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Abstract

We study several kinds of subschemes of mixed characteristic models of Shimura varieties which
admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications
and formal local structures, as if they were Shimura varieties in characteristic zero. We also
generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent
sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
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1. Introduction

Integral models of Shimura varieties and their compactifications have played
crucially important roles in many recent developments in algebraic number theory.
In most of these developments, it is desirable to have certain decompositions of
their special fibers into disjoint unions of locally closed subsets, which allowed
mathematicians to reduce or relate their questions to some simpler building
blocks.

For example, in PEL-type cases without factors of type D, we have the p-rank
strata and Newton strata for all models, the Oort central leaves and Ekedahl—
Oort strata for models above hyperspecial levels at p, and the Kottwitz—Rapoport
strata for models above parahoric levels at p, on the reductions modulo p of all
integral models we consider. When the level and ramification at p are mild, these
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are known to form stratifications in the precise sense that closures of strata are
again unions of strata. In general, they still form stratifications in a weaker sense
that suitable unions form closed subsets, which are sufficiently useful for many
applications.

On the other hand, it is also desirable to have nice total or partial
compactifications of the integral models. For a long time, it was mainly the
good reduction integral models or some parahoric variants of them which had
been considered at all (see the introductions of [36, 78], and [79]). Nevertheless,
in recent works by Madapusi Pera (see [50]) and us (with more elementary
arguments; see [38, 41], and [43], and also [1] and [70]), a general principle
has emerged—the difficulties in the construction of compactifications and in the
construction of normal integral models with nice local properties are essentially
disjoint from each other.

Roughly speaking, the first goal of this article is to uniformly construct good
partial toroidal and minimal compactifications for many nice locally closed
subsets or subschemes, without any detailed knowledge of their local properties,
but with a long list of nice properties as if they were Shimura varieties in
characteristic zero.

We have several motivations for this.

Firstly, while preparing our previous article [45], we observed that the supports
of nearby cycles over the integral models of PEL-type or Hodge-type Shimura
varieties we consider, even in the trivial coefficient case, enjoy some intriguing
nice features near the toroidal and minimal boundary, which make it possible
to talk about good toroidal and minimal compactifications of such supports.
(We emphasize that in PEL-type cases we do allow arbitrarily high levels at p,
for which no theory of local models is currently available.) Based on earlier
experience of one of us (see [80, 82]), we soon realized that the same can be
said for several other kinds of subsets or subschemes of the integral models
we consider, including the above-mentioned p-rank strata, Newton strata, Oort
central leaves, Ekedahl-Oort strata, and Kottwitz—Rapoport strata (at least in
PEL-type cases).

Secondly, in Boxer’s recent work [12] on generalized Hasse invariants on
Ekedahl-Oort strata, he introduced the notion of well-positioned subschemes near
the boundaries of toroidal and minimal compactifications of the good reduction
integral models constructed in [36], and used it to show that the Ekedahl-Oort
strata extend to affine subschemes of the minimal compactifications. We observed
that a slightly weaker notion than Boxer’s naturally generalizes to cover many
other interesting situations, including everything we mentioned in the previous
paragraph. We shall call them well-positioned subsets or subschemes, from
now on.
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Thirdly, we can generalize many useful results concerning the coherent and
étale cohomology of integral models of Shimura varieties to the context of
well-positioned subsets or subschemes—these can be considered the second
goal of this article. They not only have many potential applications, but also
clarify what were really needed in their original proofs. For example, for
coherent cohomology, we can generalize Koecher’s principle for the global
sections of canonical extensions of automorphic bundles over partial toroidal
compactifications, and the vanishing of higher direct images of subcanonical
extensions of automorphic bundles under the canonical morphisms from the
partial toroidal compactifications to the partial minimal compactifications,
even when they are far from normal. For étale cohomology, under some
technical assumptions, we can generalize Pink’s formula (see [72]) for the
pullbacks to boundary strata of the derived direct images of automorphic étale
sheaves, under the canonical morphisms from Shimura varieties to the minimal
compactifications; and also Morel’s formula (see [58, 59, 61]) for the analogues
for middle perversity extensions instead of derived direct images.

Here is an outline of this article.

In Section 2, we introduce and study the notions of well-positioned subsets
and subschemes of the integral models of PEL-type or Hodge-type Shimura
varieties we consider, and of their partial toroidal and minimal compactifications.
In Section 2.1, we review the integral models we consider, and give a qualitative
description of their toroidal and minimal compactifications. In Section 2.2,
we introduce the well-positioned subsets and subschemes, and prove some
basic lemmas. In Section 2.3, we construct the partial toroidal and minimal
compactifications for all well-positioned subsets and subschemes, and include
some basic consequences. For example, we show that the local properties of the
partial toroidal compactifications are as nice as the given well-positioned subset
(with its reduced subscheme structure) or subscheme. In Section 2.4, we show that
the consideration of well-positioned subsets and subschemes, and their partial
compactifications, are functorial in nature and compatible with Hecke actions.
In Section 2.5, we present the generalizations of Koecher’s principle and the
vanishing of higher direct images alluded above.

In Section 3, we study many examples of well-positioned subsets and
subschemes. We start with the seemingly trivial examples of pullbacks and
fibers in Section 3.1. Then we proceed with the more interesting examples of the
p-rank strata in Section 3.2, the Newton strata in Section 3.3, the Oort central
leaves in Section 3.4, the Ekedahl-Oort strata in Section 3.5, and the Kottwitz—
Rapoport strata in Section 3.6, all in PEL-type cases (and often without factors
of type D), by first introducing them as locally closed subsets, and then showing
that they are well positioned as in Section 2.2, and hence admit partial toroidal
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and minimal compactifications as in Section 2.3. We have chosen to present
these examples in PEL-type cases, often without factors of type D, because the
theories are most complete and well understood in these cases. (Nevertheless,
see [48, 85], for example, for some recent developments for Hodge-type Shimura
varieties with hyperspecial levels at p.) The definitions we have used are not
necessarily the ones of the greatest elegance, novelty, or historical importance,
but rather ones that are most amenable to the consideration of semi-abelian
degenerations near the boundary. (We apologize to any experts whose works
we might have failed to highlight or even mention.) In Section 3.7, we study
the supports of nearby cycles, and show that they are well positioned, under
an assumption that is satisfied at a cofinal system of levels. The upshot is that,
with little knowledge beyond the definitions, we can show that many subsets or
subschemes are well positioned. Then they automatically admit partial toroidal
and minimal compactifications with familiar properties, just like their ambient
integral models of Shimura varieties, and they enjoy all the nice features we have
abstractly established in Section 2.

In Section 4, we introduce and study the notion of well-positioned étale
sheaves and complexes over the partial toroidal compactifications of the well-
positioned subsets introduced in Section 2. In Sections 4.1 and 4.2, we give their
definitions and study their general properties, together with some examples. In
Sections 4.3, 4.4, and 4.5, we present the generalizations of Pink’s and Morel’s
formulas alluded above, and also a variant of Mantovan’s formula with boundary
terms (different from our previous generalization in [45]).

We emphasize that our results apply even when we have essentially no
knowledge of the well-positioned subsets or subschemes being considered. For
example, consider any good reduction p-integral model introduced by Kottwitz
in [32, Section 5] in PEL-type cases not of type D, consider the intersection
of a Newton and an Ekedahl-Oort strata on its characteristic p special fiber,
and consider just one irreducible component of its pullback to principal level
p*18, which we denote by Y. We know essentially nothing about Y, but we
can still show that it is well positioned, that the (generally infinite-dimensional)
coherent cohomology of its partial toroidal compactification Y’y still satisfies our
generalization of Koecher’s principle, and that the intersection complex of Yﬁgf is
well positioned and satisfies our generalization of Morel’s formula over Y™".

We shall follow [36, Notation and Conventions] unless otherwise specified.
While for practical reasons we cannot explain everything we need from the
various constructions of toroidal and minimal compactifications we need, we
recommend the reader to make use of the reasonably detailed index and table of
contents there, when looking for the numerous definitions. For references to [36],
the reader should also consult the errata available on the author’s website for
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corrections to some known errors and imprecisions. We sometimes use materials
in [45] without thoroughly reviewing them.

2. Well-positioned subsets and subschemes of good integral models

2.1. Background setting. Let p > 0 be arational prime number. Let us repeat
[45, Assumption 2.1] as follows:

ASSUMPTION 2.1.1. Let X3y — S be a scheme over the spectrum of a discrete
valuation ring R, of mixed characteristics (0, p), which is the pullback of one the
following integral models in the literature: (The various notations Sy, S, and so
forth below are those in the works we cited, which we freely use, but mostly only
in proofs.)

(Sm) A smooth integral model
MHD —> SO = Spec((’)pﬂf(g))

defined as a moduli of abelian schemes with PEL structures at a neat level
HP C G(ZP), as in [36, Chs 1, 2, and 7], with p € O and H = H" x
]_[qED G(Z,). (When O = {p}, it is shown in [36, Proposition 1.4.3.4]
that the definition in [36, Section 1.4.1] by isomorphism classes agrees
with the one in [36, Section 1.4.2] by Z(Xp)—isogeny classes, the latter being
Kottwitz’s definition in [32, Section 5].)

(Nm) A flat integral model
My, — Sy = Spec(Or,. )

of a moduli My — Sy = Spec(Fp) at a neat level H C G(Z) (essentially
the same as above, but with O = J) defined by taking normalizations over
certain auxiliary good reduction models as in [38, Section 6] (which allow
bad reductions due to arbitrarily high levels, ramifications, polarization
degrees, and collections of isogenies). (In this case, we also allow Fj to
be a finite extension of the reflex field, with My, and others replaced with
their pullbacks.) For simplicity, we shall assume that, in the choice of the
collection {(g;j, L, (- , -)j)}jes in [38, Section 2], we have g; = 1 for all
j€Jand (L, (-, -);) = (p"L, p~2(-, -)) for some j, € J and some
ro € Z. (This simplifying assumption imposes no restriction on the integral
models we consider.)
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(Spl) A flat integral model
- spl
M;; — Spec(Ok)

of Myy ®, K — Spec(K) defined by taking normalizations as in [43,
Section 2.4] over the splitting models defined by Pappas—Rapoport as in
[68, Section 15]. (By taking normalizations, we mean we also allow H
to be arbitrarily higher levels, not just the same levels considered in [68,
Section 15].) For simplicity, we shall assume that, in the choice of the
collection {(gj, Lj, (- , - )j)}jey in [43, Choices 2.2.9], we have g; = 1 for
alljeJand (L, (-, -);,) = (p"L, p~(., -)) for some j, € J and some
ro € Z. (Again, this simplifying assumption imposes no restriction on the
integral models we consider.)

(Hdg) A flat integral model
y]( —> SpeC(ﬁEy(U))

in the notation of [50, Introduction] at a neat level K. For consistency with
the notation in other cases, we shall denote K, E, and .% as H, F,, and
My, , respectively, in what follows. Essentially by construction, there exists
some auxiliary good reduction Siegel moduli My, — Spec(Z,)) in Case
(Sm) above, with a finite morphism My, — My, ®z, Of, ) extending
a closed immersion My, @7 Q — My, ®z Fo.

In all cases, there is some group functor G over Spec(Z), and some reflex field Fy;.

e In Cases (Sm), (Nm), and (Spl), the integral models are defined by (among
other data) an integral PEL datum (O, x, L, (-, -), hg) (cf. [36, Definition
1.2.1.3]), which defines the group functor G as in [36, Definition 1.2.1.6], and
the reflex field Fj as in [36, Definition 1.2.5.4]. For technical reasons, we shall
insist that [36, Condition 1.4.3.10] is satisfied. Moreover, we shall assume as
in [38, end of Section 2], [41, Theorem 6.1], and [43, Choices 2.2.10] that the
image of H C G(Z) under the canonical homomorphism G(Z) — G(Z”) is
also neat. (In Case (Sm), this follows from the assumption that H" C G(ZE’)
is neat.)

e In Case (Hdg), we still have an integral PEL datum defining the auxiliary good
reduction Siegel moduli My, , which we abusively denote as (O, x, L, (-, -),
ho) (with O = Z, without ‘aux’ in the notation), which also defines a group
functor G,,x with an injective homomorphism G — G,,,. Moreover, we shall
assume as in [50, Section 4.1.1] that K = H is of the form H = H?H , for some
H? € G(A*?) and H, C G(Q,), and that H? is also neat. (The neatness of
‘H? is not explicitly emphasized in [50, Section 4.1.1], but is implicitly needed
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in the construction by normalizations in [50, Section 3.7.1], where K = H is
assumed to be contained in some neat open compact K* = H,ux C Guux (A™)
of the form H? Hau p With HZ C Gu(A>?) and Hax , = Gux(Z)) C

Gaux(Q)). Since G,x(Z,) is not neat, the neatness of H,, forced H? and
hence H? to be also neat.)

Except in Case (Sm), we allow the level H C G(A*) to be arbitrarily high at p;
that is, given any open compact subgroup of G(Q,), there exists some H we allow
whose image under the canonical homomorphism G(A*) — G(Q,) is smaller.

We shall say that we are in Case (Sm), (Nm), (Spl), or (Hdg) depending on the
case in Assumption 2.1.1 from where X3 — S is pulled back.

For each X3, — S as in Assumption 2.1.1, we have good toroidal and minimal
compactifications X';I‘ s — S and Xg" — S, whose qualitative properties we
summarized axiomatically in [45, Proposition 2.2], based on the constructions
in [36, 38, 41, 43], and [50], which we also repeat as follows, for the sake of
clarity:

PROPOSITION 2.1.2. Let X3y — S be as above. Then there is a canonical
minimal compactification '
. min
ngfé" . X’H —> XH

over S, together with a canonical collection of toroidal compactifications
. tor
JXer,Z : X’H —> X’H,Z‘

over S, labeled by certain compatible collections X of cone decompositions,
satisfying the following properties:

(1 The structural mor, hlSWl X in — S is proper. For EClCh 2, there is a proper
P H prop prop
surjective structural morphism

f X s = Xy,
H,Z '

which is compatible with Jxl,;lin and Jys: _in the sense that

Jxlqr:zn = f OJXer.E'
HE

(2) The scheme XL‘:Z" admits a stratification by locally closed subschemes Z flat
over S, each of which is isomorphic to an analogue of Xy, (in Cases (Sm),
(Nm), or (Spl)) or a finite quotient of it (in Case (Hdg)). Moreover, the same
incidence relation among strata holds on each fiber over S.
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(3) Each X is a set { X7}z of cone decompositions Xz with the same index set
as that of the strata of Xg“—The elements of this index set can be called the
cusp labels for X4,. For simplicity, we shall suppress such cusp labels and
denote the associated objects with subscripts given by the strata Z.

(4) For each stratum Z, the cone decomposition X7 is a cone decomposition
of some P, where P is the union of the interior P of a homogeneous self-
adjoint cone (see [4, Ch. 2]) and its rational boundary components, which is
admissible with respect to some arithmetic group I acting on P (and hence
also on X7). (For example, in the case of Siegel moduli, each P* can be
identified with the space of r x r symmetric positive definite pairings for
some integer r, and P can be identified with the space of r X r symmetric
positive semidefinite pairings with rational radicals.) Then X7 has a subset
X3 forming a cone decomposition of P*. If T is a cone in X7 that is not in
Z‘{ , then there exist a stratum Z' of Xr;.'_tlm, whose closure in X;m contains Z,
and a cone T’ in Z‘;,, whose I''-orbit is uniquely determined by the I"-orbit
of T (Where I'' is the analogous arithmetic group acting on Xz).

We may and we shall assume that X' is smooth and projective, and that, for
eachZ and o € 22’ , its stabilizer T, in I" is trivial.

(5) For each X, the associated X;‘fy s admits a stratification by locally closed
subschemes Z\,, flat over S, labeled by the strata Z of %i“ and the orbits
[o] € 22“ /. The stratifications of X;(f, 5 and X3," are compatible with each
other in a precise sense, which we summarize as follows: The preimage of
a stratum Z of X3}" is the (set-theoretic) disjoint union of the strata Z,, of
X;(_)[r’): with [0] € X5 /. If T is a face of a representative o of (o], which
is identified (as in the property (4) above) with the I''-orbit [t'] of some
cone v’ in 227, where Z' is a stratum whose closure in X"H‘in contains Z, then
Z,) is contained in the closure of Z,,. The same incidence relation among
strata holds on each fiber over S.

(6) For each stratum Z of X2 there is a proper surjective morphism
oA
from a normal scheme which is flat over S, together with a morphism
g —->C

of schemes which is a torsor under the pullback of a split torus E with some
character group S over Spec(Z), so that we have

= =spee, (Do)

teS
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for some invertible sheaves W (£). (Each W (£) can be viewed as the subsheaf
of (E — C),0z on which E acts via the character £ € S.) This character
group S admits a canonical action of I', and its R-dual Sy, :== Homz(S, R)
canonically contains the above P as a subset with compatible I'-actions.

(7) For each o € Xz, consider the canonical pairing (-, -) : S x S§ — R and
o' ={teS:{t,y)=0, Vy ea},
o :={eS:({ty) >0, Vyeo},
ot:={teS:({t,y)=0, Vyeo} =0"/oy.

Then we have the affine toroidal embedding

E < 5(0) := Spec,_ (@ lp(z)>.

LeoY

The scheme E (o) has a closed subscheme E, defined by the ideal sheaf
corresponding to @ teoy v (£), so that

E, = Spec,, (@ q/(f)).

leot

Then E (o) admits a natural stratification by E., where t runs over all the
faces of o in X7.

