled array then coincide with
the corresponding generalized fc-statistics ka of the population array and matters
proceed as in Section 3 above. In particular, we can readily recover the results
of Hooke (1956b, Section 7). Since this involves no more than replacing terms of
the form ca(m,n)fa by [ca(m,n) — ca(M,N)]ka in (4.1), and dropping the first
bracketed term, we do not give further details.

Perhaps the main point of interest in this section is the wide variety of mea-
sures of non-additivity which appear. As in Section 3 above, we suppose that a
generalized cumulant fa measures non-additivity if it vanishes from (4.1) when
the (GAM) is assumed. By this definition, /(1234,12|34) and /(12|34,13|24)
(and / ' s of similar form) are such measures, and as in Section 3 above, we exam-
ine the leading terms «(1234,12|34) and i(12|34,13|24) cf. V, (6.2), which go into
their unbiased estimators fc(1234,12|34) and fc(12|34,13|24) respectively. Using
the definitions given in V we find that when W = X = Y = Z, and putting
Ay = Xij - Xi. - X.j + X.., we have *(1234,12|34) = m " 1 ^ 2 J T Q V A?,-)9

and *(12|34,13|24) = m^n-2 £< £ i ' ( £ j AyA^-)2- These are the first of eight
kinds of measures of non-additivity, and are not especially easy to interpret. Oth-
ers to be given below are more easy to interpret and further discussion of such
measures will be deferred to the later paper.

We note in passing that a measure quite similar to Tukey's well known degree
of freedom for non-additivity is a third-order expression of this kind, namely
*(12|3,13|2) = m-'n-1 £ . £,-(*i- - X..){X.j - X..){Xtj - X*. - X.j + X..). As
a component in a third-order generalized fc-statistic, <(12|3,13|2) plays no role
in our discussion of (co)variances of (co)variance components, but its similarity
to expressions appearing here helps us to put such matters in a broader context.
As already stated, we leave a study of these measures to another time.

The general additive model (GAM) for two-way arrays takes the form

(4.2) Xij = ii + ai + Pj + eij

with corresponding representations for W^, Yij and Zij, where the (<*<),(/?,)
and (eij) are mutually independent and classically exchangeable sets of 4-vectors
[cti) = {cti(W), cti(X), cti(Y), ati{Z)), etc. Note that (4.2) is essentially the model
of equation (10) of Hooke (1956b) with no interactions; the model in his equation
(25) with "tied" interactions is best covered (as it is by Hooke) by our earlier
discussion of bisampling. Under (GAM) the expression (4.1) for cov(fc(12,12),
A;(34,34)) simplifies dramatically to:

[/l2|34 ~ /12/I4] + — /l234
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We omit any further simplification as the results so obtained closely parallel
those in Section 3 above and coincide (although they are slightly more general)
with those given by Hooke (1956b) and Tukey (1956b), see also Arveson (1976).

Turning now to the (co)variance cov(fc(12, l|2),fc(34,3|4)) of the 'between
rows' component of (co)variances, we observe from A(ii) and A(iii) of the Ap-
pendix that the product (12,1|2) <g> (34,3|4) has 28 terms. Their calculation
(by the crossing rule) is completely straightforward and after subtracting off
/ (12 , l |2)/(34,3|4) we obtain a 29 term expression for the covariance in question
which we will not write out in full. There is an initial term [/(12|34,1|2|3|4) —
/(12,1 |2)/(34,3 |4)] ; a 'between row' kurtosis term m- 1 / (1234,1 |2 |3 |4) ,
which reduces to m~ 1 / Q (1234) under the (GAM) (4.2); terms of the form
( r - l ) - 1 / ( 1 2 | 3 4 , 1 | 2 | 3 | 4 ) , which reduces to ( r - l ) - 1 / Q ( 1 2 | 3 4 ) for 'between rows'
under (4.2); terms of the form [ n ( n - l ) ( m - l ) ] " 1 / ( 1 3 | 2 4 , 1 3 | 2 4 ) , which reduces to
[n(n-l)(m-l)]-1/e(13|24) under (4.2); and the 'mixed' terms like [n(m-l) ] - 1

