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GAUSSIAN AND NON-GAUSSIAN DISTRIBUTION-VALUED 
ORNSTEIN-UHLENBECK PROCESSES 

TOMASZ BOJDECKI AND LUIS G. GOROSTIZA 

1. Introduction. Generalized (distribution-valued) Ornstein-Uhlenbeck processes, 
which by definition are solutions of generalized Langevin equations, arise in many inves­
tigations on fluctuation limits of particle systems (eg. Bojdecki and Gorostiza [1], Daw­
son, Fleischmann and Gorostiza [5], Fernandez [7], Gorostiza [8,9], Holley and Stroock 
[10], Itô [12], Kallianpur and Perez-Abreu [16], Kallianpur and Wolpert [14], Kotelenez 
[17], Martin-Lof [19], Mitoma [22], Uchiyama [25]). The state space for such a pro­
cess is the strong dual O' of a nuclear space O. A generalized Langevin equation for a 
O'-valued process X = {Xt} is a stochastic evolution equation of the form 

(1.1) dXt = A*Xtdt + dZt, 

where {At} is a family of linear operators on O and Z = {Zt} is a O'-valued semi-
martingale (in some sense) with independent increments. Equations of the type (1.1) 
where Z does not have independent increments also arise in applications (eg. [9,14,20]) 
but here we are interested precisely in the case when Z has independent increments (we 
restrict the term generalized Langevin equation to this case in accordance with the clas­
sical Langevin equation). 

Existence and uniqueness of solutions of some classes of stochastic evolution equa­
tions of the type (1.1) have been studied by various authors (eg. [16]). In these studies 
the equation is assumed to be given. On the other hand, in the analysis of limits of parti­
cle systems one usually obtains the finite-dimensional distributions of the limit process 
X, and from this information one wishes to determine if X is a generalized Ornstein-
Uhlenbeck process and to find the Langevin equation it satisfies. This is the question 
addressed in the present paper. 

Most often the processes X encountered as fluctuation limits of particle systems are 
Gaussian. In this case the question above has been treated in [1,2], where a convenient 
criterion is given in terms of the covariance functional of X. Recently Dawson et al. [5] 
have obtained a fluctuation limit process which is a stable (non-Gaussian) generalized 
Ornstein-Uhlenbeck process; the Langevin equation is derived in [6]. This result arises in 
a natural way and may be considered typical for a large class of particle systems (having 
a branching mechanism with infinite variance). Clearly in this situation the covariance 
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criterion of [1,2] is not applicable and it becomes necessary to seek a criterion with a 
wider range of applicability. In this paper we give such a criterion, which should prove 
useful for the analysis of particle systems with fluctuation limits which may be non-
Gaussian. 

Our main results are a general criterion to determine if a given O'-valued process X 
is a generalized Ornstein-Uhlenbeck process (not necessarily Gaussian) and to find the 
Langevin equation (Theorem 2.2), and a special case of the criterion with a more explicit 
result, which however covers a large class of applications (Theorem 2.5). The criterion is 
given in terms of the conditional characteristic functional of X (which in principle can be 
derived from the finite-dimensional distributions). In order to obtain a reciprocal result 
we also prove a theorem on existence and uniqueness of solutions of equation (1.1); 
as usual, the unique solution is expressed as a mild solution, or variation of constants 
formula (Theorem 2.11). Existence and uniqueness results of this type are given in [16], 
assuming Z is a square-integrable martingale. We restrict ourselves to the case when O 
is a nuclear Fréchet space, but we think our results can be extended to other classes of 
nuclear spaces. 

The relationship between the distributions of the processes X and Z in ( 1.1 ) contained 
in Theorem 2.5 is relevant in connection with the fluctuation-dissipation relations of 
statistical mechanics. 

In Section 2 we state and prove our results. Section 3 contains a general result for the 
Gaussian case and the example of a stable process of [5,6]. 

We shall assume that the reader is familiar with the basics of nuclear spaces as pre­
sented in [23] or [24]. 