(8) For each representative o € X of an orbit (o] € X /T, let
X, = (E(0))z,

denote the formal completion of & (o) along E,, and let (X;(_’Lr, 2)2[01 denote

the formal completion of X;‘_’[, s along Zi,. Then there is a canonical
isomorphism
~ tor A
x“ = (XH.Z‘)ZM

inducing a canonical isomorphism

Ea = Z[n]-

(9) Let x be a point of E,, which can be canonically identified with a point
of Zis via the above isomorphism. Let us equip Z (o) with a coarser
stratification induced by the I'-orbits [t] of T, where T are the faces of .
Each such orbit [t] can be identified with the I''-orbits [t'] of some cone T’
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in 227, where Z' is a stratum whose closure in X"H]m contains Z. Then there

exists an étale neighborhood
T7 tor
U—Xys
of x and an étale morphism

U — E(0)

respecting x such that the stratification of U induced by that of )(E;_’[r’ 5
coincides with the stratification of U induced by that of B (c), in the sense
that the preimage of the stratum Z;,, of Xf;_’[, 5 coincides with the preimage
of the [t]-stratum of Z (o) when [t] determines [t'] as explained above;
and such that the pullbacks of these étale morphisms to Zi,y and to E, are
both open immersions. (In particular, th, 5 and 5 (o), equipped with their
stratifications as explained above, are étale locally isomorphic at x.)

For our purpose in this article, it is useful to have the following more precise
version of (8) of Proposition 2.1.2:

PROPOSITION 2.1.3. Let us retain the same setting as in Proposition 2.1.2. For
each given X, and for each Z, consider the full toroidal embedding

Ex,= ] &)
oceXy

defined by the cone decomposition Xz (cf. [36, Theorem 6.1.2.8 and Section
6.2.5]), and consider the formal completion

of B, along its closed subscheme UTE);; E.. Consider, for each o € X, the
formal completion

X = (E0)20)
of E (o) along its closed subscheme

E()t = U

1€X].TCT

6]

Then X 5, admits an open covering by X2 for o running through elements of X5,
and we have canonical flat morphisms

X, > X > X5, > X;‘_’[’)D (2.1.4)
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(of locally ringed spaces) inducing isomorphisms

X = X000 .z (2.1.5)

rezzr, TCo
and

X5, /T = (X5, 5 (2.1.6)

A
)Umszz/r Ziny

tor

such that (2.1.6) induces (2.1.5) by restriction, extending the X, = (XH, 2)2[01

and E, — Z,) in (8) of Proposition 2.1.2.
More precisely, for each o € X, and for each affine open formal subscheme
W = Spf(R) of X2, under the canonically induced (flat) morphisms

W := Spec(R) — X3, &

and
Spec(R) — & (o)

induced by (2.1.5), the stratification of W induced by that of X;(f[’ 5. coincides with
the stratification of W induced by that of E (o). In particular, the preimages of
Xy and E coincide as open subschemes of W. This open subscheme, which we
denote as
we,

is the locus over Spec(R) where the pullback of any Mumford family is abelian.
(For the meaning of Mumford families, see [36, Definition 6.2.5.28] in Case (Sm),
and see [38, (8.29)] and [41, the proof of Lemma 4.13] in Case (Nm). In Case
(Spl), the Mumford families are the pullbacks from those in Case (Nm); see
[43, the proof of Lemma 3.2.22]. In Case (Hdg), we consider any pullbacks of
Mumford families from auxiliary toroidal compactifications in Case (Sm).)

Proof. In Case (Sm), these follow from the very construction of Mumford
families as relative schemes (with additional structures) over the formal boundary
charts in [36, Section 6.2.5], and from the proof of [36, Theorem 6.4.1.1(5)] and
its modification in the proof of [42, Lemma 1.3.2.41], based on [36, Theorem
6.4.1.1(6)], by matching the pullback of the tautological semi-abelian scheme
over X3, » = My ;. with the Mumford family over X5, = Xo,,0.5,,0 Fay0 5p0°
for each representative (@0, §3o, o) as in [36, Definition 6.2.6.1]. (Since the
pullback of the stratification of X;‘z 5. is determined by the theory of degeneration,
it coincides with the pullback of the stratification of &(o); see the proofs of
[36, Propositions 6.3.1.6 and 6.3.2.10].) In Case (Nm), these follow from [41,

Propositions 5.1 and 5.20]. In Case (Spl), these follow from the proposition
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. A . o splitor |
in Case (Nm), because the stratification of XH, 5 1s the pullback of that of
- tor 2 spl ~ = ~spl
X,y - and because Ey, ;. (0) = Eo,, 5, (0) X it Ca,.5,, (see[43,(3.2.13)]).
In Case (Hdg), this follows from the facts that X;‘_’[’ 5 is the normalization (and
hence finite) over some auxiliary good reduction toroidal compactification in Case
(Sm), and that each stratum Z,; of X}/ - is open and closed in the preimage of a

stratum of this auxiliary toroidal compactification, by the proof of [50, Proposition
4.2.13]. O

Let us also record the following strengthening of (9) of Proposition 2.1.2, which
follows from the same argument of the proofs of [45, Proposition 2.2(9) and
Corollary 2.4], but with the input [45, Proposition 2.2(8)] there replaced with
Proposition 2.1.3 here:

COROLLARY 2.1.7 (Cf. [45, Corollary 2.4]). Let x be any point ofX;(_’Lr,E, which

we may assume to lie on some stratum Z;,, above some stratum Z of Xgn. Let o
be any representative of (o], and let E — E(c) and E, be the affine toroidal
embedding and the closed o -stratum of E (o) over Spec(Z) (defined analogously
as in the case of & — & (o) and E,, but simpler). Let

Z = U Z[r]

[tlexy /I

(with its reduced subscheme structure) in X;(_’Lr_’ 5, Which is the reduced subscheme
of X3y = Xymin Z. Let
E@) = |J E
1ex) . TCT
(with its reduced subscheme structure) in E(o). Then there exists an étale
neighborhood
U— Xy 5
of x and an étale morphism

U — E(U) XSpec(Z) C

such that the stratifications of U induced by that of Xt;f[r’ 5. and by that of E(o)
coincide with each other; and such that the pullback of U — X;T_ 5. under the

canonical morphism Z — X;‘_’i 5 and the pullback of U — E(0) Xspeezy C under
the canonical morphism E(0)" Xspeezy C — E(0) Xspeezy C are both open
immersions.
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Suppose t is a face of o. Then the preimage of the stratum Z;., of Xif; 5 in U,
where [t'] is determined by [t] as in (9) of Proposition 2.1.2, is the preimage of
the stratum E. of E(o). If we denote by Zﬁr,] the closure of Z.1 in X;‘_’Z 5, and by
E.(0) the closure of E, in E(0), then the above implies that, étale locally at x,

the open immersion
tor

Tz, o = 2

can be identified with the product of the canonical open immersion
JE o)t Er = E(0)

with the identity morphism on C. .
In particular, when t = {0}, this means the preimage U of X in U coincides
with the preimage of E. Moreover, étale locally at x, the open immersion

. tor
wav_{.): N X —> XH,E
can be identified with the product of the canonical open immersion
JE(U') E— E(G)

with the identity morphism on C.

In the remainder of this subsection, we record some special cases where C — Z
is known to be an abelian scheme torsor for each Z.

REMARK 2.1.8. Already in Case (Sm), where H" C G(ZD) has no factor at p,
the morphism C — Z might not be an abelian scheme for each Z, for an arbitrary
H—see the errata for [36] on the author’s website, and also the clarification in
[42, Remark 1.3.1.6]. (It is only an abelian scheme torsor over a finite étale cover
of Z.) Nevertheless, C — Z is indeed an abelian scheme for all Z when H" is a
principal level

U (m) = ker(G(ZD) — G(Z/mZ))

for some integer m prime to O, because the constructions in [36, Sections 6.2.2—
6.2.3] remain valid, despite the mistake when taking quotients in [36, Section
6.2.4].

Consider the following special case of Case (Nm) in Assumption 2.1.1:
Suppose p is a good prime (as in [36, Definition 1.4.1.1]) for an integral PEL
datum (O, , L, (-, -), hp) as in Assumption 2.1.1 (which we have insisted to
satisfy [36, Condition 1.4.3.10]). Consider the trivial collection J = {j,} with
{(gj,» Lip> (- » )i} = {1, L, (-, -))}, as in [38, Example 2.3]. Let H be the
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principal level
U(n) = ker(G(Z) — G(Z/nZ))
for some n = nyp", where ny > 3 is an integer prime to p, and where r > 0, so
that
H? =UP(ny) = ker(G(Z") — G(Z/nyZ))

is neat. Let
Ho := U(ny) := ker(G(Z) — G(Z/nyZ)) = H'G(Z,).

Then X3 — S (respectively Xy, — S) is a pullback of |\7IH — éo (respectively
'\7"].[0 — Sy) under some morphism S — S, = Spec(Or,.(p)-

LEMMA 2.1.9. With the setting as above in Case (Nm), the morphism C — Z at
level H is an abelian scheme for all Z. Moreover, if we denote by Cy — Z, the
analogous morphism at level H,, then the canonical morphism C — Cy Xz, Z
can be identified with the multiplication by p" on the abelian scheme C over Z.

Proof. Let (24, @, 83) be a representative of cusp label for M. Let us denote
by (Zyr, Pur, 440) the prime-to-p part of (Z4, Py, 64), and by (Zy,, Pyyy» S1,)
the induced representative at level H,. It suffices to show that, in the notation of
[38, Section 8], C% 53— MH is an abelian scheme, and the canonical morphism

C@H Sy = Cq;HO X 73 MH can be identified with the multiplication by p” on
Ho

S M

the abelian scheme 6¢H,5H over MH

Since p is a good prime for (O, «, L, (-, -), hy), we have the morphisms
Co,ppsnp — MY — Spec(Op, () as in [36, Sections 6.2.3-6.2.4], where
the first one is an abelian scheme. By [36, Proposition 1.4.4.3], the canonical
morphism MZ‘O" — M?ﬁ,p ®z Q is an open and closed immersion. Since the

schemes Miﬂo and MH over Sy = Spec(Op, () are independent of the auxiliary
choices (see [38, Propositions 6.1 and 7.4]), by taking MZ”’ as an auxiliary
good reduction model, we have an open and closed immersion M:Z" — Mz},

and we can take MH to be the normalization of M " under the composition

z ZH
M3t — My — MHO0 < M;3}¢" of canonical morphisms.

Since H? is a principal level, by the construction in [36, Section 6.2.3],
Co,p.5,,, — M3} is an abelian scheme. By the same reasoning as in the

— l\7|::° is canonically isomorphic to the pullback

previous paragraph, Co,, s,
Zyp

of Co, 5,0 — M3;¢" under the open and closed immersion |\7IZ;° — My,
which is also an abelian scheme. Since H = U (nop") and Hy = U(ny) are both
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. . . . 7
principal levels, the canonical morphism Co,, s, = Cayy 50, X\ %0 M3/ can be
Ho

9 M
identified with the multiplication by p” on the abelian scheme Cg,, 5,, over Mfrz*.

. . . ~ 7 .
Hence, there is also an isomorphism Co,, 5,, = Cay, 55, X770 M3/*, which
Ho

M

TnZH C . .
X o2, My, , by Zariski’s main

extends to an isomorphism Cg,, 5, — Co,, V)
Ho

5’”0

R = 7
theorem, because abelian schemes are smooth, and because the base scheme M;
is noetherian normal by construction. The assertions in the first paragraph above
now follow. O

LEMMA 2.1.10. In Case (Spl) that is based on the same setting as above in Case
(Nm) (see the paragraph preceding Lemma 2.1.9), the analogous statements in
Lemma 2.1.9 also hold.

Proof. For each representative (Zy, @3, 8%) of cusp label for My, by [43,
> - — ,spl
Definition 3.2.3], CEMH is the normalization of Cg,, s,, Xy M;H " When

>, Vi . . .
Co,,.5,, — My, is an abelian scheme, this fiber product is already normal because
= 73{,S 1

pl o, =g = Z3¢,8pl | N > 7
M,,  is. Hence, C;f’;ysﬂ — MHH is the pullback of Co,, 5,, — MHH, and the

lemma follows. L]

REMARK 2.1.11. Other than the above special cases in Cases (Nm) and (Spl)
(with the restrictive assumption that J = {j,}, as in the paragraph preceding
Lemma 2.1.9), it is also true in many other special cases that C — Z is an abelian
scheme, or at least an abelian scheme torsor, for each Z. See, for example, the
Siegel moduli with parahoric levels in [78]. (It is plausible that the argument
there can be generalized to all cases in Cases (Nm) and (Spl) where p is good
for (O, %, L, (-, -), hy), and where H = H?*H , for some principal H? C G(Z”)
and for some parahoric subgroup H, of G(Q,,) that is the identity component of
the stabilizer of the base change of the collection £ to Z,,.)

REMARK 2.1.12. When this article was first written, our treatment in Case (Hdg)
was based on the 2015 version of [50], and hence inherited its assumptions on
which ensure that the morphism My, — My, ®z, OF,. ) (in Assumption 2.1.1)
is a closed immersion. This was also why we assumed in [45] and [46] that, in
Case (Hdg) there, the level at p was exactly the pullback of some hyperspecial
level at p of a symplectic similitude group (see, in particular, [46, Remark 2.1]).
Henceforth, this assumption has been removed in the 2018 version of [50], so
now we can also allow arbitrarily high levels at p in Case (Hdg). We can similarly
remove the corresponding assumptions in [45] and [46], because exactly the
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same arguments in [46] also work with the 2018 version of [50], except with
the minor update that, in [46, proof of Proposition 2.4], the fifth sentence in the
fifth paragraph should refer to [50, Definition 5.1.1] instead of 5.1.2.

2.2. Well-positioned subsets and subschemes. Let T be a locally noetherian
scheme over S. For the schemes such as X3, (and morphisms among them) over
S, we shall denote their pullbacks to T by (X% )T, and so forth.

DEFINITION 2.2.1. We say that a locally closed subset (respectively subscheme)
Y of (Xy)1 is well positioned if there exists a collection

Y = {Y3)z

indexed by the strata Z of X%i”, where each YuZ is a locally closed subset
(respectively subscheme) of Zt such that, for each 20 as in Proposition 2.1.3,
the pullback of Y to (W?)t under the induced morphism W° — Xy, is, as a subset
(respectively subscheme) of (W°), the pullback of Y”Z under the composition
W°® — Z of the induced morphism W° — & with the canonical morphisms
& — C — Z. For convenience, for each YJZ as above, we shall also denote by YJC
the pullback of YJZ under C — Z, as a subset (respectively subscheme). We shall

say that Y* is associated with Y.

LEMMA 2.2.2. In Definition 2.2.1, it suffices to verify the condition for some
affine open covering of X5, = |, o3 XS by affine formal schemes 20’s as in
Proposition 2.1.3 for just one collection X of cone decompositions.

Proof. Since locally closed subsets or subschemes coincide if and only if they do
over the open subsets in an open covering, for each X, it suffices to verify the
condition in Definition 2.2.1 for some open covering as in the statement of the
lemma. Since every two X’s has a common refinement, it suffices to show that,
if X’ is a refinement of X, then the condition holds for X' if and only if it holds
for X', In this case, the canonical morphism

tor tor
Xns = Xy s

is proper, under which U[a,] esptr Z,,1 is the reduced subscheme of the preimage
of Ujg)e T Z;;), which induces a proper morphism

Xtor A — XtOr A
( H’E/)U[a'kz?/r Zi0') ( H’E)ULoJeEZ/r Zio1
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between the formal completions. On the other hand, for each o € ZJZ+ , consider

&3]

0= J &,

reZ‘{r, TCo
which admits a proper morphism
E(o) — E(0)

extending the identity morphism on = and inducing a proper morphism

U x-x

rexyt 1o

compatible with the compositions of morphisms

° ~ tor N
X, > Xy /T — (XH,E’)U[U,]E;?” Zn)
and
fff; — x}:z/F - (X;(')[r,z)olﬁj

e):%’/r Zioy?

where the first morphisms in the compositions are open immersions, and where
the second morphisms in the compositions are the canonical isomorphisms, as in
Proposition 2.1.3. Therefore, for each affine open formal subscheme 20 = Spf(R)
of X2, which induces a canonical morphism W = Spec(R) — = (o), the pullback
of W under Z (o)’ — &(o) is covered by finitely many W; = Spec(R;), where
W; — E (o)’ is induced by some affine open formal subscheme 2J; = Spf(R;)
of X7, for some 7; € E£+ such that t; C o. Since &£ (o) — Z (o) induces the

~

identity morphism on & by pullback on the target, W° = | J; W/ is an open

covering, and the lemma follows, as desired. O

The following three lemmas follow immediately from the definitions:

LEMMA 2.2.3. Suppose a locally closed subset (respectively subscheme) Y of
(Xy)1 is an intersection of locally closed subsets (respectively subschemes)
{Yilier of Xy)1, where each Y; is a well-positioned subset (respectively
subscheme) of (Xy)1 associated with Y; := {Y?_Z}z as in Definition 2.2.1.
Then Y is also a well-positioned subset (respectively subscheme), associated with
Y= {MNies Y?,Z}Z as in Definition 2.2.1.