/(13|24,13|2|4), which reduces to [n(m-l)}-1f£(13)fa{24) under (4.2); finally,
there are four types of non-additivity measures, including two not yet met which
are typified by /(1234,13|2|4) and /(12|34,13|2|4). The leading terms in the t-
expressions of the corresponding ^-statistics fc(1234,13|2|4) and fc(12|34,13|2|4)
are multiples of

E J2(*ii - Xi. - X.j + X..f(Xi. - X..)2

« 3

and

respectively. This brings to four the number of types of measures of non-
additivity met so far and two further types appear below.

The covariances cov(Jfc(12,12),fc(34,3|4)) between the generalizations of the
'error' and 'between row' components of (co)variance has 21 terms which are
easily calculated and interpreted, and they include amongst six different types
of measures of non-additivity two new ones typified by /(12|34,123|4) and
/(1234,123|4). The leading terms in the generalized fc-statistics estimating these
generalized cumulants are multiples of

E E E(*« - x<- - x-> + x~)2{Xi,j - x^. - x.j + x..)(Xi, - x..)
i «' 1

and

respectively.
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Finally, we mention only the analogues of the leading terms in the estimators
of the new types of measures of non-additivity which appear in the covariance
cov(ik(12, l|2),ifc(3|4,34)) between the 'row' and 'column' fc-statistics A;(12,l|2)
and jfc(3|4,34). They are (multiples of) t(12|3|4,l|234) and t(123|4,l|234) which
are

* 3

and

These two expressions bear a striking resemblance to Tukey's measure of non-
additivity; they would be the un-normalized form if the 2 in the exponent were
omitted. It is perhaps not surprising that such measures appear in the covariance
between estimators of rows and column 'components of variance'.

5. Three indices: some examples

We now give brief discussions of the (co)variance associated with the 'bottom
line' mean square of the anova table of some triply-indexed arrays. Following
Nelder (1965) they can be written ((Wijk,Xijk,Yijk, Zijk): (i,j,k) € I) where I
is m/n/p, (m x n)/p and m/(n x p).

(a) m/n/p.
From Appendix D we find that the (co)variance cov(fc(12,12,12), fc(34,34,34))

of
fc(12'12) 12) = mn(l-l) E E D

t j k

and

fc(34,34,34) = ^ ' i j k

is given by
(5.1)

[/(12|34,12|34,12|34) - /(12,12,12)/(34,34,34)] + —/(1234,1234,1234)
mnp

+ —/(1234,1234,12|34) + -/(1234,12|34,12|34)
mn m

+ T ^ — T T [ / ( 1 2 3 4 ' 1234- 13I24) + /(1234,13|24,13|24)
mnyp — 1)

+/(13|24,13|24,13|24) + /(1234,1234,14|23)
+ /(1234,14|23,14|23) + /(14|23,14|23,14|23)].
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Once more we concentrate upon the non-addivity measures as the general ap-

proach to interpreting such formulae is by now evident. These measures—which

generalize /(1234,12|34) found in the case of m / n — a r e / (1234,1234,12|34) and

/(1234,12|34,12|34). The leading terms in their symmetric unbiased estimates

are (when W = X = Y = Z):

and

t(1234,1234,12|34) =

t(1234,12|34,12|34) =

1 2

In a sense these cumulants (and /(1234,12|34) in Section 3 above) might be
regarded as measuring the inhomogeneity (at different levels) of kurtosis which
results when an additive model is not assumed.

(b) (m x n)/p.
In this model our 'bottom line' mean square takes the same form as in 5(a)

above, and here the (co)variance cov(fc(12,12,12), fc(34,34,34)) is

[/(12|34,12|34,12|34) - /(12,12,12)/(34,34,34)] + ^7(1234,1234,1234)

+ —/(1234,1234,12|34) + ^—.r
mn mn(p — 1)

-/(1234,12|34,12|34) + -
m n

mnp

[/(1234,1234,13|24)

+/(1234,1234,14|23)]

1
mn(p — 1)

,1234,12|34)

[/(1234,13|24,13|24) + /(13|24,1234,13|24)

+ /(13|24,13|24,13|24) + /(1234,14|23,14|23)

+ /(14|23,1234,14|23) + /(14|23,14|23,14|23)].