2. Results. Let O be a nuclear Fréchet space with a (shift-invariant) metric p, and 
let O' be the strong dual of O. It is well-known that O' is nuclear as well [24]. The 
canonical bilinear form on (O', O) will be denoted by ( -, •}. 

A positive number T is fixed throughout. 
In what follows we will consider families {At : 0 < t < T} and { Usj : 0 < s < t < 

T} of continuous linear operators from O into O such that 
(a) the function 11—• Atp is continuous for each <^GO, 
(b) the function (s, t) »—> Usjp is continuous for each (p G O, 
(c) Uu = I and Ur,t = Ur,sUs,t for 0 < r < s < t < 7\ 
(d) USJtip = <p + fs UsjArip dr for 0 < s < t < 7\ <p e <D. 

DEFINITION 2.1. Let {Z, : 0 < t < T} be a O'-valued right-continuous with left 
limits (abbr. cadlag) process, Zo = 0. A O'-valued process {Xt : 0 < t < T} is said to 
be a solution of the equation 

(2.1) dXt = A*Xtdt^dZt 

if 

(2.2) (Xt,(p) = (X0,p) + £(XS9As<p) ds+ (Zt,p) a.s. 

for each (p e®,0<t<T. 
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THEOREM 2.2. Let At, Us,t satisfy (a), (b), (c), (d) and assume that X = {Xt : 0 < 
t < T} is a O'-valued cadlag process such that for each <p GO, 0 < s < t < T, 

(2.3) E[ei{Xtt(p) | ( X ^ ) , r < ^ G O ] = ei{XM^H(sj; cp) 

for some deterministic complex-valued H(s,t; tp). Then X is a Markov process and it 
satisfies (2.1), where Z is a process with independent increments. 

PROOF. The Markov property of X follows directly from (2.3). The Banach-Stein-
haus theorem holds for O since it is barrelled [24], hence for each ip G O the process 
{(Xt,At<p) : 0 < t < T} is cadlag and we can define the process Z by the formula 

(2.4) (Z„ <p) = (Xu <p) - (Xo, if) - £(Xr,Ar<p) dr. 

The regularization theorem [11] implies that Zt G O', 0 < t < T, and by [21] Z has a 
cadlag version. We will prove that Z has independent increments. 

For any s G [0, T] we denote by Qs the a -algebra generated by the random variables 
(Xr,V>) f o r r < s , V GO. 

It clearly suffices to prove that £[exp{ i((Zt, ip) — (Zs, (p) )} | Çs] is deterministic 
for each (p G O, 0 < s < t < T. Fix <p,s,t and let s = rg < r\ < • < r"^ = t9 

n — 1,2,..., be an arbitrary normal sequence of partitions of [s, t]. By (2.4) we have 

(Zt,<p) -(Zs,ip) = (Xt9<p) -(XS9<p) - ['(Xr,Ar(p)dr= UmBn, 

where 
mn 

Bn = {X„<p) - {Xs,<p) - £ < ^ , A ^ ) ( ^ - ' î - i ) . 

and of course, 
(2.5) lim E[eiB» \ Çs] = E[exp{i((Zt^) - (%,?))} \ Çs] a.s. 

We transform E[elBn \ Qs] as follows (writing rk instead of r\, Ark instead of r\ — rn
k_] 

and m instead of mn): 

E[eiB» | Çs] 

= E\E[exp{i(Xrm,(p -Arm(pArm)} | Qrm_x] 

• exp j / ( - f^(Xrk,Ark<p)Ark - (Xro,(p)^Ç^ 

(by (2.3)) 

= ^ X p j / ^ X ^ , Urm_lirm<P ~ Urm_urmArm(pArm) 

m_1 Ml 1 
- Yj(xrki

Arkv)&rk ~ (Xro,(^) ) \\Qs\H(rm-urm\ip -ArmcpArm) 

https://doi.org/10.4153/CJM-1991-066-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-066-6