LEMMA 2.2.4. Suppose Y is a well-positioned subset (respectively subscheme)
of X#)1, associated with Y* = {Y”Z}z as in Definition 2.2.1. If Y, is a closed
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subset of Y that is a well-positioned subset of (X3,)1 associated with Y, = {Y(t),z} z
where each Yg!z is a closed subset of Y, then the open complement Y — Y, is a
well-positioned subset (respectively subscheme), associated with {YtZ — Y(t)’z}z.

Similarly, if Y° is an open subset of Y that is a well-positioned subset of (Xy)7
associated with Y** = {Yg’t}z, where each Y%‘ is an open subset of Y5, then the
closed complement Y — Y° is a well-positioned subset of (Xy)1, associated with

Y5 = Y2,

LEMMA 2.2.5. Suppose a locally closed subset (respectively subscheme) Y of
(Xy)1 is a union of its open subsets (respectively subschemes) {Y;};c;, where
each Y; is a well-positioned subset (respectively subscheme) of (X))t associated
with YE = {Y?,Z}Z as in Definition 2.2.1. In the case of subschemes, suppose
moreover that, for each Z, the subschemes {Y?,z}ia induce compatible open

subscheme structures over their finite intersections, so that | J;.; Y; ; is defined.
Then Y is also a well-positioned subset (respectively subscheme), associated with
Y = {Uier Y?_Z}z as in Definition 2.2.1.

LEMMA 2.2.6. Suppose Y is a closed well-positioned subset (respectively
subscheme) of (Xy)1, and suppose Y = {Y”Z}z is associated with Y as in
Definition 2.2.1. Then YtZ is closed in Z7, and Y”C is closed in Ct, for each Z.

Proof. For each Z, since C — Z is proper and surjective, it suffices to show that
th is closed in Cy. Assume otherwise, aiming for a contradiction. Then there
exists a point x in the closure of Y. in Cr, but not in Y. Since Z is fiberwise
dense in E (o) over C, and since & — C and &, — C are faithfully flat, by [21,
IV-2, 2.3.12], there exists a point y in the fiber of (Z,)1 — Cy above x such
that, for every affine neighborhood U of y in & (o), the pullback of Y”C to U :=
U N Z7 is not closed. Since X, = (&(0))z, — & (o) is flat and induces the
identity morphism along &,, for some W as in Proposition 2.1.3, which we may
assume to contain y, the pullback YtW0 of Y“C to (W%t is not closed. But this
contradicts the assumption that Y is closed, because YtWO is by definition also the
pullback of Y to (W1, as desired. O

LEMMA 2.2.7. Suppose Y is a well-positioned subset (respectively subscheme)
of X#)1, and suppose Y* = {Y”Z}z is associated with Y as in Definition 2.2.1.
Then the closure (respectively schematic closure; see [10, Section 2.5, page 55])
Y of Y in (Xy)7 is a well-positioned subset (respectively subscheme) if and only
if the following condition holds: For each Z, the closure (respectively schematic

closure) V”C of Y”C in C is the pullback of the closure (respectively schematic
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closure) th of Y”Z in Z, as a subset (respectively subscheme). In this case, the
closed complement Yo := Y-Yisa well-positioned subset. (The above condition
is automatically satisfied when Y is closed in (Xy)1, by Lemma 2.2.6; or when
C — Zisflat for each Z, by [21,1V-2, 2.3.10] and [10, Section 2.5, Proposition 2].
Note that the schematic closures are defined because T is locally noetherian, in
which case the locally closed immersions Y — (X3;)1, Y& — Cr, and Y”Z — 71

are automatically quasicompact, for all Z.) In this case, V“ = {ij}z (respectively
Y(t) = {Vuz — Yuz}z) is associated with Y (respectively Yo) as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, let Yo denote the pullback of Y to
(W%, Since W° — Xy, is flat, by [21, IV-2, 2.3.10] (respectively [10, Section
2.5, Proposition 2]), the closure (respectively schematic closure) Vwo of Yyo in
(W%t coincides with the pullback of Y. Similarly, since W° — & and & — C

are flat, VWo coincides with the pullback of VDC. Hence, by definition, Y is well
positioned if and only if the condition in the lemma holds. 0

DEFINITION 2.2.8. Let {S;};c; be a finite set of subschemes of a scheme S such
that each S; is a closed subset of the set-theoretic union | J,, S;. Foreachi € I,
let S; denote the schematic closure of S; in S, and let Sio == S; — S: denote
the closed complement with its reduced subscheme structure. Then we define the
union | J,_, S; as a scheme as the (closed) schematic image of [ [,_, S; — S (see
[10, Section 2.5, page 55]) subtracted by the closed subset ()., S;o.

LEMMA 2.2.9. Suppose a locally closed subset (respectively subscheme) Y of
Xy)1 is a finite union of its closed subsets (respectively subschemes) {Y;}ic;
(see Definition 2.2.8), where each Y; is a well-positioned subset (respectively
subscheme) of (Xy)1. For each i € I, suppose YE = {Y?,Z}Z is associated with Y
as in Definition 2.2.1. In the case of subschemes, suppose moreover that C — Z is
flat, for each Z. Then Y is also a well-positioned subset (respectively subscheme),
and Y* := (Y3)z, where Y5 := ., Y; as a subset (respectively subscheme) for
each Z, is associated with Y as in Definition 2.2.1. (Implicit in this statement is
that each YuZ is defined in the case of subschemes.)

Proof. Suppose x, is any point of Y;, z which specializes to a point x; of Y;, z,
for some i, i; € I. For each o € X3, since C — Z is proper and surjective,
since & is fiberwise dense in Z (o) over C, and since & — C and &, — C
are faithfully flat, there exist some W as in Proposition 2.1.3 and some points
Xo and X; of W lifting x, and x,, respectively, such that X, specializes to X|.
But X, and X belong to the pullbacks of Y;, and Y;,, respectively. Therefore, the

io
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assumption that Y, is closed in Y shows that X; is contained in the pullback of Y,
and so its image x, is contained in Y;, z. Hence, on,z is closed in the set-theoretic
union Y5 := J
case of subsets, Y* := {Y”Z}z is associated with Y as in Definition 2.2.1. In the
case of subschemes, each Y”Z also admits the structure as a subscheme of Zt by
Definition 2.2.8, and Y* := {Y]Z}z is associated with Y as in Definition 2.2.1 by
[10, Section 2.5, Proposition 2], because W° — Xy, and W° — C are flat, and
because C — Z is flat by assumption. O]

ie1 Y 2> and this union is locally closed as a subset of Zr. In the

LEMMA 2.2.10. If Y is a well-positioned subset (respectively subscheme) of
Xy, if Yo = {Y”Z}z is associated with Y as in Definition 2.2.1, and if C — Z is
reduced (that is, is flat and has geometrically reduced fibers; see [21,1V-2, 6.8.1])
Jor all Z, then the unique reduced subscheme Y4 over the underlying locally
closed subset Y of (Xy)1 is a well-positioned subscheme, and Y-, = {Yfed.Z}Z’
where Yied,Z := (Y3)rea for each Z, is associated with Y,q as in Definition 2.2.1.
Moreover, if T = Spec(k) for some field k, and if Ct — Zz is (proper and) smooth
for all Z, then the smooth locus Y g, of Yreq is a well-positioned subscheme, and
Y = {(Yon 2}z, where YEm,Z := (Y5)um is the smooth locus of (Y3).a for each Z,
is associated with Yy, as in Definition 2.2.1.

Proof. For each W as in Proposition 2.1.3, by the regularity of W — (Xy)7
and W — E (o) (see [21, IV-2, 7.8.3(v)]), by the reducedness of C — Z, and
by [21, IV-2, 5.8.5, 6.4.1, and 6.5.3], the pullback of Y4 to (W%t coincides
with the pullback of (Ynz)red as reduced subschemes, because their underlying sets
already coincide. Hence, Y4 is a well-positioned subscheme. If T = Spec(k) and
if Ct — Zg is smooth (which is, in particular, also regular), by [21, IV-2, 6.5.3]
again, the pullback of Y, to (W°) coincides with the pullback of the smooth
locus (Y3)an Of (Y5)rea. Since Yy is open in Yeq (by [21, TV-2, 6.12.5]), it is
locally closed, and hence also a well-positioned subscheme. O

REMARK 2.2.11. Itis natural to ask whether the collection Y in Definition 2.2.1
is uniquely determined by Y. In the case of subsets, this is true by definition. In
the case of subschemes, it is still true if C — Z is flat—see (4) of Theorem 2.3.2
below.

2.3. Partial compactifications of well-positioned subschemes. Let T be a
locally noetherian scheme over S, as in the beginning of Section 2.2.

DEFINITION 2.3.1. Suppose Y is a locally closed subset (respectively subscheme)
of (X%)T. LetY denote the closure (respectively schematic closure) of Y in (X% )T,
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and let Y, denote the complement subset Y-Y. (In this definition, we do not
assume that any of Y, 7, or Yy is well positioned.) Let Y™ denote the closure
(respectively schematic closure) of Y (or equivalently V) in (Xzi“)T, let Vt;r denote
the closure (respectively schematic closure) of Y (or equivalently V) in (X;‘_’Z )T,
let Yy denote the closure of Yo in (X},")7, and let Y. denote the closure of
Y, in (Xifz 5)1. In the case of subsets, we view them as subschemes with their
reduced subscheme structures. Let Y™ := Y — Y™™ and V' := Vt; - Yo',
with induced open immersions Jymn : Y <> Y™ and Jyg @ Y < Y9 over
T. We shall call Y™ the partial minimal compactification of Y, and Y'' the
partial toroidal compactification of Y, with the term partial suppressed when Y
is a closed subscheme of (X3 )t. (These partial compactifications are canonically

‘Ixml z f pol i . .
determined by Xy i Xt;{", 5 i X5 T,and Y, by their very constructions.)

THEOREM 2.3.2 (Cf. [45, Proposition 2.2] or Proposition 2.1.2). For each well-
positioned subset (respectively subscheme) Y of (Xy)T with a collection Y* =
{Ynz}z as in Definition 2.2.1, its partial minimal and toroidal compactifications

Jymin . Y —> len

and
Jytgr N Y —> Ytgr
as in Definition 2.3.1 satisfy the following properties:

(1) Foreach X, the proper surjective structural morphism 99% 5 XEH‘", 5= X‘;_[‘i“
induces a proper surjective structural morphism

% . Ytor — Ymin
)
Y. r

(over T), so that

Jymin = f OJY‘ST.
Y, x

The structural morphisms Y™ — T and Y — T are projective when Y is
closed in (X+)1 (under the assumption in (4) of Proposition 2.1.2 that X is
projective).

(2) Consider an ample invertible sheaf Wymin OVEr X%i“ chosen as follows: In
Case (Sm), we take Wymin 10 be the pullback of w as in [36, Theorem
7.2.4.1(2)]. In Case (Nm), we take Wymin 10 be the pullback of Wpmin | S

H
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in [38, Proposition 6.4]. In Case (Spl), we take Wymin 10 be the pullback

of any of the ample a)pr, ,/::] | as in [43, Theorem 4.3.1(3)]. In Case (Hdg),

we take Wymin 10 be the pullback of %™ as in [50, Theorem 5.2.11(2)].
Then the pullback @ymn of wymn to Y™ is relatively ample over T, and its
further pullback wyy to Y is semiample over the preimage of every affine

open subscheme of T. When T is affine and Y is closed in (Xy)T, we have
canonical morphisms

Y — Proj (EB rey, Ym))

k>0

— Proj (@ reymn, Ymm)) & ymin, (2.3.3)

k=0

. . . . . . . . tor min
which coincides with the Stein factorization of fY s Yy = YT

(3) The stratification of Xmm by locally closed subschemes Z induces a
stratification of Y™ by locally closed subschemes

Yz :=Z Xy ymin,

each of which is equipped with a canonical morphism Y”Z — Yz
which induces a bijection between the underlying subsets of Zt (see
Definition 2.2.1), with an open dense stratum Y5 =Y for Z = Xy,. For each
X, the stratification of XZ:Z 5 by locally closed subschemes Z,, induces a
stratification of Y's- by locally closed subschemes

o tor
Yz[a] = Z[G] XXIO;.Z_; YZ’

with an open dense stratum Yz, = Y for Z = Xy and o = {0}. For
each Z,,, the canonical surjective morphism Z|,) — Z induces a surjective
morphism Yz, — Yz which factors through a (surjective) morphism
Yz, — Y”Z (which is the pullback of Zi,y — Z when Y is a well-positioned
subscheme of (Xy,)1). Hence, Yz, is nonempty exactly when Y”Z is, and
exactly when Yz is.

(4) For each top-dimensional cone o in X3, we have a canonical isomorphism
Yz, = Ync, which shows that Ync is determined by Y, for each Z. Thus,
in the case of subschemes, if the surjection C — Z is flat, then Y is

determined by its pullback Y¢. under a faithfully flat morphism, and hence
also by Y. In the case of subsets, Y”Z is determined by Ync and Y by definition,
without the flatness assumption on C — Z. (See Remark 2.2.11.)
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(5) For each representative o € X3 of an orbit [0] € X5 /I, and for ? =
B, 5(0), &5, X5, X2, and X5, let YE denote the pullback of 7 under the
canonical morphism Y”C — C. (In the case of subsets, we view Y”Z and
Ync as subschemes of Z and C, respectively, with their reduced subscheme
structures, so that the above all make sense as statements for schemes and
formal schemes. In this case, C — Z induces a proper surjective morphism
Yi — YuZ of schemes, which is the pullback of C — Z when C — Z is
reduced; that is, is flat and has geometrically reduced fibers, as in [21, IV-2,
6.8.1].) Then we have a canonical isomorphism

Y, > (Y57, (2.3.4)

induced by the canonical isomorphism X, — (Xt;_)[r’ 2)/Z\m’ extending a

canonical isomorphism YtEa — Yz, induced by the canonical isomorphism

z, > Z,1 (see (8) of Proposition 2.1.2), which extends to flat morphisms
Yy, = Yy, = Y, =YY (2.3.5)
induced by (2.1.4), inducing compatible canonical isomorphisms

Y — (Y‘;’)@@Z+ v (2.3.6)

,TCo Z[t]

and

Vi, /T = (Y9 (2.3.7)

e):z+/r YZ[r]

induced by (2.1.5) and (2.1.6), respectively.

(6) For each o € X5, and for each affine open formal subscheme Spf(R)
of Y: _» under the canonically induced (flat) morphisms Spec(R) — Yt;r
and Spec(R) — YHE(G) induced by (2.3.4), the stratification of Spec(R)
induced by that of Y‘;f coincides with the stratification of Spec(R) induced
by that of YDE(U). In particular, the preimages of Y and Y% coincide as open
subschemes of Spec(R). Analogous statements are true for Ytaeg and (2.3.6).

(7) Let x be a point of Y”Ea, which can be canonically identified with a point of
Yz, via the above isomorphism. Then there exists an étale neighborhood

T7 tor
U—Ys,
of x and an étale morphism

7 8
U — Ys(a)
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respecting x such that the stratification of U induced by that of Y[;r
coincides with the stratification of U induced by that of Y”E(G), or rather by
that of E (o) as in (9) of Proposition 2.1.2; and such that the pullbacks of
these étale morphisms to Yz, and to Y”E” are both open immersions. (In

particular, Y and Yts(a), equipped with their stratifications as explained
above, are étale locally isomorphic at x.) There also exist étale morphisms
as above with the analogous but stronger property that their respective
pullbacks 10 U, .zt zcr Yz and U.cxs zcr YL (with their reduced
structures) are both open immersions.

Proof. The properties (1) and (2), and the assertions concerning underlying
subsets in the property (3), follow immediately from the definitions.

omin  tor

LetY,Y Y, Yo, Yomj“, and Y})‘”E be as in Definition 2.3.1. For each Z, let
Vnc denote the closure (respectively schematic closure) of th in Ct, let Y”ao =
Vuc —Y”C denote the complement, let VJZ denote the closure (respectively schematic

closure) of Y% in Zr, and let Ynz,o = Vtz — Y5 denote the complement. For each
W as in Proposition 2.1.3, as in the proof of Lemma 2.2.7, by [21, TV-2, 2.3.10],

by the definition of closures (respectively schematic closures), and by the flatness
—tor

of W — (Xjx)rand W — E(0) — C, the pullback of Y3 = Y, — Y
to Wt is the pullback of Y”C = Vtc - th,o’ as a subset (respectively subscheme).
When Y is just given as a subset of (X4,)T, by the regularity of W — (lez 5)1 and
W — E(o) (see [21, V-2, 6.8.1 and 7.8.3(v)]), by the normality of Z (o) — C
(see [38, Proposition 8.14] and its proof), and by [21, V-2, 5.8.5, 5.8.6, 6.4.1, and
6.5.3], it follows that the pullback of Y to Wr also coincides with the pullback
of Y”C as reduced subschemes.