As with (a) the non-linearity cumulants are natural extensions of ones already
met above, but this time we have measures which combine features of those
in both Section 3 and Section 4. Writing out just the leading terms in the
corresponding fc-statistics we find

t(1234,1234,13|24) = m^n^p-2 ]T ^ J2(Xijk - Xiy)2 ,

T 2

1,12|34,12|34) =wr1nr2p-
i k
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(c) m / ( n x p) .
For this, our final example, the 'bottom line' mean square is

l)(p-l) E E E W** "

j L fc J

-I 2

i j k

and the covariance cov(A(12,12,12), fc(34,34,34)) is given by an expression with
15 terms easily obtained from Appendix F below. We will not write it out, but
simply list the types of non-additivity cumulants involved. These are typified
by /(1234,1234,12|34), /(1234,12|34,12|34) and /(1234,12|34,13|24), and the
leading terms in the t-expansions of their corresponding fc-statistics are (when
W = X = Y = Z) multiples of

4(1234,1234,12|34) = m ^ r r V 2 E E E ^ * " X»' ~ Xi'k + Xi"? '
I J

*(1234,12|34,12|34) = r.

and

*(1234,12J34,13|24) =

xEEE
These non-additivity measures are readily seen to be combinations of ones for
the simple nested and crossed arrays discussed above.

6. The randomization variances of some treatment mean squares

Our second application of the techniques and results developed in earlier pa-
per is to the calculation of means and variances of treatment mean-squares un-
der randomization in some standard designed experiments. The first work in
this area was by Welch (1937) who considered the randomized complete block
design (RCBD) and Latin square designs (LSDs), and Pitman (1935), who in-
dependently derived not just the first two but the first four moments of the
permutation distribution of the treatment mean square in a RCBD. In a num-
ber of papers Ogawa has extended this work to partially balanced incomplete
block designs, see Ogawa (1974) and references therein; indeed he goes further in
computing an approximate permutation beta-distribution for the non-centrality
parameter of the usual F-test for significance of treatments, integrating out this
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parameter, and obtaining the usual central F-test. Other discussions of the topic
with RCBDs appear in Kempthorne (1952) and Wilk (1955).

In this section we will show how the notation, terminology and viewpoint
adopted in these papers, together with some of the formulae derived in V, lead
quickly to the known results for RCBDs and LSDs, and we show how the classical
split-plot design (SPD) can be analysed in the same way.

Our problem is to compute the permutation means and (co)variances of cer-
tain quadratic forms Q\,Qi etc. and in line with the approach adopted through-
out this series, we take these forms to be quadratic functions of the elements of
arrays W and X, and Y and Z, respectively, leaving any identifications until
the end of the calculation. If s and t are arrays of coefficients of the quadratic
forms, then we can put Qi = [a|W®X] and Q2 = [t\Y ®Z\ and use the formulae
EQX = E[s\W ®X\ = [s\E{W ® X)]. Now E(W ® X) expands (III. Proposition
4.1) to give

(6.1)

where {f!^x:n 6 Hom(P, P(2))} are the second-order generalized cumulants of
the array W <g> X. Similarly

(6-2)

where {fYZ} are the second order generalized cumulants of Y <8> Z, and

(6.3) E(QiQ2) = £ f?XYZ[s ® t\Rp]

where {fp
VXYZ-p € Hom(P, P(4))} are the fourth-order generalized cumulants

of W <8> X ® Y ® Z.
We now see that our problem reduces to the computation of the expressions

[sliy, [t\Rx] and [s ® t\Rp] for suitable w and p, as the generalized cumulants
{f™x}, {f%z} and {f\VXYZ} of the permutation distributions for the ran-
dom arrays W, X, Y and Z are simply the corresponding generalized ^-statistics
{Mw> 0 ) , {M»?> ?)} ^ {M<*>, f, V, f)} for the "populations" w, C, V, ? of num-
bers being permuted. It will become clear that when s and t correspond to the
treatment sum squares in the RCBD, LSD and SPD, most of the inner products
[sl-fttf], [t\Rx] and [s ® t\RP] are zero, and the remainder easily calculated, and
the expressions for the ^-statistics corresponding to the nonzero inner products
obtained from Section 6 of V lead us quickly to the answers sought. From now
on it is quite satisfactory to put W = X = Y = Z if that is desired.