ORNSTEIN-UHLENBECK PROCESSES 1139 

(iterating the same procedure, by (2.3) and (c)) 

, m 
= expli(Xs, Usjip - YJ us,rkArk(P&n - y) 

m s m \ 

• I ] HI rk-\, rk\ Urk,t ~ E Urk,rjArj V^j ). 
k=\ V j=k J 

Once again by the Banach-Steinhaus theorem, the function r H-> USJAry is continuous, 

hence 

*= i 

(Xs, Usj<p - W ~ J UsArV dr) = ° 

by assumption (d), and the proof is complete by virtue of (2.5). 

COROLLARY 2.3. Under the assumptions of Theorem 2.2, the process Z is unique in 

law and the distributions of its increments are given by the formula 

£[exp{i«Z,,<p> -(Zs^))}} 

(2 6) w" / m" \ 

= Urn n ^ ( ^ ^ ; ^ ^ - E ^ ^ ^ ( ^ - ^ - i ) ) 
for each (pe<3>, 0<s<t<T, where s = r% < r\ < • • • < ^ = t, n = 1,2, . . . , is 

an arbitrary normal sequence of partitions of[s, t\. 

COROLLARY 2.4. Under the assumptions of Theorem 22, if the function (s, t,(p)\—+ 

H(s, t,ip) is real-valued, then the distribution of the increments ofZ are symmetric. 

Theorem 2.2 is fairly general and formula (2.6) expresses the distribution of Z by 

means of the distribution of X; however, being so general, formula (2.6) certainly is not 

(and probably cannot be) completely explicit. The following theorem yields a sufficient 

condition which permits to obtain the distributions of the increments of Z in an explicit 

form. In Section 3 it will be seen that this condition turns out to be general enough to 

cover important cases that appear in applications. 

THEOREM 2.5. Let At, USjt satisfy (a), (b), (c), (d) and assume thatX — {Xt : 0 < 

t < T} is a O'-valued cadlag process such that if ip G 0 , 0 < s < t <T, then 

(2.7) E[e1^ | {Xr^),r<s^ e O] - expj/(X„ Ustf) + j f hr(UrJt<p) dr}, 

where hr is a complex-valued function on O / o r 0 < r <T, such that for each if E O, 

(2.8) sup \hr(ip) - hr{$)\ —>0asi[) —» <p, 
o<r<r 

and the function r •—» hr(ip) is Borel-measurable. Then X satisfies (2.1), where Z is a 

process with independent increments such that 

(2.9) £[exp{«((Z„^) - (Zs, </>))}] = exp{jf Mv)<*r) 
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for each </?£<D, 0 < s < t < T. 

The proof of this theorem will be preceded by several lemmas. The first two of them 
are straightforward consequences of the assumptions of the theorem and of the fact that 
O is barrelled, so their proofs are omitted. 

LEMMA 2.6. (i) The function (s, t,(p)*—> USttip is continuous, 
(ii) The function (s, t,(p)\—• USftAt(p is continuous. 

(Hi) For each compact set ̂ C O the set { USyt(f : 0 < s < t < T,(f £ K} is compact 

(iv) For each <p £ O the set { USftAt(p : 0 < s < t < T} is compact in O. 

LEMMA 2.7. For any compact set K C O and for each e > 0 there exists 6 > 0 
such that if <p £ K, ijj £ O and p(ip ,<p) <S, then 

sup|/i,(<p)-/i,(V0| < £ 
t<T 

Now, let us fix <p £ O, 0 < s < t < T and s = i% < r\ < • • • < r ^ = t, 
n— 1,2,..., a normal sequence of partitions of [s, t]. 