By the definition of W = Spec(R) by an affine open subscheme 20 = Spf(R)
of X7, by Proposition 2.1.3, the pullback of Yz, 1= Zj;) xxgo Y3 under the

canonical isomorphism &, — Z,; coincides with the pullback of Y%, for all
o€ Z‘; , and hence all the assertions in the properties (5) and (6) follow. Since
the canonical morphism &, — C is an isomorphism when ¢ is top dimensional,
this shows that Y”C is uniquely determined by Y, and the remaining assertions
in the property (4) also follow. Since the canonical morphisms &, — C — Z
are surjective, whose composition can be identified with the surjection Zj5; — Z
induced by ¢, . : X3/ 5 — X3, the induced morphisms

Yz, = Y”E” — Y”C — Y”Z — Yz
are also surjective, where the last morphism induces a bijection between subsets

of Zt, and hence all assertions in the property (3) follow.
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Finally, let us prove the property (7). We may and we shall assume that S is
excellent, because the models in Assumption 2.1.1, and their compactifications
in Proposition 2.1.2, are all defined over excellent Dedekind domains. Since X;oj
and Z (o) are of finite presentation over S, by the usual limit argument, we may
and we shall assume that T is of finite type over S. By Artin’s approximation
(see [2, Theorem 1.12, and the proof of the corollaries in Section 2]), and by
the isomorphism (2.3.4) established above, we have some étale neighborhood
U — Y of x and an étale morphism U — Y%, (o Such that the preimages of Yz,
and Y% coincide, such that the pullbacks of the étale morphisms to Yz, and Y%
are open immersions, and such that the stratifications induced by those of Xt;z 5
and Z (o) can be matched up to automorphisms of the completion of U along
the common preimage of Yz, and YJEG. The condition for such automorphisms
to match stratifications (or rather some finite collections of closed subschemes) is
equivalent to the solution of finitely many algebraic equations. Thus, by applying
Artin’s approximation again, up to modifying the choices of U — Y5 and
U — Y?gm, we may assume that the induced stratifications already coincide over
U, so that the first assertion of the property (7) holds. By using the isomorphism
(2.3.6) instead of (2.3.4) in the above argument, we also obtain the other stronger
assertion of the property (7), as desired. O

REMARK 2.3.8. In Case (Sm), the assertions for Ytg in Theorem 2.3.2 show that
our notion of well-positioned subschemes is consistent with the one introduced
by Boxer in [12, Section 3.4].

REMARK 2.3.9. Shimura subvarieties are not well positioned in general, even as
subsets, and that is why their compactifications (which can be constructed in a
similar way) are more difficult to describe.

Thanks to the proof of Theorem 2.3.2, we can slightly weaken Definition 2.2.1
as follows:

LEMMA 2.3.10. Suppose T is a locally noetherian scheme over S, and suppose Y
is a locally closed subset of (Xy)T1 such that, for each Z, there exists some subset
Ytz of Zt such that, for each W as in Proposition 2.1.3, the pullback of Y to (W)t

coincides with the pullback of Ytz. Then Y5 is automatically locally closed in Zr.
Proof. Let Ylg be as in Definition 2.3.1. Since C — Z is proper and surjective, it

suffices to show that the pullback Y. of Y”z is locally closed in Ct. Since W —
X3 s and W — E (o) are flat, by [21, IV-2, 2.3.10], the pullback of Y5 to W,
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also coincides with the pullback of Y¢.. Since W is arbitrary, we may and we shall
assume that the o involved is top dimensional in X7, in which case we have an
isomorphism Yz, — Y:. induced by Z;,; — C, as in (4) of Theorem 2.3.2. Since
Yz, is locally closed in (Z;,1)7 by its definition as a pullback of YY", it follows
that Y”C is locally closed in Cr, as desired. I

Thanks to (7) of Theorem 2.3.2, we also have the following:

PROPOSITION 2.3.11. If Y is a well-positioned subset (respectively subscheme)
of Xq0)71, and if Y. — Y3 has connected fibers for all Z, then the open-and-closed
subsets (respectively subschemes) of Y are well-positioned subsets (respectively
subschemes), and their closures in Y™ and Y'y' are also open and closed in these
partial compactifications.

Proof. Suppose Y* = {Ynz}z is associated with Y as in Definition 2.2.1. Suppose
Y, is an open-and-closed subset (respectively subscheme) of Y. Let Y, : =Y — Y|
(with its open subscheme structure when Y is a subscheme). We claim that their
respective closures Y{"s. and Y35 in Y3 do not overlap.

Suppose, to the contrary, that there exist some Z and o0 € X7 with some
point x € Yz, NYY5.NY3%, which we identify with a point of Yz, via the
isomorphism Y% = Yz, in (5) of Theorem 2.3.2. Let U — Y¥ and U — Y%,
be étale morphisms as in (7) of Theorem 2.3.2, whose pullbacks to Yz, and to

YtEU are both open immersions. Up to replacing U with an open subscheme, we
may and we shall assume that U — Yy and U — Y”Ew) have connected fibers.
Consider the open subscheme U := U xvyg Y of U, which can be identified with

U xy: Y% because the étale morphisms match stratification’s. Let y denote

E(0)
the image of x in Yi.. Since U — Y”E(g) is étale, and since Y3 < Y”E(U) is an
affine toroidal embedding over Y., which is fiberwise dense, for each i, there
exists some point x; of the pullback of Y; to U which specializes to x in U and is
mapped to y in Y. Since & — C is a torus torsor, the fiber of U — Y% — Y¢.
above y is connected, which cannot overlap with both the pullbacks of Y, and Y,.
Hence, such an x cannot exist, and the claim follows. So Y[’ is also open and
closed in Y5

Now consider Y; 7, := Yz, N Y/, for each i. Since Y. — Y5 has connected

fibers, so does the surjective morphism Yz = YUEU — Y”Z. Consequently, the
image Y, of Y; 7., in Y3, which necessarily coincides with Yz N'Y™" as a subset
of Zr, is open and closed in Y”Z, and Y, z,, coincides with the pullback of Y?,z’ for
each i, because Ytl,Z and Y;,z do not overlap either. So Y™ is also open and closed
in Y™ In Yz, (respectively Y3), let us equip Yz, (respectively Y?,z) with its
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reduced subscheme structure in the case of subsets, and with the canonical open
subscheme structure in the case of subschemes. Then the canonical isomorphism

(2.1.5) induces an isomorphism thg Xys YE,Z — (Y¢ E)U v, . Thus, for

TcE i)
each W as in Proposition 2.1.3, the pullback of Y to (WO)T coincides with the
pullback of Y?,z. Hence, Y, is well positioned, with associated Y} := {Yi,z}Z as
in Definition 2.2.1, as desired. O

PROPOSITION 2.3.12. If'Y is a well-positioned subset of (Xy)1, and ifYtC - Y
is flat and has irreducible fibers for all Z, then the irreducible components of Y
are well-positioned subsets, and their closures in Y™" and Y5 are also irreducible
components of these partial compactifications.

Proof. Let Y, be an irreducible component of Y. By definition, its closures
in Y™ and YY, respectively, are irreducible components of these partial
compactifications. It remains to show that Y, is well positioned. Let U — Y
and U — YJE(U) be étale morphisms as in (7) of Theorem 2.3.2, whose pullbacks
to Yz, and to YJEU are both open immersions. By the construction of U in the
proof there, we may and we shall assume that it is an approximation of the
pullback of Y to some affine formal scheme 20 = Spf(R) as in Proposition 2.1.3,
with associated affine scheme W = Spec(R). Up to replacing U with an open
subscheme, we may and we shall assume that the étale morphisms U — Y‘Or
and U — YH( , have irreducible fibers. By [21, IV-2, 2.3.10], the pullback
U, of Y, to U is either empty or an irreducible component of U. Suppose U, is
nonempty, with generic point 1, , which is maximal among points of U,. Since
the morphisms U — YtE(G) — Yi — Y5 are flat and have irreducible fibers (by
assumption), by [21, IV-2, 2.3.10] again, the image 1z of ng, in Y”Z is maximal
among points of Ytz, whose closure {1z} in Y5 is an irreducible component, and
U, coincides with the pullback of {1z}. Since Y;. — Y5 has irreducible and hence
connected fibers, ﬁ( 5t Ytg — Y™ has connected fibers over Y~. Hence, over
each connected component of Y”, there is at most one irreducible component
of the form {5z} as above. Let Y] 7 be the (disjoint) union of such irreducible
components. Then its pullback to any W (associated with 20) as above coincides
with the pullback of @, and hence with the pullback of U,, or rather of Y;.
Since the affine formal schemes 20 as above form an open covering of X5, for
each Z, it follows from Lemma 2.2.2 that Y| is well positioned, as desired. O

By the same arguments as in the proofs of [38, Propositions 14.1 and 14.2] and
[43, Corollary 3.4.15], using the regularity of W — Xy and W — E (o) (see
[21, TV-2, 6.8.1 and 7.8.3(v)]) for each W as in Proposition 2.1.3, and using the
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facts that 5 (o) — C is surjective and smooth (under the assumption in (4) of
Proposition 2.1.2 that X' is smooth), and that = is fiberwise dense in = (o) over
C, we obtain the following for any well-positioned subset or subscheme Y of
(X3)1 as in Definition 2.2.1, where we equipped Y with the canonical reduced
subscheme structure when Y is only given as a subset, with partial toroidal
compactification Y% as in Definition 2.3.1:

PROPOSITION 2.3.13 (Cf. [38, Proposition 14.1]). Under the assumption
(in (4) of Proposition 2.1.2) that X is smooth, Y is reduced (respectively
normal, respectively regular, respectively Cohen—Macaulay, respectively (R;),

respectively (S;), one property for eachi > 0, respectively flat over T, respectively
faithfully flat over T) if and only if Y is.

PROPOSITION 2.3.14 (Cf. [38, Proposition 14.2]). Let P be the property of being
one of the following: reduced, geometrically reduced, normal, geometrically
normal, regular, geometrically regular, Cohen—Macaulay, (R;), geometric (R;),
and (S;), one property for each i > 0 (see [21,1V-2, 5.7.2 and 5.8.2]). Under the
assumption (in (4) of Proposition 2.1.2) that X is smooth, the fiber of Yy — T
over some point t of T satisfies property P if and only if the corresponding fiber
of the open subscheme Y — T over t does.

However, note that the analogues of Propositions 2.3.13 and 2.3.14 for Y™ are
not true in general. (They are already not true for X3;" in general.)

COROLLARY 2.3.15 (Cf. [38, Corollary 14.4] and [43, Corollary 3.4.15]).
Suppose that Y — T is flat, that its geometric fibers are reduced (respectively
have integral local rings), and that Y is closed in (Xy)1. Then all geometric
fibers of Y[;r — T have the same number of connected (respectively irreducible)
components, and the same is true for Y — T.

The following technical result will be useful in Section 4.5: (The readers may
skip it for now, and come back only when reading the proof of Lemma 4.5.24.)

LEMMA 2.3.16. Suppose we are in Cases (Sm), (Nm), and (Spl). Suppose Y is
a well-positioned subset of (X3()1, and suppose Y* = (Y3)7 is associated with
Y as in Definition 2.2.1. For each stratum Z of Xr;_lzn, since it is an analogue of
Xu, we can define Z™ and Y3™ as in the case of X3," and Y™. Let Z denote
the closure of Z in X%i", and let Y7 C Zr be defined by Yz as in the case of
Y™ (X3 in Definition 2.3.1. Then the identity morphism on Z extends to a
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canonical isomorphism Z™ — Z. Moreover, Yz is a well-positioned subset of Z,
and the isomorphism Z™ — Z induces a canonical isomorphism Y7" — Yz.

Proof. We can also define Z' and Y3 (for some collection of cone
decompositions). Since we are in Cases (Sm), (Nm), and (Spl), by the same
argument as in the proof of [45, Proposition 4.2], up to replacing X~ with a
refinement, there exists some top-dimensional o € X such that the canonical
morphism Zj,; = C — Z extends to a morphism from the closure Z;", of Zj, in

7 5 to 2. Moreover, the description of formal charts there shows that Yz = Y5

is a well-positioned subset of Zy, with associated collection (Yz)* = {(Yz)uz,}z/
indexed by the strata Z' of X™" contained in Z. By taking any Wymin A8 in (2) of
Theorem 2.3.2 such that its pullback to ZtOr descends to an ample invertible sheaf
over Z™", the canonical morphism Z — XH induces a canonical morphism
Z™" — Z. which in turn induces a canonlcal morphism Y?m — Yz. (Note that
there is at most one morphism " Z extending the identity morphism on the

open dense subscheme Z of the noetherian normal scheme Z™".) For each stratum
Z' of X3," contained in Z, and for each v’ € X, the composition Z,,, - Z' — Z

factors through Z' — Z™" — Z. Therefore, me — Z induces a bijection between
geometric points, and even induces the identity morphism from Z' as a stratum of
Z™ to Z' as a stratum of X},". Since Y, and Y coincide as subsets of Z7, for
each Z, if Z™™ — Zis an isomorphism, then the induced morphism Y?i“ - Yy
is also an isomorphism.

It remains to show that the canonical morphism Z™" — Z is an isomorphism.
By the same strategy as in [19, Ch. V, page 152], it suffices to show that it
induces isomorphisms between completions of strict local rings. Let Z' be any
stratum of X™" contained in Z. For the sake of clarity, we shall denote Z'
as Z when we view it as a stratum of Z™", and denote with superscripts ’
(respectively ”) various objects of X"H‘in (respectivelyA Z™") that are associateii
with Z' (respectively Z"). The morphism Z, — X3;" that induced Z™" — Z
also induces a proper surjective morphism C’ — C” between noetherian normal
schemes, and an injective homomorphism S” — S’ such that the pullback of
@’ (¢") under C" — C" is canonically isomorphic to ¥'(¢£") when ¢’ is the image
of £” under §” — §’, so that we have canonically induced injective morphisms

H//,(@”) — (C// N Z//)*II///(K//) N H/,(l/) — (C/ N Z/)*lp,(ﬂ/)
By [36, Proposition 7.2.3.16, and the errata] in Case (Sm), [38, Proposition 12.13]

in Case (Nm), and [43, Proposition 4.2.20] in Case (Spl), for each geometric point
x of Z', which we also view as geometric points of Z™" and Z, we have ring
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homomorphisms

r
()2 5 (Opmn)} ;< 1 @/m)?)

(P

— ( 1_[ (H"(F))Q

t'e(P)VNker(S'—S)

Stab /) rker(s/ ) ()
) , (2.3.17)

where (-)% denotes the pullbacks of various objects (- ) over Z' to the completion
of the strict local ring of Z" at X, where the first homomorphism is injective
because Z is reduced and Z™" — Z is surjective, where the third homomorphism
is defined and injective by the explanation in the previous sentence, and where the
composition of all homomorphisms in (2.3.17) is an isomorphism. But then all
homomorphisms in (2.3.17) are isomorphisms, because they are already known
to be injective. Thus, Z™" 5 Zisan isomorphism, because Z' and x are arbitrary,
as desired. (|

2.4. Functorial properties and Hecke actions.

PROPOSITION 2.4.1. Under any morphism T' — T of locally noetherian schemes
over S, the pullback
Y :=Yx:T

of a well-positioned subset (respectively subscheme) Y of (Xy)1 is a well-
positioned subset (respectively subscheme) of (Xq)7. If Y* = {Ytz}z is associated
with Y, then

={Y; x1 T}

is associated with Y', as in Definition 2.2.1. Let Y"™" and Y’} denote the partial
minimal and toroidal compactifications of Y', respectively, as in Definition 2.3.1.
Then the canonical morphisms Y™ — Y™ x1 T and Y3 — Y x1 T induce
isomorphisms between the reduced subschemes. In the case of subschemes, the
latter morphism Yy — Y5 x1 T’ is an isomorphism, without having to pass to
the morphism between reduced subschemes.

Proof. For each Z, let YJZ be associated with Y as in Definition 2.2.1, and let
Y% denote its pullback under C — Z. Then Y’ is a well-positioned subset
(respectively subscheme) because the pullback of Y’ to (W% coincides with
the pullback of Y; := Y x1 T', which is in turn the pullback of Y'Z'u =Y, x1T,
as subsets (respectively subschemes), for each W as in Proposition 2.1.3. As in
the proof of Theorem 2.3.2, by the flatness of W — X;‘_’fﬁz and W — E (o),
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the pullback of Y} to Wy coincides with the pullback of Y, which also
coincides with the pullback of Y'Y, as a subset (respectively subscheme). The
remaining assertions then follow from the definitions. 0

PROPOSITION 2.4.2. IfY is a well-positioned subset (respectively subscheme) of
Xz, if Kp)1 = (X1 is defined by an inclusion H' C H of open compact
subgroups of G(Z) (and other data), then the preimage Y' of Y in (Xy)1 is also
a well-positioned subset (respectively subscheme). If Y* = Y3}z is associated
with Y, and if Y} is the pullback of Y3 under Z' — Z, for each stratum Z
of Xr;fli/“ above a stratum Z of X?{i", then Y'* = {Y'Z’,u} is associated with Y', as
in Definition 2.2.1. Let Y"™ and Y'\" denote the partial compactifications of
Y', respectively, as in Definition 2.3.1. Then the canonical morphisms Y™™ —
Y™ o Xop' and Y5 — Y5 Xy X5), s induce isomorphisms between the
reduced subschemes. In the case of subschemes, the latter morphism between
partial toroidal compactifications is an isomorphism by itself.

Proof. By [36, Proposition 6.4.3.4] in Case (Sm), by [41, Proposition 7.1] in
Case (Nm), by [43, Proposition 3.4.10] in Case (Spl), and by [50, Sections 4.1.12
and 5.2.12] and the same facts used in the proof of Proposition 2.1.3 in Case
(Hdg), we have a proper morphism X3 5z, — Xj/ 5 for some X’ refining X,

. . : tor A tor
which induces a proper morphism (X3, E,)Ul T/ —- Xy
oezy,

A

[o'] Z)U[a]exzr/r Zio)
between the formal completions (where any object denoted with a prime means
the analogous object at level 7{'). This proper morphism is compatible with the
proper morphism & (o) := Ure):é*,r@ Z'(t) - Z(o) extending &' — &
and covering C' — C and Z' — Z. For each affine open formal subscheme
20 = Spf(R) of X2, which induces a canonical morphism W = Spec(R) — & (o),
its pullback under = (o) — & (o) is covered by finitely many W; = Spec(R;),
where Spec(R;) — & (o) is induced by some affine open formal subscheme
20; = Spf(R;) of X;°, for some 7; € ;" such that ; C 0.