(a) Randomized complete block designs. If we have m blocks each of n plots,
then any array (&j: ( t , j ) € m/1 1) of mn numbers, thought of as plot yields,
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will suffice to define a random array (.XV,) with a permutation distribution. We
simply write

^ ) = (x,,)) = - ^

if (xij) is an admissible permutation of the array (&j), and zero otherwise,
where admissible permutations are those obtained by permuting block labels
i and, independently within each block, permuting plot labels j . Similarly we
could define random arrays W, Y and Z in terms of arrays w, T) and f of numbers,
but this will not be necessary.

The treatment sum of squares in a randomized complete block experiment
is [s\X <g> X] where Sijti>j> = (n — l)/mn if plot(i,j) and plot(i7, j') have the
same treatment, and Sij^j> = —1/mn otherwise. The following calculations
are easy to perform: [s|i2(12,12)] = £ i £ j sij,u = n - 1, [s\R{12,1|2)] =
12iYljYlj'sij,ij' — mn[(n - l)/mn + (-l/mn)(n - 1)] = 0 and similarly
[s|i?(l|2,12)] = 0. Thus we can calculate E[s\X ® X] = (n - 1)/(12,12) which
is just m'1 £ \ JljiUj ~ &-)2-

Turning now to var[s|X ® X] we readily calculate that [s ® s\R{l2S4,1234)]
— (n — l ) 2 / m n , [s <S> s\R(p(l),p(2)} — 0 if p(2) has any singleton blocks,
[s ® s\R(1234,12|34)] = (n - l ) 2 / m , [s ® s|i?(1234,13|24)] = (n - l ) / m =
[s®s|/?(1234,14|23], [s<8>s|JR(12|34,12|34] = ( n - 1 ) 2 , [a®s|fi(13|24,13|24] = n - 1
= [s (S> s|i?(14|23,14|23]; all other such terms are zero because they involve sin-
gletons in blocks of p{2). Thus

mnE[s\X ®X] = (n- 1)2/(1234,1234) + n{n - 1)2/(1234,12|34)

+ (n)2[/(1234,13|24) + /(1234,14|23)]

+ mn{n - 1)2/(12|34,12|34)

+ m(n)2[/(13|24,13)24) + /(14|23,14|23)].

Subtracting off {E[s|X]}2, and using the formulae expressing j a = kc in terms
of ^ ' s given in V6.3, we find after a minor simplification that
(6.5)

m 2 (n - l )

2(m - l)(n

var[s|X ® X] =
rn-yn — i.) I -

oim — iv« _ rt
•/l2|34,12|34

-E

m
thus reinforcing our view in Section 3 that /(12|34,12|34) is a measure of inho-
mogeneity, a type of non-additivity.

These expressions can also be rewritten as:
r [S\x®x]
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where CV = *A/A,A< = £,.(£« - &.)2, A = m " 1 ^ ^ , and s\ =
(m- i r 'E i tA i -A) 2 .

In this form this is just the result obtained by Pitman (1937) and Welch
(1937); see also Kempthorne (1952), Wilk (1955) and Ogawa (1961, 1974).

(b) Latin square designs. The discussion for Latin square designs is equally
straightforward although, as we will see, we do not get such a simple and in-
terpretable final result. Nevertheless our approach, exploiting modern algebra
and combinatorics, cuts through some heavy classical algebra, cf. Ogawa (1974,
pages 125-160).