LEMMA 2.8. There exists a compact set K C O such that 

[U^if -Y^U^A^(r] - r]_x) : k = l,...,mn,n= 1,2,...) C K. 
j—k 

PROOF. By Lemma 2.6 (iv), the set 

A^ = { Ur»^Ar»(p : k = 1,.. . ,mn, n — 1,2,...} 

is relatively compact and 

\£UwAl.<p(r?-r!_l):k= \,...,mn,n= 1,2,...) C (t - sy1 co(K0,0), 
J—k 

where co(Ko, 0) denotes the convex hull of Ko U { 0} . It is well-known that the set 
K\ — (t — s)~l co(Ko, 0) is relatively compact [24], and by Lemma 2.6(iii) the set K^ — 
{ Uf1,!^ ' k — 1 , . . . , mny n = 1,2,...} is also relatively compact. To complete the proof 
of the lemma it suffices to observe that the set K2 — K\ — {1/^ —V>i : V>i G ^ 1 , -02 £ ^2} 
is relatively compact. 

LEMMA 2.9. For each compact set ^ C O , 

max sup sup \hu(Uur»^i) — hu(\j))\ —>0as n —• 00. 

PROOF. For fixed K and e > 0, let S be given by Lemma 2.7. By Lemma 2.6(i) the 
function (w, r,i/j)\—• Uu,rip is uniformly continuous on compact sets, hence 

max sup sup p(Uu^^,\l)) < S 

for n sufficiently large, since max^(^ — r*l_x) —• 0 as n —> 00. Now it is enough to apply 
Lemma 2.7. 
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LEMMA 2.10. 
/ m„ v 

max sup \hu[Ur»t(f- ]T Ur"Mr?<P(rf - rf-0 - hu((f)\ —• 0 
l<k<mn0<u<T V j=k+\ J J J 

as n —> oo. 

PROOF. Denote 

Fix e > 0, and let £ be given by Lemma 2.7 for K — { <p }. It suffices to prove that 
p(i>n,k, ip)<àfork=l,..., mn, for n sufficiently large. The metric p being invariant 
under shifts, it is enough to show that 

(2.10) 1>n*-<peB(6) 

for/: = l , . . . ,m„, for «large, where B(6) = {X/J : p(0,t/0 <6}. We have 

<£ — ^ , ^ ~~ / Ur",vAv(p dv 

(assumption(d)), hence 

1pn,k -<P = L Ur"k,vAv(f d v - }2 U^A^ifirf - / £ _ , ) 
Jfk j=k+l J J 

= l^n^-^n^dv, 

where 

Vv*0) = U,»vAv<p = XI UfiiVAvipI\jn Mv), 
y=ik+l 

Vv*0)= É ^,^^%_, , /7[( v)-

By Lemma 2.6(ii) the function (r, v) f—> Ur,vAv(p is uniformly continuous on {(r,v) : 
0 < r < v < T} ; hence there exists no such that if n > no then Ur»tVAv(p — U^^A^ ip G 
(t-sylB(6) fork = l,...,m r t, v G [>£_!,/?[,./ = & + 1,... ,m„. Therefore if « > n0, 

then ^ ( v ) - $nJc(y) e(t- s)-{B(è) for it = 1,... ,m„, v G [^, f[. But (r - s)"15(5) is 
closed and convex (the metric p can be chosen that way), hence 

(t - rîr1 £($n*(y) ~ $njM) dve(t- s)-xB(6) 
k 

iovk— 1, . . . , ran, n > no. (2.10) follows from this and the lemma is proved. 

PROOF OF THEOREM 2.5. By virtue of Theorem 2.2 and Corollary 2.3 it suffices to 
prove that if y G O, 0 < s < t < T and s = rj < ^ < • • • < r ^ = f, n = 1,2,..., is 
a normal sequence of partitions of [s, t], then 

l hr{(p)dr=UmZ / / hu\uuK{u^ - ] £ l / ^ A ^ O ? " £ i ) ) J du. 
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huUUirk ( ( UrkjtV - E VrtSjArjlfirj - 7}_i) 

The sum under the lim can be written as an + bn + cn + dn, where (we omit the index n) 

- rn 

-hu(Urkj(f - E Urk,rjArj<p(rj ~ rj-i)) 
V j=k J J 

bn = E / \hu[Urkj(p ~ E Urk,rjArj<p(rj ~ /)_i)) 
y = * 

dw, 

-hu(Urk,tip - E UrkSjArjlfirj ~ A>_ i ) ) <fe|, 

C " = E / \hu[Urkj<P - E Urk,rjArj<p(rj ~ /J_i)) - hu((f) 
k=\Jr^V V j=k+\ 

dn = J2 hu((p)du= / hu((p)du. 