Now suppose Y is a well-positioned subset (respectively subscheme), with
associated Y = {Y”Z}z as in Definition 2.2.1. Let us denote by Y’ the pullback

of Y to (X3)7, and by Y}/ the pullback of Y to Z'. Since the pullback of Y
to (W%)7 coincides with the pullback of Y2, since E (o) — E (o) extends the

—~

canonical morphism =’ — Z, and since the two compositions &' — Z — Zand
E' — & — Z coincide, the pullback of Y to (W)t coincides with the pullback of
Y'Z,t as a subset (respectively subscheme). Since W is arbitrary, Y’ is also a well-
positioned subset (respectively subscheme), with associated Y"* := {Y'Z’,t } as in

Definition 2.2.1. As in the proof of Theorem 2.3.2, by the flatness of W — X‘;j 5

https://doi.org/10.1017/fms.2018.20 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.20

K.-W. Lan and B. Stroh 32

W— E(0), W, > Xifz,y s and W; — EZ (o), the pullback of Y[g to W+ coincides
with the pullback of Y%, and the pullback of Y to (W;)T coincides with the
pullback of Y, and so the pullback of Y& to (W;)t coincides with the pullback

2>
of Y5, as subsets (respectively subschemes), for each i. The remaining assertions
then follow from the definitions. O

For many arithmetic applications, it is desirable to have the following:

PROPOSITION 2.4.3 (Cf. [38, Propositions 13.7, 13.9, and 13.15] and [41,
Propositions 7.3 and 7.5]). Suppose that H and H' are two open compact
subgroups of G(Z), that g € G(A*®), and that X’ is a g-refinement of X as in [36,
Definition 6.4.3.3], such that H' C gHg™", and such that the morphisms

lg]: X — Xgy, (2.4.4)
[g]™ : X3 — X", (2.4.5)

and
[g]“" : X;‘_’[,YZ, — X;‘_’[r’): (2.4.6)

are compatibly defined. (See [36, Propositions 6.4.3.4 and 7.2.5.1] in Case (Sm);
see [38, Propositions 13.7, 13.9, and 13.15] and [41, Proposition 7.3] in Case
(Nm); see [43, Propositions 2.4.17, 3.4.10, and 4.3.11] in Case (Spl); and see [50,
Sections 4.1.12 and 5.2.12] in Case (Hdg).)

Suppose that T" — T is a morphism over S, that Y is a well-positioned
subset (respectively subscheme) of (Xy,)1, and that Y' is a well-positioned subset
(respectively subscheme) of (Xyy)t1, such that the morphism (2.4.4) induces a
morphism

[g]: Y =Y 2.4.7)

of sets (respectively schemes). Then the morphism (2.4.5) induces a morphism
[g]™™ : Y- — Y™ (2.4.8)
extending (2.4.7), and the morphism (2.4.6) induces a morphism
(gl : Yo — Y (2.4.9)

extending (2.4.7) and compatible with (2.4.8) under the canonical morphisms

bop s Y5 = Y and §, Y5 — Y™ asin (1) of Theorem 2.3.2.
Suppose moreover that Y' coincides with the pullback of Y under (2.4.4) as a

well-positioned subset (respectively subscheme). Then the canonical morphisms

Y Y i e X
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and
/,tor tor tor
YE’ —> YZ Xxlﬁ'ﬁzy[g]mr XH’,E’
induce isomorphisms between the reduced subschemes. In the case of subschemes,
the latter morphism between partial toroidal compactifications is an isomorphism
. b . . . . .. . 7,0 .

by itself. If Y* = {Yz}z is associated with Y as in Deﬁmtlon' 2.2.1, and if Y, is
the pullback of Y”z under Z' — Z, for each stratum Z' of X3, that is mapped to
a stratum Z of X" under (2.4.5), then Y"* := {Y/Z’,t} is associated with Y', as in
Definition 2.2.1.

Proof. These follow from the definitions, from the constructions and properties
of (2.4.4), (2.4.5), and (2.4.6) in the references mentioned, and from the same
arguments as in the proofs of Propositions 2.4.1 and 2.4.2. O

2.5. Vanishing of higher direct images, and Koecher’s principle. For
simplicity, let us assume that T = Spec(R;) is some noetherian affine scheme
over S = Spec(Rp). Let Y be a well-positioned subset or subscheme of (X3,)T,
with associated collection Y* = {YJZ}Z as in Definition 2.2.1, and with partial

minimal and toroidal compactifications Y™ and Y'Y as in Definition 2.3.1 and

Theorem 2.3.2. Let
h:C—>Z

denote the structural morphism, with induced morphism

hy : Yo — Y5.
(Recall that, in the case of subschemes, this is exactly the pullback of 4; but in
the case of subsets, this is just the induced map between reduced subschemes.)

For each ¢ € S, let Y~ (£) denote the pullback of ¥ (£) under Y”C — C. Asin [39,
Section 6], let

P :={eS:({y) >0VyecP—{0}}.
(See Proposition 2.1.2 for the meaning of S, and so forth.)
LEMMA 2.5.1 (Cf. [41, Lemma 8.1]). There exist infinitely many integers n prime
to p such that, for each such n, there exists a finite étale commutative group
scheme H, of order prime to p over Z acting on C via morphisms compatible

with h : C — Z, inducing canonical morphisms C — C/H, = C over Z, whose
composition we denote as [n], such that

[n]*W (£) = W (n20) = W ()=, (2.5.2)
for each £ € S. Moreover, for any Ry-algebra R, the canonical morphism

U () ®g, R — [n],(¥(n*l) @k, R) (2.5.3)
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defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of H,-invariants (cf. [63, page 72, Corollary]).

Proof. In Case (Sm), this follows from the constructions in [36, Sections 6.2.2—
6.2.4; see also the errata], because R, is flat over O F.@- In Case (Nm),
this follows from [41, Lemma 8.1], because R, is flat over O . In Case
(Spl), this follows from [43, Lemma 4.4.5], because R, is flat over Ok. (See
Assumption 2.1.1 for the meanings of O, o, and O.) It remains to establish the
proposition in Case (Hdg). By the constructions in [50, Sections 4.1-4.2], there
exists some open compact subgroup H' of H such that, for some stratum Z' at
level H' above Z, the corresponding C’ — Z' is an abelian scheme, and C — Z
is an equivariant quotient of C’ — Z' by some finite group H’. Then there exist
infinitely many integers n prime to p and the order of H' such that the morphism
[n] : C" — C’ over Z' defined by multiplication by 7, or equivalently by quotient
by the finite étale subgroup scheme C’[n] of n-torsion points of C’, descends to
a morphism [n] : C — C over Z defined by the quotient by some finite étale
commutative group scheme H, of order prime to p over Z. Moreover, we have
the isomorphism (2.5.2) by descent and by its analogue at level 7', again by the
constructions in [50, Sections 4.1-4.2]. Finally, since the order of H, is prime to
p and hence invertible in the base ring R, the assertion for (2.5.3) holds by the
same averaging argument as in the proof of [41, Lemma 8.1]. 0

LEMMA 2.5.4. The morphisms C — C/H, = C in Lemma 2.5.1 induces
similar morphisms Y. — Y&/H, — Ye compatible with hy : Yi. — Y3, whose
composition we denote as [nly, such that
[P (0) = Wy (n) = W (",
for each £ € S. Moreover, for any R,-algebra R, the canonical morphism
Wy (0) ®r, R — [nly.(Py(n*0) @, R) (2.5.5)

defined by adjunction identifies the left-hand side with a direct summand of the
right-hand side, consisting of H,-invariants.

Proof. Since the order of H, is invertible in the base ring R, there is a canonical
splitting of (2.5.3) defined (by descent, up to étale localizations trivializing H,) by
sending each section x of the right-hand side to the section (#H,)™! D e u, ()
of the left-hand side defined by averaging, which is compatible with arbitrary base
changes. Hence, this lemma follows from Lemma 2.5.1. |

By Lemma 2.5.4, and by the same arguments as in the proofs of [41,
Propositions 8.3 and 8.4], we obtain the following two propositions:
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PROPOSITION 2.5.6 (Cf. [41, Proposition 8.3]). Suppose £ € PV'*. Then
R'hy . (Wy(£) g, R) =0

foralli > 0 and all R -algebra R.

PROPOSITION 2.5.7 (Cf. [41, Proposition 8.4]). Suppose that S = 7Z, that £ € S
is negative, and that hy has positive-dimensional fibers. Then

hy (v (£) ®r, R) =0
for all R-algebra R.

DEFINITION 2.5.8 (Cf. [39, Corollary 5.8] and [41, Definition 8.5]). Let R
be an R;-algebra. We say that a quasicoherent sheaf & over Yy is formally
canonical (respectively formally subcanonical) (over R) if it satisfies the
following condition: Suppose X is a geometric point over Y”Z, for some stratum
Z of X“H'i". In what follows, we shall denote by (-)% the pullback of (-) under
(Y”Z)f — Ytz. Then there exists a quasicoherent sheaf & ; over (Y)? satisfying
the following properties:

(1) For each o0 € X3, the pullback & of & to the affine formal subscheme
(Y3;)? of (Yy, )7 (see (5) of Theorem 2.3.2) is of the form

~

D, (v ©); @, , Eo)

(as an ﬁ(ytc ,»-module), where ? = 0" (respectively ? = o), where o is the
intersection of 7," (in S) for T running through faces of o in X7 (including o
itself).

(2) There is a finite exhaustive filtration on & ; whose graded pieces are
isomorphic to pullbacks (under the structural morphism (Y”C)jg — T) of
quasicoherent sheaves over T = Spec(R;) associated with finite R-modules.

REMARK 2.5.9. In Case (Sm), by [39, Corollary 5.8], the pullbacks of the usual
canonical (respectively subcanonical) extensions Slfj(?(W) (respectively 5;,‘[‘(:’(W))
as in [35, Definition 6.13] are formally canonical (respectively subcanonical) as
in Definition 2.5.8. The same are true for their pullbacks to Cases (Nm) and (Spl),
which is feasible when G(Z,,) is a hyperspecial maximal open compact subgroup
of G(Q)).
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THEOREM 2.5.10 (Vanishing of higher direct images; cf. [39, Theorem 3.9]
and [41, Theorem 8.6]). Suppose that R is an R,-algebra, and that & is a
quasicoherent sheaf over X;‘fi 5. that is formally canonical (respectively formally
subcanonical) over R, as in Definition 2.5.8. Let D' be the effective Cartier divisor
defined over X;(_’Lr, 5 as in [41, Corollary 6.7] (whose definition also work here),
whose support is

. \tor
D:= XH, s — Xy
with its reduced subscheme structure, and let

&(—nD) := & ®g, Oxr . (—nD"),

tor
H, X

R"(% )5(—nD/)=0
Y.2/ %

foralli > 0andn > 0 (respectively n > 0).

for each integer n. Then

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup
in [39, Section 4], except that Ay : Y“C — YnZ is in general not an abelian scheme
torsor over a finite cover of Y”Z; and thanks to Proposition 2.5.6, which implies the
analogue of [39, Lemma 6.1] for the context here; the same argument as in the
proof of [39, Theorem 3.9] also works here. L]

THEOREM 2.5.11 (Koecher’s principle; cf. [39, Theorem 2.3] and [41, Theorem
8.71). Suppose O ®z Q is a simple algebra over Q. Suppose R is an R,-algebra,
and suppose that & is a quasicoherent sheaf over X;(_’[. 5 that is formally canonical
over R, as in Definition 2.5.8. Then the canonical restriction morphism

Y = Y"™),.8 — (Y = Y"™).(Ely) (2.5.12)

is an isomorphism. Consequently, for each open subset U™ of ymin, if we denote
by UY" its preimage in Yl;r under the canonical morphisms ﬁ( 5, and by U its

preimage in Y under the canonical morphism Y — Y™", then the canonical
restriction map
ry', &lvg) — r'w, &ly) (2.5.13)

is a bijection, except when dim(Xy) = 1 and U™ — U # 0.

Proof. Thanks to Theorem 2.3.2, which provides almost the same axiomatic setup
in [39, Section 4], and thanks to Proposition 2.5.7, which implies the analogue of
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[39, Lemma 6.2] for the context here (under the assumption that O ®z Q is a
simple algebra over QQ), the same argument as in the proof of [39, Theorem 2.3]
also works here. 0

REMARK 2.5.14. For an example, see Example 4.2.24 below.

REMARK 2.5.15. Based on the arguments of the proofs of [39, Theorems 3.9 and
2.3] and of [41, Theorems 8.6 and 8.7], the proofs of Theorems 2.5.10 and 2.5.11
only make use of the underlying topological space of Yz, which coincides with
YtZ as a subset of Zy, and of the formal completion of Y along the preimage
of Yz. Such arguments closely follow the formal local approaches in the proofs
of [24, Theorem 5.4], [42, Section 8.2], and [19, Ch. V, Proposition 1.5], rather
than the global cohomological approaches in the proofs of [44, Theorem 1.1], [39,
Theorem 2.5], and [40, Theorems 4.5 and 4.6].

REMARK 2.5.16. Theorem 2.5.11 shows that, in cases where O ®; Q is simple
and where X3; — S is nonproper and of relative dimension at least two, any
generalized Hasse invariants over the Ekedahl-Oort strata Y of (X4), (as in
Section 3.5 below) automatically extend to Yl;r, as in [12, Theorem 6.2.2], and
hence to the Stein factorization (Y'y)* := Spec Oomin ((fyqx)*ﬁvlgf) of the proper

surjective morphism f, . : Yy — Y™ which is finite over Y™. Although this

does not imply that they descend to Y™" in general, they do descend to Y™ (with
affine nonvanishing loci as usual) in the context of [12] (which is in Case (Sm)
here), as in [12, Theorem 6.2.3]. This is because, in Case (Sm), by [12, Lemma
3.4.3] and its proof, the formation of (55% 2)*@(% commutes with base change

to Y™ (and gives (ﬁ(’ 5)+Oyier) whenever Y is a well-positioned subscheme of
(X3)1; and therefore (Y§5) — Y™™ is an isomorphism in this case.

REMARK 2.5.17 (Cf. [41, Theorem 8.10]). Since the proof of [39, Theorem
2.5] made use of Serre duality, we cannot easily generalize the higher Koecher’s
principle to the context of Theorem 2.5.11. (We already had no idea whether we
should expect such a generalization over the whole integral models in ramified
characteristics.)

3. Examples of well-positioned subsets and subschemes
3.1. Pullbacks and fibers. Let X3, — S be as in Assumption 2.1.1. For any

locally noetherian scheme T over S, it is tautological that the whole scheme Y =
(X3,)7 is a well-positioned subscheme of itself, that Y* = {Z1}; is associated
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with Y as in Definition 2.2.1, and so that Y™ = (Xg")T and Y3 = (X} )1
satisfy the properties in Theorem 2.3.2, analogous to those in Proposition 2.1.2.
In particular, the fibers and geometric fibers of X4, Xzi“, and X;‘f, 5 over S admit
the same stratifications and the formal local descriptions as in Proposition 2.1.2.
This is not as trivial as it seems to be. In all cases in Assumption 2.1.1,
even the fiberwise density of Xy, in X3}" is not obvious and required some hard
work, let alone the stratification and formal local descriptions along the boundary.
(Nevertheless, these are all proved in the works [36, 38, 41, 43, 50] we cited in

the proof of Proposition 2.1.2 or rather [45, Proposition 2.2].)

3.2. p-rank strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. (As explained in the introduction, we have
chosen to present our examples here and in later subsections only in PEL-type
cases, because the theories are most complete and well understood in these cases.
We have not tried to include Case (Hdg) because the corresponding theories
are still developing.) Let Xy — S be as in Assumption 2.1.1, which carries a
tautological collection {(A;, A;, ij) }jey of abelian varieties quasi-isogenous to each
other over Xy, equipped with polarizations and endomorphism structures. (In
Case (Sm), the index set J is just a singleton.) Let T — S be the special point
s = Spec(k) — S of residue characteristic p > 0.

Consider any geometric point f — (X3, above a point ¢ € (Xy),, which
defines by pullback a collection {(A;;, A7, ij7)}jes of abelian varieties quasi-
isogenous to each other over #, equipped with polarizations and endomorphism
structures. Since the p-rank of an abelian variety is an isogeny invariant (see [63,
Ch. III, Section 15, page 147]), the p-rank of 1 — (Xy),, which we shall denote
as r (1), can be defined to be the p-rank of A;; for any j € J. Since the p-rank of
A;; is unchanged under any automorphism of 7 — (Xy);, it is unambiguous to
write 7 () := r (7).

Since the p-rank of an m-fold self-fiber product of an abelian variety A is just
m times the p-rank of A, by considering any morphism from (X3), to some
principally polarized Siegel moduli with no level at p (using Zarhin’s trick if
necessary, as in the constructions in [38, Lemma 4.1(2) and (4.6)]), and by pulling
back the p-rank strata over (some characteristic p fiber of) such Siegel moduli
(cf. [30, Section IV.1]), we obtain the following:

PROPOSITION 3.2.1.