This time we suppose that the plot yields are ( ^ : (i,j) € n x n) and that
X = {Xij) is the random array obtained by independently permuting the two
indices labelling the f's. Expressions for the generalized cumulants fv and fp

of orders 2 and 4 of X are just the corresponding generalized ^-statistics in
the (&j), and these are most compactly expressed in terms of the (-expressions,
see V6.2. The treatment sum of squares is [s\X <8> X] obtained using the coef-
ficients 8ijti>ji = (n — l)/n2 if plot(z,j) has the same treatment as plot(i',j'),
and Sij.t'i' = "" V"2 otherwise. As with the RCBD we find that the only term
[s|#(7r)], -K € Hom(P, P(2)) which is non-zero is TT = (12,12), and [s\R(12,12)] =
n - 1, whence

E[s\X ®X) = (n- 1)/(12,12) = (n - I)) " 1

This holds for every n x n Latin square.
For the variance of [s\X ® X] we need to calculate [s <S> s\R(p(l), p{2))\ for all

p(l), p(2) € P(2), and here these are zero if either p(l) or p{2) has a single-
ton block. The remaining ones are readily calculated: [s <g> s|i?(1234,1234)] =
(n - l)2/«2,[s <8> s|#(1234,12|34)] = (n - l)2/n,\s <g> s|fl(1234,13|24)] =
(n - l)/n,[s 9 s\R{12\34,12|34)] = (n - l)2,[s ® s|i?(13|24,13|24)] = n - 1,
[s ® s|i?(12|34,13|24)] = (n — 1), with the same answers being valid if the first
and second partitions are interchanged, or if 14|23 replaces 13|24, and finally
we need to calculate [a ® a|i?(13|24,14|23] and its partner with the partitions
interchanged.

For fixed i, i' and j with i' ^ i let us evaluate the sum over j ' of the terms
Sijyj'Sij'ti'j. To do this we need to look at all rectangles in the Latin square
having two of their corners at (i,j) and (i',f); these correspond to different
values of f. The Latin square property means that there exists one value of/ for
which the treatments at (i'j1) and (i,j) are the same. If these coincide, we have
a 'special' rectangle with the same treatments at diagonally opposite corners.
Otherwise we have two rectangles each with one pair of identical treatments. In
either case, all the rectangles corresponding to other values of j ' have all four
treatments distinct.
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Thus there are two cases: 'special' triples, which give a sum of (n — l)2/n4 +
(n — 1) x 1/n4 = (n — l)/n3, and other triples which give a sum of — 2(n—1) /n4 +
(n - 2) x 1/n4 = -1/n 3 .

When i = i' we use the Latin square property to see that the sum over f of
Sij,ij'Sij',ij is (n - l)2 /n4 + (n - 1) x 1/n4 = (n - l)/n3. If we write n -̂ for the
number of 'special' triples {i,i',j) with fixed i,j then

[s®s|/?(13|24,14|23)]

= EEE / ,sij,i'j'sij',i'j

" n ^ - J ) x "

the inner sum on the second line being broken into sums over all special triples,
the cases i — i' and the rest, respectively. Similarly [s ® s|.ft(14|23,13|24)] =
[^2i Ylj nij\/n2- [Note that our n*, is different from that of Welch (1937), but
that the sum £V 52 j nij coincides with his sum Y^k^k' n**' •]

Putting the foregoing results together we obtain

n2var[3|X ® X]

= (n - 1)2/(1234,1234) + n{n - 1)2[/(1234,12|34) + /(12|34,1234)]

+ (n)2[/(1234,13)24) + /(13|24,1234) + /(1234,14|23) + /(14|23,1234)]
(6.6)

+ (n)|/(12|34,12|34) + n(n)2[/(13|24,13|24) + /(14|23,14)23)]

+ 2(n)a[/(12|34,13)24) + /(13|24,12)34)

+ /(12|34,14|23) + /(14|23,12|34)]

+ ^2J2 ni:,[/(13|24,14|23) + /(14|23,12|34)] - [n{n - 1)]2/(12,12)2.
« 3

In order to expand this let us use Welch's (1937) notation:

n2*(1234,1234) =

nH(12|34,12|34) =
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2
/ \

n3t(1234,12|34) =

n3*(12|34,1234)

n4*(12|34,13|24) =

j

3 V i /

We now make use of the method explained in V6.2 for putting {fp} in terms
of {tp} and simplify (6.6). The answer found by Welch (1937) and verified by
Pitman (1937) and Ogawa (1962, 1974) is the following:

n2var[a|A" ® X]

^ 2 (

(6.7) - 2n(n2 - 3n + 3)G - 2(n2 - 6n +

=£-^-[n2(n - 1)2£> + (2n2 - 6n + 3)F

- n ( n - l ) ( n 2 -in-
+ (n4 - 6n3 + 13n2 - 12n -1- 6)H].