The theorem will be proved if we show that an —> 0, &n —• 0, cn —• 0 as « —• oo. 
Fix £ > 0, and let ^ be the compact subset of O given by Lemma 2.8. We have by 

Lemma 2.9, 

mn ^ mn fî 
Kl - E L M^K,/JC--)) ~ W---)\du - E L ê w = (*-•*)£ 

for « sufficiently large, so <?„ —+ 0. Next, let 8 be given by Lemma 2.7. We have 

^ - E . . . , ^ - E ...) = p(A f î^(fî-^1).o)<« 

for & = 1,... , mn and « sufficiently large, since the set {A^ ip : k = 1 , . . . , m„, « = 
1,2,...} is bounded in O. Then Lemma 2.7 implies that 

*>n\ < E L edu=(t-s)s 

for n sufficiently large, so bn —> 0. Finally, Lemma 2.10 implies that \cn\ < (t — s)e for 
n sufficiently large, hence cn —+ 0 and the proof is complete. 

We will show now that in most cases condition (2.3) is necessary for a process in 
O' to satisfy (2.1), with Z having independent increments. To this end we shall need 
an existence and uniqueness result permitting to write down the solution of (2.1) in an 
explicit form. 

We start by recalling briefly Ustunel's definition of the stochastic integral with re­
spect to a O'-valued semimartingale [26, 27]. It should be observed, however, that in the 
Gaussian case (see Section 3) a more direct approach, developed in [3,4], can be used. 

We will say that a set V C O7 is an //-neighbourhood of 0 if it is convex, symmetric and 
closed, and its Minkowsky functional is a continuous separable Hilbertian seminorm in 
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O7. By 07(V) we will denote the corresponding Hilbert space, and the canonical mapping 
O7 —> 07( V) will be denoted by k(V). If AT is a bounded subset of O then there exists B 
such that K <Z B and B is the polar of an //-neighbourhood of 0 in O7. The polar B° of 
B is an //-neighbourhood of 0 in O7 and the (Hilbert) spaces 0[#], 07(#°) are in duality, 
where <D[B] denotes the completion of span(#) with respect to the Minkowsky functional 
ofB. 

Let/: O —•+ K be a measurable function and Z = { Zt : 0 < t < T} be a process in 
O7 such that for each ip G O the process {(Zr, <p) : 0 < t < T} is a semimartingale 
(with respect to some filtration which is assumed to be given in advance). Then for any 
//-neighbourhood V of 0, the process k(V)Z is a O'(V)-valued semimartingale and the 
stochastic integral ^{dZs,f{s)) can be defined as ^{dk(B°)ZsJ(s)), the last integral 
being the usual stochastic integral in Hilbert space. This integral does not depend on a 
particular choice of B. 

We are now ready to state our next result. 

THEOREM 2.11. (i) Let Au USJt satisfy (a), (b), (c), (d) and let {% : 0 < t < T} be 
a filtration. Assume that Z = {Zt : 0 < t < T} is a &-valued cadlag process, Zo — 0, 
such that for each <p G O the process {(Zt,(p) : 0 < t < T} is a semimartingale. Then 
equation (2.1) has a solution of the form 

(2.11) X^UZjXo+fcuïjdZ,, 

or, more precisely, 

(2.12) (Xt9<p) = (Xo,Uo;<p) + £(dZs,USJip) 

fonp e®,0<t<T. 

(ii) If Au Us,t satisfy additionally the ((backward equation" 

(2. 13) Ustf = <f + J^ArUrjif dr 

for (f €Q>,0<s<t<T, then the solution given by (2.11) is unique up to modification. 