(1) The subset
X)) = {1 € Kpy)y 1 r(1) = 1)
of (Xy) is locally closed, and hence admits the structure of a reduced
subscheme, for each integer r > 0.
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(2) The union Uogr < (XH)y) is closed for each integer ry = 0.

(3) We have a set-theoretic disjoint union

Ka)s = [ X0 (32.2)

r=0

REMARK 3.2.3. The disjoint union (3.2.2) is not a stratification in general,
because the closure of (X3){" in (X3, might be smaller than (J,, (X#)!”
for some ry. (See, for example, [22] for the case of Siegel moduli with Iwahori
levels at p.)

DEFINITION 3.2.4. By abuse of language, we shall still call (X3,)" the p-rank r
stratum of (X3),. We shall call any such stratum a p-rank stratum.

PROPOSITION 3.2.5. For each ry > 0, the locally closed subset Y := (X3)" of
(Xy)s is a well-positioned subset as in Definition 2.2.1, which is associated with
some collection Y* = {Y”Z}z such that Y”Z is either the empty subset, or some p-
rank stratum of Z, (whose precise definition will be made clear in the proof), for
each Z. With its reduced subscheme structure, (X3,)" admits the partial minimal
and toroidal compactifications (X3,")"0 := Y™ and (X3; ;)" := Y as in
Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C — Z is reduced
(which is the case, for example, when C — Z is smooth), (X+)" (with its reduced
subscheme structure) is also a well-positioned subscheme. These statements are
also true if we consider the closed union | J,,, (Xy)\" instead of (X3)".

To show this, we need the following (reviewing) lemma, which will also be
useful for the consideration of more complicated strata in later sections:

LEMMA 3.2.6. For each W as in Proposition 2.1.3, let {(Aj wo, Ajwo, ijwo)}jes
denote the pullback of {(A;j, A, ij)}ier to WP, By considering also the pullbacks
of the Mumford families over X: (see Proposition 2.1.3), the compatible
collection of polarizations {Aj wo: Aj wo — A;WO}jEJ of abelian schemes (Which
are compatible with their endomorphism structures) extends to a compatible
collection of homomorphisms (A w:Gjw — G;W}jej between semi-abelian
schemes with canonically extended endomorphism structures. Since W is
noetherian and normal (by [21, TV-2, 7.8.3(v)]), the above determines a
compatible collection of homomorphisms {)‘J'D,W:Giw — G; whier between
their Raynaud extensions (see [36, Sections 3.3.3 and 3.4.4]), together with a
compatible collection of commutative diagrams
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ilp" ] —— Ajilp"] —— Y/ p"Y))i —=0

A;Jl A_i,,-l ¢J,,L (3.2.7)

0 ——= G [p"] —= A%[p"] — (Xi/p" X)); — 0
and

0— Tilp"l — G {p"] — Biilp"] —=0

krj'lt xjt_,j )‘Bj.t] (3.2.8)

0—T\[p"l — G/ [p"l — B}[p"] —0

of finite flat group schemes over each geometric point t — WP, for each integer
n = 1, where T,y (respectively B; ) is the torus (respectively abelian) part of
Gjqu, where YSVW (respectively BjYW) is the torus (respectively abelian) part of
ij_;f,, where X; and Y; are the respective character groups of T, and ij, where the
objects with subscripts t are pullbacks to t of the corresponding objects over W°
or W, where the vertical morphisms are all induced by polarizations, and where
the horizontal morphisms are all exact sequences of finite flat group schemes.

Proof. These assertions follow from the corresponding assertions for Mumford
families. (See [36, Chs 4 and 5, and Section 6.2.5] for Mumford’s construction and
for the definition of Mumford families, and see more particularly [36, Corollary
4.5.2.13 and Proposition 5.2.2.1] for the assertions concerning torsion points.)

O

Proof of Proposition 3.2.5. By Lemma 3.2.6, for each j € J and for each
geometric point 7 — WP, since (Y/p"Y); is constant (étale) and since 7;; is
a torus (and hence Tj;[p"] is of multiplicative type for every n > 1), the p-rank
of A;7is just rkz(Y) plus the p-rank of the abelian part B;;, which depends only
on the composition 7 — W° — Z, under which (B;;, A B;;» ip;;) 1s the pullback
of the tautological (Bj, Ap,, i) over Z. Hence, Y := (X3)!"® is a well-positioned
subset as in Definition 2.2.1 if, when rq > rkz(Y), we take Y”Z = Zg‘HkZ(Y) , the
p-rank rq — rkz(Y) stratum of Z; (defined similarly by the tautological collection
{(Bj, A, i) }jes over Z); and when ry < rkz(Y), we take Y”Z := (. The remaining
assertions in the proposition are self-explanatory. O

REMARK 3.2.9. When C — Z is reduced at some level #, so that (Xz)" is a
well-positioned subscheme of (X4 ), by Proposition 3.2.5, for each integer r > 0,
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the pullback of (X#)" to (X3,), for any higher level H' C H is a well-positioned
subscheme of (X3),, by Proposition 2.4.2, which underlies the same subset as
(X#)". This is useful, for example, when p is a good prime for (O, %, L, (-, -),
ho) as in [36, Definition 1.4.1.1], in which case there exists a bottom level H at
which the morphisms C — Z are all smooth. Then we can pullback from such a
bottom level and obtain well-positioned subschemes over the p-rank strata in all
higher levels.

3.3. Newton strata and their pullbacks. We shall consider only Cases (Sm),
(Nm), or (Spl) in this subsection. Let Xy — S be as in Assumption 2.1.1,
which carries a tautological collection {(Aj, Aj, ij, 3;) }jes, as in the beginning
of Section 3.2. Let us take T — S to be the special point s = Spec(k) — S. For
simplicity, assume that O ®z Q involves no factor of type D, in the sense of [36,
Definition 1.2.1.15], so that (any pullback of) G ®z Q is (fiberwise) connected.

Consider any geometric point 7 = Spec(k (7)) — (X%), above a point t € (Xz)s,
which defines by pullback a collection {(A; 7, A;7, ij7) }jes as before, and hence also
a collection

{(A;7/[p™1, Ajry 0.0 Y
of Barsotti-Tate groups with quasipolarizations and endomorphism structures.

Consider
K; := Frac(W (k(1))),

which is equipped with the Frobenius automorphism o7 induced by the pth power
automorphism of k(7). Following [31] and [74, Section 1], we say that two
elements x, y € G(K;) are o;-conjugate if there exists g € G(K;) such that
g 'xo7(g) = y. By [75, Lemma 1.16], any morphism 7 — 7 between spectra
of algebraically closed fields in characteristic p > 0 induces a bijection from the
set of o;-conjugacy classes in G(K7) to the set of o7-conjugacy classes in G(K7),
and hence it is unambiguous to denote either of the two sets as B(G ®7 Q,).

For each j € J, the covariant Dieudonné module D(A;;/[p™]) of A;:[p™] is
canonically isomorphic to the W (k(7))-dual of HCIWS(A;/ W (k(1))), equipped with
additional structures induced by A;; and i;7, and with its (o7-linear) Frobenius
and (at-_l—hnear) Verschiebung endomorphisms, as usual. (See [54, Ch. IV], [53],
and [7].) By [75, 3.23 ¢)], we have compatible symplectic isomorphisms

D(A;[p™]) = L @2 W k(D)

of O ®; W(k;)-modules, for all j € J, inducing compatible symplectic
isomorphisms
D(A;j i [p™]) @wwiy Ki = L ®z K
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of O ®; K;-modules. Hence, for any j € J, the Frobenius automorphism of
D(A;; [p™]) Qwke) K7 induces a oz-linear automorphism of L ®z K;, which
is independent of the choice of j € J and determines a well-defined o7-conjugacy
class b(7) in B(G ®7 Q,).

By [74, Sections 1-3, especially Theorem 3.6] and [31, Section 3], we have the
following:

PROPOSITION 3.3.1.

(1) The assignment of b(t) € B(G ®z Q,) to a geometric point t — (X3;),
depends only on the image t of I — (Xy),, in the sense that any
automorphism of t — (Xy,), induces an automorphism of G(K7) preserving
the or-conjugacy class of b(t). Thus, it is unambiguous to write

b(t) == b(1).

(2) There is a partial ordering < on the set B(G @z Q) such that, for each
b € B(G®z Q,), the subset {t € (X3), : b(t) < b} of (Xy), is closed, and
so the subset

Xa)? = {t € KXy), : b(t) = b}

of (Xyy); is locally closed. Hence, we have a set-theoretic disjoint union

X = [ Xl (3.3.2)

beB(G®7zQ)p)

(3) Thereis a canonical map from B(G®zQ),) to the set N of Newton polygons
(for GLg, (L ®z Q))), denoted b +> v, such that b < b’ only if v, < vy
(which is the case when v, and vy have the same end points and v, lies
above vy). For each geometric point t — (X ), the corresponding Newton
polygon vy is the one classifying the (rational) covariant Dieudonné
module D(A;:[p™]) Qwwaey Ki (for any j € 1), ignoring the additional
structures.

(4) For each v € N, the subset {t € (X3); : vpoy < v} of (Xy), is closed, and
so the subset
Xp)y = {t € K : vpy = v}
of (Xy); is locally closed. Hence, we have a set-theoretic disjoint union
Ka)e = | [ X2, (33.3)
veN

which is coarser than (3.3.2) in general. For each b € B(G ®z Q)), the
subset (X3,)% of (X3,)™ is open and closed.
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REMARK 3.3.4. The disjoint union (3.3.2) is not a stratification in general,
because the closure of (X3)? = {r € (X3,), : b(t) = b} in (X3,), might be smaller
than {r € (Xy), : b(t) < b}. (See [77] and [25, Corollary 3.11.2 and Section 3.12]
for examples where the ordinary loci are nonempty but not dense.) Nevertheless,
the situation is better in Case (Sm), where the level at p is hyperspecial: By [23,
Theorem 1.1], (3.3.2) is indeed a stratification. Moreover, by [83, Theorem 11.1],
(X#)" is nonempty for each b € B(G ®z Q, [u]) C B(G ®z Q), where [u] is
the conjugacy class of cocharacters determined by & as in [45, Section 6.1], and
where B(G ®7 Q, [u]) is as in [33, Section 6].

DEFINITION 3.3.5. By abuse of language, we shall still call each (X3,)? a Newton
stratum of (Xy);.

Let Z be a stratum of X;i”. (At least temporarily, we need to introduce some
filtrations Z and V, where Z is typeset in a very slightly different font compared
with Z. This could be a bit confusing, but we hope the purpose of the notation
will be clear from the context.) Since we are in Cases (Sm), (Nm), or (Spl), the
stratum Z is associated with some cusp label [(Z4, @, 82;)], which determines
an H-orbit Z4 of a fully symplectic liftable filtration Z = {Z_;};cz on L Qg 7
(see [36, Definitions 5.2.7.1 and 5.4.2.4]). By [37, Proposition A.5.8 and Lemma

A.4.3], we have the following:
LEMMA 3.3.6. In Cases (Sm), (Nm), or (Spl), under the assumption that G ®z Q

is connected, there exists a parabolic subgroup P of G®gzQ, which is the
stabilizer of a symplectic filtration V.= {V_;};cz of L ®7 Q, with

0=V,3CV,CV,=V,CVi=L®;Q,

such that V_, @q A% lies in the H-orbit of Z_, ®z Q for some representative Z of
7. The image of P in each simple factor of (G ®7 Q)™ is either the whole factor
or a proper maximal parabolic subgroup.

REMARK 3.3.7. Lemma 3.3.6 is generally false without the assumption that G®z,
Q is connected. See [37, Example A.7.2].

Let us fix the choices of P and V as in Lemma 3.3.6.
DEFINITION 3.3.8. For each i, set Gr’, = V_;/V_;_; as usual. Then Gr’, is

equipped with a pairing (-, -)_; induced by (- , -), compatible with O-actions
in the sense that (bx, y)_; = (x, b*y)_, forallb € O and x, y € Gr’,.
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Consider, for each Q-algebra R, the following quotients of subgroups of P(R):

(1) P'(R) is the kernel of the homomorphism
(v Gr',)(R) x Gry(R) : P(R) — GLog,z(Gr', ®gR)
X GLog,r(Gry ®gR) :
(g.7) = (r~' Grly(g), Gry(g)),
where v(R) : P(R) — G, (R) : (g, r) — r denotes the similitude character.

(2) U(R) := {g € P: Gr'(g) = Idgr}.
(3) M(R) :=P(R)/U(R).

(gn,r) € GLog,r(Gr’, ®R) x R* :
4) G,(R) := “
@ Gu(R) {(ghx,ghy)_l =r{x,y)-1,Vx,y € V_,
a canonical homomorphism

}, which is equipped with

Gr’ (R) : P(R) = Gu(R) : (g, 1) > (gy :=Gr” (g), r).

Also, the canonical homomorphism P'(R) — G, (R) induces a canonical
isomorphism P'(R)/U(R) — G,(R).

(5) Z(R) := ker(Gr’ (R)), which contains U(R) by definition.
(6) G/(R) :=Z(R)/U(R) =M(R)/G;(R), and so M(R) = G;(R) x G,(R).

These assignments are functorial in R, and define the unipotent radical U of P, the
Levi quotient M = P/U, and a canonical factorization M = G; x G,. For each
H C G(A™®), we define Hp := HNP(A®), H := HNP'(A®), Hy := HNU(A™),
Hw :=He/Hu, Hi :=HuNG(A®), H, :=Hp/Hp, Hy := Hn/H,, and 7'[;1 =

»/Hu. Moreover, for each torus argument @ representing @4, we define H,, o
to be the image in G, (A™) of the stabilizer of @ in Hp, so that H, C Hy.o C Hy.

PROPOSITION 3.3.9. For each b € B(G ®; Q,), the (possibly empty)
locally closed subset Y = (X#)" of (Xy)s is a well-positioned subset as in
Definition 2.2.1, which is associated with some collection Y* = {Ytz}z such that
YtZ is either empty or some Newton stratum of Z; (whose precise definition will
be made clear in the proof), for each Z. With its reduced subscheme structure,
(X#)" admits the partial minimal and toroidal compactifications (X;“{i“)i7 = Y™
and (X3; )2 := Y3 as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10,
when C — Z is reduced (which is the case, for example, when C — Z is
smooth), (Xq{)f,7 (with its reduced subscheme structure) is also a well-positioned
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subscheme. The analogous statements are true if we consider the closed union
Us<s Xp)? = {t € Xg), : b(t) < b} instead of (X#)?. By Lemma 2.2.5 and
by (4) of Proposition 3.3.1, the analogous statements are also true if we consider
(Xu)! and the closed union UV,@ (XH)“\?/, foreachv e N.

Proof. By Lemma 3.2.6, for each j € J, for each W as in Proposition 2.1.3, and
for each geometric point 7 — WY, the Barsotti-Tate group A;;[p™] admits a
filtration with filtered pieces 0 C T; ;[ p>] C Gjuyt-[p"o] C A;;[p™], with the graded
pieces given by the (multiplicative-type) torus part 7;;[p™], the abelian part
B;;[p™], and the (étale) constant part (Y; ®z (Q,/Z,));, compatibly equipped
with quasipolarizations and endomorphism structures. Hence, by functoriality,
the associated covariant Dieudonné module D(A;;[p™]) carries a symplectic
filtration

0 C D(T; i [p™]) C D(G;[p™]) C D(A;[p™]) (3.3.10)

by O ®z W (k(r))-submodules.

The bottom totally isotropic piece D(7j;[p>]) of (3.3.10) has the same
O-multirank (see [36, Definition 1.2.1.25]) as Z_,, where Z is any representative
of the H-orbit Z3, underlying the cusp label of Z (see [36, Definitions 5.4.2.4
and 5.4.2.7, and Theorem 7.2.4.1(4)]). By [37, Lemmas A.4.3 and A.4.4] and
their proofs, up to modifying the choices of the above symplectic isomorphisms
DA [p™]) ®wway Ki = L ®z K; of O ®; Ki-modules, which still define the
same element b(7) € B(G ®z Q,), we may assume that these isomorphisms match
(3.3.10) with the filtration Z ®, K7 on L ®z K;. By [37, Proposition A.5.8], there
exists a totally isotropic O ®z Q-submodule V_, of L ®7 Q such that V_, ®g A*®
lies in the H-orbit of Z_, ®7Q, whose stabilizer defines a parabolic subgroup P of
G ®7Q, as in Lemma 3.3.6. Let M, G;, and G, be defined as in Definition 3.3.8.
Let B(P ®g Q,) denote the sets of o;-conjugacy classes in P(K7), and let us
similarly define B(M ®q Q,), B(G; ®¢ Q,), and B(G;, ®g Q). Then we have
canonical maps

B(P ®Q Qp) - B(G Qz @p)

and
B(P®q Q,) > BM®g Q,) =B(G, ®yQ,) x B(G, ® Q)

induced by the canonical homomorphisms between the groups. By repeating the
definition of b(r), the isomorphisms ID(A; ;[p™]) ®wwi) Ki = L ®z K; above,
which we have assumed to match the filtrations on both sides, define an element
bp(t) € B(P ®g Q,) whose image under B(P ®g Q,) — B(G ®7 Q,) is b(7).
By [33, Sections 1.4 and 3.6], b(f) is determined by the image by(¢) of
bp(t) under the canonical map B(P®¢Q,) - B(M®g Q,), which is in turn
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determined by the composition 7 — W — Z. (Since the two outer graded
pieces T;;[p™] and (¥; ®z (Q,/Z,)); are multiplicative type and étale, the
essential data is the middle graded piece B; [ p>] (with its additional structures),
which is determined by the induced 7 — Z.) On the other hand, since O ®; Q
involves no factor of type D, by [36, Lemma 1.4.3.3] and by the proof of [37,
Lemma A .4.7], the middle graded piece ID(B; ;[ p™]) ®ww) K7 is determined by
D(A; :/[p™]) ®wwy Ki (both with their additional structures), and therefore b(r)
also determines by (7).