Here G = G' + G". Rather than re-derive the entire result (6.7) from (6.6),
let us be content with seeing how we can verify the coefficients of D, F,..., H
in the two bracketed terms. Recalling the formulae in V(6.1) and the crossing
rule V Proposition 6.2 we find that D will occur in every term on the RHS
of equation (6.6) above. The coefficient of D which appears together with a
multiplier [][^ £Z n%i\ln3 must be 1/n2 times that which arises in the expansion
of /(13|24,14|23) + /(14|23,13|24) in terms of f-tensors and from V(6.1) this will
be just 2[n(n — l)/(n)4]2. This checks part of (6.7) and the remainder can be
checked in a similar manner.

(c) Split-plot design. This final example illustrates in as simple a way as is
possible the impact on randomization variances of having treatment sums of
squares in different strata, Nelder (1965). The block structure is m/n/p, that is,
our nesting poset P is the three element chain, and we have a crossed treatment
structure A x B where A has n levels and B has p levels. The classical split-
plot design varies the level of B across sub-plots of plots, holding the level of A
constant, and then allocates levels of A to whole plots withing blocks, just as in
a randomized complete block design. It is well known that the main effects sum
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of squares QA for A comes out in the whole plot stratum, whilst that for B, QB

and the interaction sum of squares QAB come out in the sub-plot stratum.
The genralized fc-statistics of the array (&>*: (*\ j \ k) € m/n/p) of plot yields

give the generalized cumulants of the permutation distribution of (X^-*) and
those of order 2 and 4 will be denoted by f(ir) and /(p) respectively, w €
Hom(P, P{2)), p e Hom(P, P(4)). As in our earlier examples, the main task
is the computaton of inner products [S|/2(TT)] and [s ® s\R(p)] where s is the
tensor of coefficients. There are three such tensors here, denoted by sA, sB and
sAB, where

(n - Vj/mnp if A(ijk) = A(i'j'k'),

— 1/mnp otherwise;

if B(ijk) = BU'i'kf),
3ijk,i'j

_ / (P
,i'j'k' — | _ 1/mnp otherwise;

and

(n — l)(p — 1) / mnp if

— (n — l)/mnp if

- (p — l)/mnp if

1/mnp otherwise.

Here we have written A(ijk) for the level of treatment A applied to the plot
labelled ijk, and similarly for B(ijk).

Let us deal with sB and sAB first, because their results parallel those obtained
for the RCBD quite closely. If we denote the number of degrees of freedom
associated with each sum of squares by d: dA = n — 1, dB = p — 1 and dAB =
(n—l)(p—1), then for sB and sAB onlyv/e have (cf. the RCBD where d? = n—1):
[s\R(12,12,12)] = d, and [S\R(TT)} = 0 for all other TT 6 Hom(P, P(2)). Thus for
these two,

E[s\X ® X] = df (12,12,12) =

The non-zero terms [s (g) sji?(p)] for p € Hom(P, P(4)) are as follows:

[s <g> s|i2(1234,1234,1234)] = d2/mnp, [s <g> s|fi(1234,1234,12|34)] = d2mn,
[s ® s|i?(1234,1234,13|24)] = d/mn, [s ® s\R(l234,12|34,12|34)] = t ^ / m ,
[s ® s|i2(1234,13|24,13|24)] = d/m, [s ® »|/2(12|34,12|34,12|34)] = d2,

and

[s ® s\R{13\24,13|24,13|24)] = d,

with the same results arising if 13|24 is replaced by 14|23 in the LHS of the 3rd,
5th and 7th expression.
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By making use of (6.3) and simplifying we find t ha t

2

383

mnVax[sB\X®X] = mn(p — 1)
• 3 *

-EE[D&*-&•)'] }

mn(p —

where the term in braces is similar to the one obtained in the RCBD. Clearly
when m = 1 the above expression assumes the same form as (6.5).