PROOF. Given ip G O, we define 

K= { Us,tip :0<s<t<T}U{ Us,tAtip :0<s<t<T}, 

which is a bounded subset of O by Lemma 2.6. We take some B as described above, and 
we have the well-defined integrals 

jf'( dZs, Ustf) = j['< dk(B°)Zs, USJt<p) 

and 
f{dZs, UsjAtip) = j f < dk(B°)Zs, Us,At<p). 
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It is easy to see that the regularization theorem [11] can be applied to obtain that ip H-> 
So(dZs, USjtip) is (has a version which is) a O'-valued random variable, hence X defined 
by (2.12) is a O'-valued process. 

The function (r,s) \—> Ur,sAs(p is measurable and bounded in 0[£] , hence, by a 
stochastic Fubini theorem in Hilbert space [18] the integral ^{dk(B°)Zr9 UrtSAs(p) has a 
measurable version (as a function of (s, u)) and 

fJS
Q(dk(B°)Zr, UrfSAs<p) ds = ^(dk(B°)Zn£ Ur,sAsy ds) 

= J ( dZr, Ur,t<p) - (Zt, (f) a.s. 

by assumption (d). This, together with (2.12) and assumption (d) once more yield 

£(Xs,As<p) ds = £(X0, UoAsV) ds + fJ^dk(B°^ Ur,sAsv) ds 

= (Xo,Uo;<p) - (Xo,<f) +£(dZr,Ur,<p) ~ (%, <p) 

= (Xt9<p) - (Xo,<p) -(Zt9<p) a.s. 

Thus, the first part of the theorem is proved (see (2.2)). 
The second part follows immediately from the deterministic argument given in 

[15,16], so the proof is complete. 

REMARK. Instead of the stochastic Fubini theorem, the integration by parts formula 
could be used, analogously as in [28], where a very special case is considered. 

The following result is a reciprocal of Theorem 2.2. 

COROLLARY 2.12. Let Au USjt satisfy (a), (b), (c), (d) and (2.13). Assume that X is a 
solution of (2.1) where Z is a process with independent increments, cadlag, ZQ = 0, such 
that for each (f E O the function 11—• Eel(Zt^ has finite variation in [0, T], and XQ is 
independent ofZ. Then (2.3) is satisfied for some deterministic H. 

PROOF. It suffices to observe that for any ip G O the process {(Zt,ip) : 0 < t < 
T} is a semimartingale with respect to the filtration generated by Z (eg. [13], Ch. II, 
Theorem 4.14), and then to apply Theorem 2.11, since (2.12) together with (c) imply 

(Xt,<p) = {XstUsjip) +J\dZr,Ur,tp)dra.s. 

for <p G O, 0 < 5 < t < T, and $l{dZs, UrJ(p) is clearly independent of the a-algebra 
generated by { Xr9 V> : 0 < r < .y, ^ G O } . 

COROLLARY 2.13. IfX satisfies the hypotheses of Theorem 2.5 and the backward 
equation (2.13) holds, then X is the unique solution of equation (2.1) and it is given in 
the form (2.11). 

REMARK. In the Gaussian case [ 1,2] we have referred to the relationship between the 
covariance functional of the processes X and Z in equation (1.1) (formula (3.2) below) as 
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a "fluctuation-dissipation relation," abstracting this concept from statistical mechanics. 
In this case the distributions of X and Z are completely determined by their respective 
covariance functional. In the setting of Theorem 2.5 the distributions of X and Z are 
determined by formulas (2.7) and (2.9), and these expressions also contain the relation­
ship between the two distributions. Therefore, abstracting further, we may call the pair 
(2.7)-(2.9) a "generalized fluctuation-dissipation relation." 

3. Special cases. In this section we show some examples of applications of The­
orem 2.2 and Theorem 2.5. Firstly we will consider the Gaussian case. This case was 
discussed in [1,2] and we now present it in the new framework. 