For each b € B(G®zQ,), and for each Z as above, let us define a locally
closed subset Z” of Z, as follows: We define Z’ to be empty either if (X3)" is
empty, or if b is not the image of any bp € B(P ®¢ Q,). Otherwise, we define Zf
to be th, the Newton stratum of Z, associated with b, € B(G, ®q Q,), where
(b, by) is the image of by under BM ®¢ Q,) = B(G, ®q Q,) x B(G, ®¢ Q,).
(For our purpose, b; is not important, because it parameterizes the torus parts of
degenerations.)

By the explanations above, for each b € B(G ®z Q,) as above, and for each
W? as in Proposition 2.1.3, the pullback of Y := (X3,)? to (W), coincides with
the pullback of Y5 := Z°. Thus, Y is a well-positioned subset. The remaining
assertions in the proposition are then self-explanatory. O

REMARK 3.3.11. When C — Z is reduced at some level H, so that (X))’ is a
well-positioned subscheme of (X)), by Proposition 3.3.9, for each b € B(G ®z
Q,), the pullback of (X#)” to (X3, for each higher level H' C H is a well-
positioned subscheme of (X3),, by Proposition 2.4.2, which underlies the same
subset as (X;.y)f . (See Remark 3.2.9 for a similar consideration.) Then we can
pullback from such a bottom level and obtain well-positioned subschemes over
the Newton strata in all higher levels. Similar statements are true for pullbacks of
(X#)? to higher levels, for each v € NV,

3.4. Oort central leaves and their pullbacks. In this subsection, we shall
consider only X;; — S in the following special case of Case (Nm): Suppose p is
a good prime (as in [36, Definition 1.4.1.1]) for the integral PEL datum (O, *, L,
(-, +), ho) in Assumption 2.1.1 (which we have insisted to satisfy [36, Condition
1.4.3.10]). Consider the trivial collection J = {j,} with

{(gjo’ Ljo! ( ’ )Jo)} = {(1’ L’ ( s C ))}1

as in [38, Example 2.3]. Let H{ be any neat open compact subgroup of G(Z). Let
‘H? denote the image of H under the canonical homomorphism G(Z) — G(Z”)
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and let
Ho :=H'G(Z)).

Since p is a good prime for (O, «, L, (-, -), hy), we have a good reduction
integral model My, — Spec(Op, () as in [36, Section 1.4.1]. By [36,
Proposition 1.4.4.3], the canonical morphism My, — My, ®z Q is an open
and closed immersion. Since the schemes I\A/IH0 and |\7|H over éo = Spec(OF,,(»)
in [38, Proposition 6.1] are independent of the auxiliary choices, by taking My,»
as an auxiliary good reduction m_gdel, we have an open and closed immersion
M3, <> My, and we can take My, to be the normalization of My, under the
composition My; — My, — My, < Mgy, of canonical morphisms. Then
we take Xy — S (respectively Xy, — S) to be the pullback of I\7IH — éo
(respectively I\q/lq_[0 — éo), which carries the pullback (A, A, i) of the tautological
(Ajo, on, ;}0) over |\7|H (respectively MHO).

Let T =5 — S be a geometric point above the special point s = Spec(k) — S
of residue characteristic p > 0. Let (X, Ax, ix) denote any Barsotti—Tate group X
over §, with a quasipolarization Ax and an O ® Z,-endomorphism structure ix
compatible with Ax. By [66, Theorem 3.3] for the case of quasipolarized Barsotti—
Tate groups without additional structures, by the fact that there are only finitely
many O ®y,Z,-endomorphism structures over each polarized abelian scheme (see
[36, Proposition 1.3.3.7]), and by (3) and (4) of Proposition 3.3.1, we obtain the
following:

PROPOSITION 3.4.1. Let kg and (X, \x, ix) be as above.

(1) There is a locally closed subset

Cixx.ix) (X3)5)

of (Xy)s containing all points t € (Xy); such that there exists some
geometric point T = Spec(k(t)) — (Xy); above t € (Xy); such that
the triple (A;[p™], A7, i) over t defined by the pullback (A;, A7, i7) of the
tautological triple over Xy is isomorphic to the pullback of (X, Ax, ix).

(2) Consider the b(X, Lx, ix) € B(G ®; Q) defined by the (rational) covariant
Dieudonné module D(X) Qww, Frac(W (ko)) and its additional structures
induced by Ax and ix. Then Cix ;y.ix)((Xy)5) is a closed subset, called the

Oort central leaf, of the Newton stratum (XH)?(X’AX’i").

PROPOSITION 3.4.2. Lets = Spec(lz) and (X, Ax, ix) be as above. The locally
closed subset Y := Cx ix.ix) (X30)s) of (Xy)s is a well-positioned subset as in
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Definition 2.2.1, which is associated with some collection Y* = {Ynz}z such that Y5
is either the empty subset or some Qort central leaf of Z; (whose precise definition
will be made clear in the proof), for each Z. With its reduced subscheme structure,
Cxux.ix) (X3)s) admits the partial minimal and toroidal compactifications Y™"
and Yﬁg‘ as in Definition 2.3.1 and Theorem 2.3.2, which we abusively denote by
Coxo.in (X5s) and Cix ig.ix) (X5] £)5), respectively. By Lemma 2.2.10, when
C — Z is reduced (which is the case when H = H,, in which case C — Z
is smooth, by [36, Theorem 6.4.1.1]), Cxix.ixy (With its reduced subscheme
structure) is also a well-positioned subscheme.

To show this, we need the following technical lemma, which will also be useful
for the consideration in Section 3.5:

LEMMA 3.4.3. With the setting as in Lemma 3.2.6, but with j and J suppressed
from the notation system, for each n > 1, consider the canonical geometric
filtration

Wosp =0C Wy =Tp"l CW_i = Gip"l CWopm = Aflp"]  (3.4.4)
on Ai[p"] defined by (3.2.7) and (3.2.8), which is symplectic with respect to the
Ai-Weil pairing

e s Ailp"] x Ailp"] = B

(which is perfect because A; is of degree prime to p, under the assumption that
p is good for (O, x, L, (-, -), hy)) in the sense that W_, ,» and W_ ,» are the
annihilators of each other.

Then there exists a noncanonical splitting

Sy 1 Gry = Ti[p"1 @ Bilp"1 ® (Y/p"Y)i > Ailp"] (3.4.5)
of the filtration W,» which respects the canonical pairings in the sense that, for
each (x_y, x_1, xo) and (Y_3, y_1, Yo) in Gr";n, we have

e)‘i(gp”((-x72v X_1, .X())), §p"((y72a Y-1, yO)))
= (1, y1) + [tz Yo) — € (ya, x0)], (3.4.6)

where
€™ B[ p"] x Bi[p"] — Bopn
is the \p ;-Weil pairing on the abelian part, and where
e’ T:p"1 x (Y/p"Y); — Bopn
is the canonical pairing defined by ¢®(x, y) = x(¢(¥)) = (¢ (y))(x) for all
x € Ti[p"] = Hom;((X/p" X)7, M pn ;)
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andy € (Y/p"Y);, where ¢ : Y — X is dual to the homomorphism Ar; : T; — T;’
between the torus parts, induced by )»; (which are perfect pairings, because \p ;
and ¢ are of degree prime to p since A; is). We may assume that ¢ lifts to similar
splittings g, (respecting the canonical pairings) for all n’ = n.

Proof. Since W is flat over S, there exists a complete discrete valuation ring V
with residue field k(¢) and with generic point n of residue characteristic zero,
together with a morphism Spec(V) — WP lifting the geometric point 7 — W°.
Let us denote the pullbacks to n of A by A,, and so forth, with subscripts 7.

Since 7 is of residue characteristic zero, and since some level structure o4 is
defined over X3 ®z Q, up to replacing V with a finite flat extension (with the
same residue field), we may assume that there is an integral principal level-p”
structure o pn , : L/p"L > A,[p"] of type (L ®z Z, (-, -)) asin [36, Definition
1.3.6.2], whose pullback to some geometric point 7 — 7 is the reduction modulo
p" of some symplectic isomorphism &; : L ® 75 T Aj;. By pulling back the
geometric filtration on T A; defined by (3.2.7) and (3.2.8) (cf. [36, Proposition
5.2.2.1]), we obtain a filtration Z on L ®y 7 (whose H-orbit Z4, is associated
with the cusp label [(Dy, §%)] for the stratum Z), which admits a noncanonical
splitting §:Gr* 5 L®;7Zof O®y Z,-modules which respects the induced
pairings between the graded pieces. Hence, by using the above isomorphism &,
there is also a noncanonical splitting &; : T, T @ T, Bi ® (Y ®2Z,); — T, A;,
whose reduction modulo p" descends to a noncanonical splitting

Spry 2 Gry = Ty[p"1 @ B,[p"1 ® (Y/p"Y), — A,[p"],

which are compatible with the O ®;Z,-module structures and respect the induced
pairings between the grade pieces. (See [36, Section 5.2.2] for all of these.)

By [36, Lemma 1.2.4.4], since p is a good prime, up to a change of coordinates
on L ®z Z, which replaces the above splittings with some other choices, we may
assume that ¢,» , is symplectic in the sense that the condition (3.4.6) holds with
n replacing 7. Moreover, for each n’ > n, up to replacing n with a point »’ finite
over it, we may assume that ¢, , lifts to a similar splitting ¢, ,, (respecting the
canonical pairings). By [36, Proposition 5.2.3.3, or rather the proofs of Lemmas
5.2.3.1 and 5.2.3.2], since 7 is the generic point of a complete discrete valuation
ring V, the splitting ¢, , extends to a splitting over V respecting the canonical
pairings (with V replacing 7 in (3.4.5) and (3.4.6)), whose pullback to 7 gives the
desired splitting ¢, 7 as in (3.4.5), satisfying the condition given by (3.4.6), which
lifts to similar splittings ¢, (respecting the canonical pairings) foralln’ > n. [

Proof of Proposition 3.4.2. In Lemma 3.4.3, by varying n > 1, the isomorphism
class of (A7[p™], A, ir) determines and is determined by the isomorphism classes
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of (X,Y,¢ : Y — X) and of (B;[p™], Api,ip;), which depends only on the
composition f — WO — Z. Therefore, for each W° as in Proposition 2.1.3, the
pullback of Y = Cix.iy.ix) (X3)5) to (W?); coincides with the pullback of some
subset Ytz of Z; which is either the empty subset, or some Oort central leaf, whose
definition depends only on (X, Ax, ix). Hence, Y is a well-positioned subset. The
remaining assertions in the proposition are then self-explanatory. O

REMARK 3.4.7. Since C — Z is reduced at level H, so that Cx jy.ix) ((X21,)5)
is a well-positioned subscheme of (X3,); by Proposition 3.4.2, the pullback
of Cixix.iv)((X315)5) to (Xgy)5 is a well-positioned subscheme of (Xy3);, by
Proposition 2.4.2, which underlies the same subset as Cix jy.ix)((X#);5). (See
Remarks 3.2.9 and 3.3.11 for similar considerations.) Then we can pullback from
Ho and obtain well-positioned subschemes over the Oort central leaves in all
higher levels.

3.5. [Ekedahl-Oort strata and their pullbacks. In this subsection, we shall
consider only the same kinds of X3y — S in Case (Nm) as in Section 3.4. Let
T — S be the special point s = Spec(k) — S of residue characteristic p > 0.
Consider any geometric point 7 = Spec(k(f)) — (X4), above a point 1 € (X%);,
which defines by pullback a triple (A;, A7, i7), and hence also a truncated Barsotti—
Tate group (A;[p"], As, i7) with the induced quasipolarization and endomorphism
structure, for each integer n > 1. When n = 1, the isomorphism class of the
triple (A;[pl, A7, i7) is classified by the isomorphism class of the associated
F-zip with additional structures. Concretely, this F-zip is (M;, Cz, D, @07, ¢1.7),
where M; := H®R(A;/f) := HJ,(A;/D)" is equipped with its two maximal totally
isotropic submodules

Ci == H(A;, 2) ;)" = ker(H{®(A;/1) — Liea, )

and
D; := (H'(4;, =7“i”°($2§f/;)))L

given by the Hodge filtration and the conjugate filtration, respectively, together
with the isomorphisms ¢,; : (M;/C)® = D; and ¢;; : Ct-(”) - M;/D;
induced by the Cartier isomorphism, as in [83, Section 3.1] (which is dual to the
construction in [57, Section 7.5]). As explained in [83, Example 3.2], C; = ker(F)
and D; = ker(V), where the (o7-linear) Frobenius F : M; — M; and (alf]—
linear) Verschiebung V : M; — M are the respective reductions modulo p of the
corresponding F and V of the covariant Dieudonné module D(A;[p>]) (which
can be canonically identified with the dual of Hclrys(A,- /W (k(1)))).
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For simplicity, assume that O ®z Q involves no factor of type D, in the sense
of [36, Definition 1.2.1.15], so that (any pullback of) G ®z Q is connected.
By [83, Sections 3.1 and 5.1-5.3, Theorems 7.1 and 10.1, Corollary 10.2, and
Proposition 10.3] (and the references there to earlier works) for the case H = H,
(with hyperspecial level at p), and by pulling back the locally closed strata to
higher levels H C H,, we obtain the following:

PROPOSITION 3.5.1.

(1) The isomorphism class of F-zips over k(t) with additional structures (in
the precise sense described in [83, Definition 3.1]) is classified by elements
of the subset WM of W of minimal Weyl length representatives of Wy,\W,
where W is the Weyl group 0fG®ZIF,,, where F is some algebraic closure of
F,, and where Wy, is the Weyl group of a Levz subgroup My of a parabolic
subgroup Py of G ®z IF‘F defined up to conjugacy by hq (or rather by the p-
adic version of [ 1] determined by hy, as in [45, Section 6.1]). In particular,
there is an element w(t) € WM associated with the above F-zip (M;,
C:, D;, w07, o17) with additional structures induced by A; and iz, which
depends only on the image t of t — (Xu)s. Thus, it is unambiguous to
write w(t) 1= w(f).

(2) There is a partial ordering < on the set WM (see [73, Corollary 6.3]) such
that, for each w € W™, the subset {t € (X%), : w(t) < w} of Xy)y is
closed, and so the subset

Xy = {t € Xy 1 w(t) = w}

of (Xy); is locally closed. Hence, we have a set-theoretic disjoint union

X = [ 6ol (35.2)

weWMo

(3) When H = H,, the disjoint union (3.5.2) is a stratification in the sense
that the closure of (Xy4,)Y is {t € (X,)s : w() < w} = U, <, Xzg)™',
for each w € WM. This is called the Ekedahl-Oort stratification of (X3, ),
(see [55-57, 65, 84], and [83]). Moreover, each (Xy,)? is equidimensional
of dimension [(w), and smooth (over s).

(4) The assignment of F-zips with additional structures works more generally
over schemes over s and defines a canonical morphism ¢ : (Xy), — Zip,
where Zip abusively denotes the Artin stack over s of F-zips with additional
structures. When H = Ho, the morphism ¢ is smooth (by, for example,
specializing [85, Theorem 3.1.2] to our setting here).
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REMARK 3.5.3. The disjoint union (3.5.2) might not be a stratification in general.
Although it is indeed a stratification at level H, the morphism (Xy); = (Xg,)s
is not necessarily flat, and hence might not preserve the closure relations.

DEFINITION 3.5.4. By abuse of language, we shall still call each (X#)" an
Ekedahl-Oort stratum of (Xy);.

PROPOSITION 3.5.5. For each w € W™, the locally closed subset Y := (X3)"
of (Xy)s is a well-positioned subset as in Definition 2.2.1, which is associated
with some collection Y* = {Y”Z}z such that YDZ is either the empty subset or some
Ekedahl-Oort stratum of Z; (whose precise definition will be made clear in the
proof), for each Z. With its reduced subscheme structure, (X4,)¥ admits the partial
minimal and toroidal compactifications

(XBYY = Y gnd (XS )Y = Y

as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C — Z is
reduced (which is the case when H = H,, in which case C — Z is smooth,
by [36, Theorem 6.4.1.11), (X#)¥ (with its reduced subscheme structure) is also a
well-positioned subscheme. The analogous statements are true if we consider the
closed union Uw’gw (XH);"' = {t € (Xy)s : w(t) < w}instead of (Xq)¥.