Turning now to Va.r[sAB \X ® X] we find that fewer simplifications occur; it
can be written as follows.

mnp Vax[sAB\X ®X}=0

where

0 =
= 2p(n -

mn(p —

= d(d + 2)
p2 - j

J
— n/m]i/m]_l

- 1 ) 2 /

and d = (n—l)(p—1). There does not seem to be any illuminating rearrangement
of these expressions, although it is interesting to note that the sum of the fourth
powers (£ijk — £ij-)4 appears only in the variance of the interaction sum of
squares.

Finally, let us consider the mean and variance of QA = [sA|X®X]. It is easy
to check that [aA|i?(12,12,12)] = n - 1, [sA\R(12,12,1|2)] = p(n - 1) whilst
[sA|.R(7r)] = 0 for 7T = (12,1|2,1|2) and TT = (1|2,1|2,1|2). Thus E[sA\X ® X] =
(n-l)/(12,12,12) +p(n-1)/(12,12,1|2) which simplifies to pm"1 £< E j ( ^ j - -
£i»)2. Though straightforward, the variance calculation for QA is much lengthier
than those for QB and QAB because [sA <8> sA\R(p)] is non-zero for many more
p € Hom(P, -P(4)). Putting d = dA = n—1, we can quickly build up the following
table.
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TABLE 1
Non-zero Inner Products

p6Hom(P,;(4)) [
(1234,1234,1234)
(1234,1234,123|4)
(1234,1234,12|34)
(1234,1234,12|3|4)
(1234,1234,1|2|3|4)
(1234,12|34,12|34)
(1234,12|34,12|3|4)
(1234,12|34,1|2|3|4)
(1234,13|24,13|24)
(1234,13|24,13|2|4)
(1234,13|24,1|2|3|4)
(12|34,12|34,12|34)
(12|34,12|34,12|3|4)
(12|34,12|34,1|2|3|4)
(13|24,13|24,13|24)
(13|24,13|24,13|2|4)
(13124,13|24,1121314)

sA <g> sA\R(p)\ Number
d2 /mnp
d2 /mn
d2 /mn
pd2 /mn

p2d2/mn
d2/m

pcP/m
p2d2/m

d/m
pd/m
p2d/m

d2

pd2

p2cP

d
pd

p2d

of:
1
4
3
6
1
1
2
1
2
4
2
1
2
1
2
4
2

Once more making use of equations (6.1) and (6.3), we combine the results in

Table 1 with the expansions of generalized fc-statistics in terms of the T-tensors

given in V, Section 6.4, perform some routine classical algebraic simplifications,

and obtain

X] = a

Here a, f3 and 7 are functions of m, n and p which, whilst not especially compli-

cated, do not simplify into compact expressions and do not appear to be easily

interpreted. However it is of interest to observe t ha t although the mean of QA is

a multiple of 5Zi 53,(&.r — f t - ) 2 ! its variance only involves the sums of squares

of the terms ftJfc — f j j . from the bo t tom s t ra tum.
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Appendix: Tensor products of generalized fc-statistics

In this appendix we list just those expansions of the tensor products of second
order generalized fc-statistics needed for calculations done in this paper. These
are taken from tables we have formed of expansions of the products of all second
order generalized fc-statistics for the partially ordered sets cited.

A. Single indeT. n.

(i) (12) ® (34) = (12|34) + ±(1234) + ^-j{(13|24) + (14|23)},

(12) ® (3|4)

= (12|3|4) + ±{(123|4) + (124|3)} -

(3|4) = (1|2|3|4) + _ L _ { ( 1 3 | 2 4 ) + (14|23)}
(iii) ;

+ ±{(13|2|4) + (14|2|3) + (23|1|4)

B. Two indices, the second nested within the first: m/n.

(12,12) <g> (34,34) = —(1234,1234) + —(1234,12|34)
mn m

{(1234,13|24) +(1234,14|23)
m[n — 1)

+ (13|24,13|24) + (14|23,14|23)} + (12|34,12|34).