THEOREM 3.1. Let At9 USjt satisfy (a), (b), (c), (d). Assume that X = {Xt : 0 < t < 
T} is a continuous, centered Gaussian <&' -valued process whose covariance functional 

Kx(s,<p\t9ii>) = E((x5,<p)(xt,ii>))9 <p,ti> e a w e [0,r], 

is such that 

(3.1) Kx(s,<p,t,xlj) = Kx(s,ip;s,Usjxl>) 

for 0 < s < t < T,(f,i/j GO. Then X is a Markov process and satisfies equation (2.1), 
where the process Z is centered Gaussian, continuous, with independent increments, and 
its convariance functional is given by 

Kz(s,<p,t9il;) = Kx(sA t9(p9sA t9x/j) - Kx(0, <p909\l>) 
(3.2) rsAt 

- jf [Kx(r9Ar<p ; r, 0 ) + Kx(r9 if ; r9Ar^\) )] dr. 

PROOF. Fix 0 < s < t < T and (p G O. Let Qs denote the a-algebra generated by 
{ (Xr9 -0 ) : r < S,I/J G O } . The conditional distribution of (Xt9tp) under the condition 
of Qs is Gaussian with mean E[(Xt9(f) | Çs] and variance 

E{Xt9ip)2-E(E[(Xt9p) | Qs]f. 

On the other hand, (3.1) and (c) imply that 

E[(Xt9<p) | Çs] = (XS9USJ<p)9 

hence we obtain 

E[é^ | Çs] = el^u^ Qxp[-^[Kx(t9ip;t9^)-Kx(s9Us,t^s9Us^)]y 

Thus we have obtained (2.3) with 

(3.3) H(s91\ if) = exp{--[Kx(t9<p\t9 if) - Kx(s9 Us^\s91/,^)]}, 
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so we can apply Theorem 2.2. It is clear that the process Z given by that theorem is 
centered Gaussian and continuous. The covariance functional of Z can now be obtained 
from (3.3) with the help of Corollary 2.3. 

REMARKS, (i) In Theorem 3.1 the covariance condition (3.1) can be replaced by 

E[(Xt,(p) | (Xr^),r<s^ 6 0 ] = ( X „ ^ ) , if GO, 0 < s < t < T. 

(ii) If in addition to the assumptions of Theorem 3.1 we require that the function 
s i—• Kx(s, (p\s,ip)be continuously differentiable, then the covariance functional of Z 
has the form 

(3.4) Kz(s,(/>;M )̂ = ^ A ' [ - ^ ( ^ 

for ip, I/J £ O, s J G [0, T\. Such a process Z is called in [1,2] a generalized Wiener 
process. See [4] for a discussion of its properties. 

(iii) Suppose that the assumptions of Remark (ii) are satisfied and in addition the 
backward equation (2.13) holds (this situation occurs most frequently in applications). 
Then formula (3.4) follows from Theorem 2.5 with the function hr given by 

W ^ ) = - ^ [ ^ x ( r ^ ; ^ ^ ) - 2 / ^ x ( r , A r ^ ; r , ^ ) ] . 

Indeed, it is easily seen that the condition (2.8) is satisfied and (see (3.3)) we have 

ft d 
Kx(t, (p;t,<p)- Kx(s, Us,t(f ; 5", USJtV) = Js ~TKx(r> uv<P» r' ur,t<P) dr, 

so it suffices to observe that 

lim T[Kx(r + h, Ur+h,t¥',r+h, Ur+h,t(f) - Kx(r, Urtt(p;r9 Ur^)] 

= \im{-[Kx(r + h, Ur+h^\r + h, Ur+h4(p) - Kx(r, Ur+h,t(p\r, Ur+h,t<p)] 

+ j[Kx(r, Ur+Ktv\r, Ur+hjip) - Kx(r, Ur,t(p;r, U„.hJtip)\ 
n 

+-[Kx(r, Urjip\r9 Ur+h,t¥) ~ Kx(r, Ua(p;r, UrJ(f)]} h ) 

= -2hr{U«<p), 

by (2.13) and the Banach-Steinhaus theorem. 
The next example is a special case of a process obtained in [5] as a fluctuation limit of 

a branching particle system, where the branching law belongs to the domain of normal 
attraction of a stable law with exponent 1 + /3,0 < /? < 1. 