(ii)
(12,1|2) ® (34,3|4) = m n ( ^ 1 ) {(1234,13 |24) + (1234,14|23)}

+ —{(1234,1|3|24) + (1234,1|4|23) + (1234,14|2|3) + (1234,13|2|4)}
mn

l > 1 3 | 2 4 ) + (14|2S' H|23)} + ̂ (1234'1|2|3|4)

m

,1|3|24) + (13|24,13|2|4)

+ (14|23,1|4|23) + (14|23,14|2|3)}

^-{(13124,1|2|3|4) + (14|23,1|2|3|4) + (12|34,
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(12,12) <g> (34,314) = — { ( 1 2 3 4 , 3 | 1 2 4 ) + (1234,4|123)}
mn

1 -{(1234,13(24) + (1234,14|23)
(ii) mn(n - 1)

+ (13(24,13|24) + (14|23,14|23)}

—(1234,12|3|4) + (12|34,12|3|4).
771

C. Two crossed indices: m x n.

(12,12) <g> (34,34) = (12|34,12|34) + —(1234,1234)
mn

+ —(1234,12)34) + —J—-{(1234,13|24) + (1234,14|23)}
m m(n — 1)

+ i(12|34,1234) + . 1 ,,{(13124,1234) + (14(23,1234)}
n n(m — 1)

? , 1 2 | 3 4 ) + (14|23,12|34)}
ro-1

+ —!— {(12|34,13|24) + (12|34,14|23)}
n — 1

+ ~, \, r{(13|24,13|24) -I- (13(24,14|23)

+ (14|23,13|24) + (14|23,14|23)}.

Such expansions are obtained using the crossing rule of III, Section 3 and the
results in A above.

D. Three nested indices: m/n/p.

(12,12,12) ® (34,34,34) = (12(34,12|34,12(34) + —!—(1234,1234,1234)

+ —(1234,1234,12(34) + —(1234,12134,12|34)
mn m

+ * {(1234,1234,13|24) + (1234,1234,14|23)

+ (1234,13(24,13|24) + (1234,14(23,14|23)

+ (13(24,13|24,13|24) + (14|23,14|23,14|23)}.
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E. (m x n)/p.

(12,12,12) ® (34,34,34) = (12|34,12|34,12|34)

t,1234,1234) + —(1234,123
mn

-{(1234,1234,13|24) + (1234,1234,14|23)}

+ —^—(1234,1234,1234) + —(1234,1234,12|34)
nmp mn

mn(p — 1)

{(1234,13|24,13|24) + (1234,14|23,14|23)

+ —(1234,12|34,12|34) + —(12|34,1234,12|34)

+ rmn(p — 1)
+ (13|24,1234,13|24) + (14|23,1234,14|23)

+ (13|24,13|24,13|24) + (14|23,14)23,14|23)}.

F. m/(n x p).

(12,12,12) <g> (34,34,34) = (12|34,12|34,12|34)

+ —— (1234,1234,1234) + —(1234,1234,12134) + —(1234,12|34,1234)
mnp mn mp

+ ^ r{(1234,1234,13|24) + (1234,1234,14|23)}
mn(p — 1)

+ . 1 ,,{(1234,13|24,1234) + (1234,14|23,1234)}
mpyn — 1)

+ -(1234,12|34,12|34)
m

+ —^—-{(1234,13|24,12|34) + (1234,14|23,12|34)}
m\n — 1)

{(1234,12|34,13|24) + (1234,12|34,14)23)}
m{p -

{ ( 1 2 3 4 ' 1 3I2 4- 1 3I2 4) + (1234- 1 3 I 2 4 ' 1 4I2 3)
+ (1234,14|23,13|24) + (1234,14|23,14|23)

+ (13)24,13|24,13|24) + (14|23,14|23,14|23)}.
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