Let «5(/^) denote the space of infinitely differentiable functions on R?, d > 1, which 
are rapidly decreasing at infinity together with all their derivatives. Endowed with its 
usual topology, SiR**) is a nuclear Fréchet space [24]. Let {Tt,0 < t < T} denote 
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the semigroup associated with the standard Wiener process in Rd. Then At ~ \A and 
USJ = r,_, satisfy (a), (b), (c), (d) with O = S(Rd). 

The process X found in [5] is an 5'(/^)- valued cadlag process whose conditional char­
acteristic function is given by 

E[ei{Xt^ \(Xr^),r<s,<4) € 5(/^)] 

= exp{i(Xs,rf_^> + fsJRdTr(-iTt-rp)l+P(xMdx)dr}, 

for (f G S(Rd), 0 < 5 < / < 7, where /i is a Radon measure on /^. Hence condition 
(2.7) of Theorem 2.5 is satisfied with 

hr(p) = JRJr(-iv)l+P(xMdxl 

which is clearly measurable in r. 
We must show that condition (2.8) is fulfilled. Note that 

(~iu)l+P = |w | 1 + / 3 (cosy( l+/3) - / ( sgn«)s iny( l+^)) 

for real u. We have 

sup \hr(v)-hr{^)\< sup [Tr(\(-iv)l+P -(-iiiy^lXxMdx). 
0<r<T 0<r<TJR 

Now, ip —• Lp in S(Rd) implies that ip —• ip point wise and boundedly, hence 

l(-«V)1+/?-(-^)1+/3l-o 

pointwise and boundedly, and therefore Tr\ (—i(p)l+(3 —(—n/> )1+/31 (x) —> 0 for each x G Rd 

and 0 < r < T. On the other hand let (pp(x) = (1 + |x\ 2 ) _ / \ x G Rd, with some p> d/2. 
Then for each x G Rd and 0 < r < T we have 

^( - /^^- ( -^^ iW^r^l^ + r^l1^ 
< [sup(\(f(x) I /(^pW) + +SUp(|^W|/^W) + ]TrVp(x). 

xeRd xeRd 

The term in brackets is uniformly bounded as ̂  —• <p, and sup0 < r < r Tr^pp(x) < C(fp(x) 
for some constant C [5]. Finally, cpp is integrable with respect to \i by assumption, and 
therefore the desired result follows by the dominated convergence theorem. 

We can now apply Theorem 2.5 to conclude that the process X satisfies the S,(Rd)-
valued Langevin equation 

dXt =
 l-AXtdt + dZu 0 < t < T, 

where Z is a process with independent increments such that 

Eei((zt^)-(zs^)) = expjjrfjrdrr(-/(^)1+/3(jc)M(Jjc)Jr} 
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for <p G SiK*), 0<s<t<T. 

REMARKS, (i) Since the linear combinations of the random variables (Xt],(p\),..., 
(Xtm, <pm) have stable distributions, X is an example of a stable generalized Ornstein-
Uhlenbeck process. 

(ii) Except in the Gaussian case (/? = 1), the increments of Z are not symmetric (see 
Corollary 2.4). 

(iii) In [5,6] the semigroup { Tt} is that of a spherically symmetric stable process in 
/^ with exponent a, 0 < a < 2. The case a = 2 corresponds to the example given 
above. For a < 2, A = — (—A)a/2, which does not map S(Rd) into itself. In this case the 
formulation developed in this paper is not applicable since the Langevin equation cannot 
be interpreted in the form (2.2), and a generalized type of solution is needed [6]. 
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