Proof. In Lemma 3.4.3, with n = 1, the isomorphism class of (A;[p], A7, i7)
determines and is determined by the isomorphism classes of (X, Y, ¢ : Y — X)
and of (B;[p], A7, iz.7), which depends only on the composition 7 — W° — Z,
because there is some splitting (3.4.5) which respects the pairings as in (3.4.6).
Therefore, for each w € WMo, and for each W° as in Proposition 2.1.3, the
pullback of Y = (X3)? to (W), coincides with the pullback of some subset Y5
of Z; which is either the empty subset, or some Ekedahl-Oort stratum, whose
definition depends only on w (and can be explicitly given in group-theoretic
terms). Hence, Y is a well-positioned subset. The remaining assertions in the
proposition are then self-explanatory. 0

REMARK 3.5.6. Since C — Z is reduced at level H,, so that (Xy,)¥ is
a well-positioned subscheme of (Xy,); by Proposition 3.5.5, for each w €
WMo the pullback of (Xy,)” to (X#), is a well-positioned subscheme of
(X#)s, by Proposition 2.4.2, which underlies the same subset as (X)Y. (See
Remarks 3.2.9, 3.3.11, and 3.4.7 for similar considerations.) Then we can
pullback from H, and obtain well-positioned subschemes over the Ekedahl-Oort
strata in all higher levels.
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COROLLARY 3.5.7. When H = H,, the schemes (X;quz)’;’ over s are smooth
(under the assumption in (4) of Proposition 2.1.2 that X is smooth), for all
w e WMo,

Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1. O

COROLLARY 3.5.8. The morphism ¢ : (Xy)s — Zip in (4) of Proposition 3.5.1
(necessarily uniquely) extends to a morphism ' : (X;‘f)s — Zip, and we have
(X;‘_)[’E);” = (£ (zy) as subsets of (X3))s, for the same point z,, of Zip such
that (Xy)" = ¢ (zy), for each w € WM. Moreover, {'" is smooth (under the

assumption in (4) of Proposition 2.1.2 that X is smooth) when ¢ is.

Proof. By an analogue of the argument of the proof of (7) of Theorem 2.3.2,
by also approximating the finitely many objects and morphisms associated with

= 1 (but ignoring those associated with n’ > n) in Lemma 3.4.3, we may
assume that the étale morphisms U — X;‘j’ 5 and U — E(o) Xspeezy C 1N
Corollary 2.1.7 are adapted to all Ekedahl-Oort strata of (Xz), in the sense
(as in Definition 4.1.1 below) that, in the notation of Proposition 3.5.5, the
pullbacks of (X, ) = Yy and Y} coincides as subsets of U, for each
w € WMo, Then ¢ : (Xy), — Zip induces a morphism U; — Zip, which factors
through the morphisms U; — E Xgnez C; — Cs, by essentially the same
argument as in the proof of Proposition 3.5.5. By composing the morphisms
U, - E(0) Xspec(zy Cs = C, with the induced morphism C; — Zip, we obtain a
(necessarily unique) extension U, — Zip, which is smooth when U, — Zip is (cf.
the paragraph preceding Proposition 2.3.13). By construction, the pullbacks of
(X3)¥ (respectively (X;(_)[r’ 5)Y) and z,, coincide as subsets of U; (respectively U,),

for each w € WMo, Thus, by varying U — Xﬂfz 5. and by étale descent, we obtain
tor

the desired extension ¢'" : (X3)); — Zip of ¢, with all the required properties. [

3.6. Kottwitz—Rapoport strata and their pullbacks. In this subsection, we
shall consider only X3 — S in the following special cases of Cases (Nm) and
(SpD): As in [75, 6.2], assume that O ®; Z,, is a maximal order in O ®; Q,, (stable
under x). Suppose that .Z is a (periodic and self-dual) multichain of (O ®zZ,)-
lattices in L ®7 Q,, as in [75, Definition 3.4] and [43, Section 2.1]. Let H be any
open compact subgroup of G(A"O) such that its image H? under the canonical
homomorphism G(Z) — G(Zf”) is a neat (see [36, Definition 1.4.1.8]) open
compact subgroup of G(Z” ), so that H is also neat, and such that the image H,
of H under the canonical homomorphism G(Z) — G(Z,) is contained in the
connected stabilizer H, , of .Z (cf. [43, Definition 2.1.10 and Choices 2.2.10]).
Let Hy := HPHO,I,.
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As explained in [75, 3.2] and [43, Choices 2.2.9 and 2.2.10], there exists a
finite subset .Z; = {Aj}je; of £ such that an O ®;, Z,-lattice A in L ®; Q,
belongs to . if and only if there exist some r € Z and j € J such that A = p” A;,
and there exists a collection {(1, L;, (- , -);)}jer (With the same index set) for the
consideration in [38 Section 2] such that A; = L; ®z Z, in L ®; Q,, such that

L; ® 7P =L Q7 Z" and such that L;, = p™ L for some ]0 € J and some ry € Z.

Hence, {(1, L, (-, -)j)}jes defines a flat integral model MH — Spec(Op,(p) as
in [38, Proposition 6.1].
Let Xy — S (respectively Xy, — S) be the pullback of My, — S,

(respectively I\Q/IH(J — éo) in Case (Nm), or of I\7I;Sl — Spec(Oy) (respectively

- spl

M;U — Spec(Ok)) in Case (Spl). For compatibility with the setting in the theory
of local models, suppose that S — Spec(Op, () factors through Spec(Op, ,).
where OFp, , is completion of Of, at some place v|p. In both cases, X3y — S
(respectively XHO — S) carries the pullback {(AJ, A, 1j)}ier of the tautological

collection {(AJ, AJ, zJ)}JEJ over MH (respectively MHO) which extends (up to
periodicity) to an .Z-set (A, A, @) of abelian schemes (up to Z (p-isogeny, with
additional structures), which is isomorphic to the pullback of the tautological one
over the moduli M}},* over Spec(Op,,,) defined in [43, Definition 2.2.5], under a
canonical morphism X5 — Mj°.

Let G& denote the 1dent1ty component of the group scheme over Spec(Z,)
stabilizing the multichain .2, so that G»(Z,) = H, ,. By [75, Sections 3 and 6]
and [67, Theorem 2.2], G is a smooth group scheme, and there is a G -torsor

~ naive . . . . ~ naive

M, — Mf;_"zl,fe, together with a G g-equivariant smooth morphism M, —
~ naive : .

M™"e which is of the same relative dimension as M,  — M3, where M is

the local model for M%‘)’e, which is called the naive local model in later works such
as [68]. Alternatively, there is a smooth morphism M3}, — [M""/G ], which
is of the same relative dimension as the smooth morphism G — Spec(Z,),
without having to explicitly mention M],:l,;ve. By composition with the canonical
morphism Xy — M3, we obtain a morphism @ : X3y — [M™"¢/G &] (which
is not necessarily smooth or even flat).

Let T =5 — S be a geometric point above the special point s = Spec(k) — S
of residue characteristic p > 0. Consider the orbits x in

KR; := M™(5)/G g (5) = [M""**/G£](5).

Since the (G g);s-orbits are locally closed in (M™"); (see, for example, [76,
Lemma 2.3.3]), the pullback of each ¥ € KR; is a locally closed subset of X4 (5)
(in the induced Zariski topology). Hence, we have following:
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PROPOSITION 3.6.1.

(1) For any geometric t — 5, the canonical pullback map [M"¢/G £](5) —
[M"3¢ /G o |(t) is bijective. Consequently, there is a well-defined assignment
@ (t) € KR; (still abusively denoted using @) to each geometric point t —
(X33, which induces a well-defined assignment w (t) € KR; to each point
t € Xn)s.

(2) Let us equip KR; with the partial ordering < such that X' < x exactly when
the orbit X' is contained in the closure of the orbit x. For each x € KR;, the
subset {t € Xy); : w(t) < ¥} = Upey Xp)Y of Xy)s is closed, and so
the subset b

X :=={t € Xy)s : (1) = X}

of (X#); is locally closed. Hence, we have a set-theoretic disjoint union

Koz = | X (3.6.2)

xeKRy

REMARK 3.6.3. Since @ : X3y — [M"°/G ] is not necessarily flat, the disjoint
union (3.6.2) might not be a stratification in general, in the sense that the closure
of a stratum might not be a union of strata. Nevertheless, it is indeed a stratification
when @ is flat. This is the case when H = H,, and when M"** happens to be flat
over Spec(Z,) and normal, in which case the canonical morphism My, — M3};°
is an open and closed immersion.

DEFINITION 3.6.4. By abuse of language, we shall still call (X3,)! a Kontwitz—
Rapoport stratum of (X4);. (See [64, Section 3] and the introduction of [25].)

REMARK 3.6.5. Since the morphism @ : X3 — [M""°/G ] factors through
[M"/Gy] — [M"™°/Gy] in both Cases (Nm) and (Spl) (cf. [68, (15.4)]),
it makes sense to also introduce Kottwitz—Rapoport strata based on the orbits
in [M'/G](5). (In Case (Spl), we can also consider [M**'/G] instead of
[M™ /G «].) In what follows, all the results in Proposition 3.6.6, Remark 3.6.7,
and Corollary 3.6.9 will remain correct if we replace the target of the morphism
w : Xy — [M"°/Gg] with [M'/G£](5) (or with [M**'/G¢](5) in Case
(Spl)), and replace the definition of KRy accordingly.

PROPOSITION 3.6.6. For each ¥ € KRy, the locally closed subset Y = (X)%
of (Xy); is a well-positioned subset as in Definition 2.2.1, which is associated
with some collection Y* = {Yuz}z such that YuZ is either the empty subset or some
Kottwitz—Rapoport stratum of Z; (whose precise definition will be made clear in
the proof), for each Z. With its reduced subscheme structure, (X3,)% admits the
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partial minimal and toroidal compactifications (X3;™)% := Y™ and (X, ;)f 1=
Y as in Definition 2.3.1 and Theorem 2.3.2. By Lemma 2.2.10, when C — Z is
reduced, (X%)JSE (with its reduced subscheme structure) is also a well-positioned
subscheme. The analogous statements are true if we consider the closed union

Usrer XY = {1 € X5 - @ (1) < X} instead of (Xy)?.

Proof. As in the proof of Proposition 3.3.9, by Lemma 3.2.6, for each j € J and
for each geometric point 7 — W9, the Barsotti-Tate group A;;[p™] admits a
filtration 0 C T;7[p™] C G;t—[poo] C A;7[p™] with graded pieces given by the
(multiplicative-type) torus part 7; ;[ p™], the abelian part B;;[p], and the (étale)
constant part (Y; ®z (Q,/Z,));, compatibly equipped with quasipolarizations and
endomorphism structures, and such filtrations are compatible with each other
and with twists by o). Consequently, by considering the associated covariant
Dieudonné modules, the kernel of
V i DA p™]) — D(A;A[p™])

N

determines and is determined by the kernel of

Vv D(BHp™]) — D(Bi [ p™D),
where the superscripts o7 denotes the pullback by o7. Hence, @ (f) depends only
on the composition 7 — W° — Z, because it is determined by the former kernels
(for all j € J) (cf. [25, the proof of Proposition 2.5.9, and Remark 2.5.11]), while
the latter kernels (by definition) only depend on the abelian parts. Therefore, for
each x € KR;, and for each W° as in Proposition 2.1.3, the pullback of Y := (X3,)}
to (W%); coincides with the pullback of some subset YtZ of Z; which is either
the empty subset, or some Kottwitz—Rapoport stratum, whose definition depends
only on x (and can be explicitly given in group-theoretic terms). Hence, Y is a
well-positioned subset. The remaining assertions in the proposition are then self-
explanatory. 0

REMARK 3.6.7. When C — Z is reduced at some level #, so that (Xy)T is a
well-positioned subscheme of (X3 ); by Proposition 3.6.6, for each ¥ € KR;, the
pullback of (Xg)? to (X3); for each higher level H' C H is a well-positioned
subscheme of (X3);, by Proposition 2.4.2, which underlies the same subset as
(Xg.y)?. (See Remarks 3.2.9, 3.3.11, 3.4.7, and 3.5.6 for similar considerations.)
Then we can pullback from such a bottom level and obtain well-positioned
subschemes over the Kottwitz—Rapoport strata in all higher levels.

COROLLARY 3.6.8. For each X € KR;, the scheme (X3] ;)% is smooth over
s (under the assumption in (4) of Proposition 2.1.2 that X is smooth) when

https://doi.org/10.1017/fms.2018.20 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2018.20

Compactifications of subschemes of integral models of Shimura varieties 57

(XH)§ is, and the scheme | J., < (X;’[’ E)gE is normal and Cohen—Macaulay when
Uz <z Kp)? is.
Proof. By Proposition 2.3.14, this follows from (3) of Proposition 3.5.1. O

COROLLARY 3.6.9. The morphism @ : Xy (necessarily uniquely) extends to a
morphism @' : X[;_)Z — [M"/G ], and we have (Xif{yz);E = (@) (%) as
subsets of (X;‘f);, for each X € KRy = [M"°/G |(3). Moreover, @' is smooth
(under the assumption in (4) of Proposition 2.1.2 that X is smooth) when @ is.

Proof. Suppose that 5 — s factors through some scheme of finite type over s
over which all the finitely many Kottwitz—Rapoport strata of (X3 ); have models.
As in the proof of Corollary 3.5.8, by also approximating these models, we
may assume that the étale morphisms U — X;‘f_ s and U — E(o) X specz) C
in Corollary 2.1.7 are adapted (as in Definition 4.1.1 below) to all Kottwitz—
Rapoport strata of (X3);, in the sense that, in the notation of Proposition 3.6.6,
the pullback of (X, ;) = Y3 to U coincides with the pullback of Y5, for each
w € WMo, Then, by proceeding as in the proof of Corollary 3.5.8, with the proof
of Proposition 3.5.5 replaced with that of Proposition 3.6.6 as an input, we obtain
the desired extension @ '" of @, with all the required properties. 0

EXAMPLE 3.6.10. Let us work in Case (Nm), and replace w : Xy —
[M"¥ /G o] with @ : Xyy — [M'/Gg] as in Remark 3.6.5. Suppose that
p > 2 and G ®; Q, splits over a tamely ramified extension of Q,, and that
H = Ho and H, , is the full stabilizer of the multichain . in G(Q,). Also,
suppose that O ®; Q involves no factor of type D, in the sense of [36, Definition
1.2.1.15], so that G ®; Q, is connected with simply connected derived group.
Then it follows from [69, Theorem 1.2 and Section 8.2] and the construction
in [38] (see Assumption 2.1.1) that @ : X3y — [M'*°/G] is smooth. Hence,
by Corollary 3.6.9, @' : X;‘f[ — [M'/Gg] is also smooth. Moreover, it
follows from [69, Theorem 1.1 and Section 9] that, for each x € KRj;, the
scheme (XH);E (respectively |/ < (XH)?) is smooth over s (respectively normal
and Cohen—Macaulay). By Corollary 3.6.8, the scheme (X;‘z )T (respectively
Us < (X;‘f’ 2)?) has the same property.

REMARK 3.6.11. The philosophy behind our strategies in Sections 3.2-3.6 can be
(very roughly) summarized as follows: Suppose that we have a stratification of a
characteristic p fiber of an integral model of a Shimura variety defined by pulling
back a stratification of the stack of p-divisible groups, and that the formation
of this latter stratification is insensitive to the étale parts of p-divisible groups.
Then every stratum of the former stratification should be well positioned, and its
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partial toroidal and minimal compactifications should be stratified by pullbacks
of strata of the stack of p-divisible groups (of smaller heights).

REMARK 3.6.12. Likewise, the Ekedahl-Kottwitz—Oort—Rapoport (EKOR)
stratification introduced in [26, Section 6] should also be well positioned. We
leave the details to the interested readers.

3.7. Supports of nearby cycles. In this subsection, we again consider all
cases in Assumption 2.1.1. Consider any rational prime number £ # p. Suppose
A = Q, or Q. Recall the notion of the supports of a A-perverse sheaf F over
a scheme X of finite type over a base field k which we assume (for simplicity)
to be either algebraically closed or finite (see [6, 2.2.14]). By [6, 4.3.1], F has a
finite Jordan—Holder filtration, indexed by some finite set /, with simple graded
pieces. For each i € I, the corresponding graded piece is isomorphic to some
Jy, 1« (G:[dim(Y;)]), where Y; is a reduced irreducible closed subscheme of X,
where Jy, : ¥, < X is an immersion from a smooth open dense subscheme
Y? of ¥;, and where G; is an irreducible lisse sheaf over Y.

DEFINITION 3.7.1. With the setting as above, we shall write
Supp(F) ={Y; :i € I},
ignoring possible repetitions, and call Y; the supports of F.

REMARK 3.7.2. The closed subschemes Y; are well determined for all i € I, but
their smooth open subschemes Y are not: one can always replace Y with an
open dense subscheme. Since each lisse sheaf G; over Y is uniquely determined
by its restriction to any open dense subscheme of Y, we abusively say that G; is
well determined, despite the fact that ¥} is not.

Suppose G; and G, are irreducible lisse sheaves as above, with i, i’ € I, which
are defined over Y and Y?, respectively. We abusively consider them isomorphic
if Y and Y, have the same closure ¥; = Y; in X, and if the restrictions of G; and
Gy to Y,.O N Yf,) are isomorphic to each other.

DEFINITION 3.7.3. For each Y € Supp(F), we denote by Locy(F) the set of
isomorphism classes of G; as above.

By abuse of language, we shall freely shrink or increase the open subscheme

Y? of ¥; over which each such G, is defined (see Remark 3.7.2). For Y € Supp(F)
and G € Locy(F), we define m(Y, G) to be the multiplicity of Jy ., (G[dim(Y)])
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in any Jordan—-Holder sequence of F. Then we have

[Fl= > Y m.G)Uyu(Gldim(¥))] (3.7.4)

Y eSupp(F) GeLocy (F)

in the Grothendieck group of perverse sheaves over X.

REMARK 3.7.5. If V is a nowhere zero lisse sheaf over X, we have canonically
Supp(F) = Supp(F ® V). For each support ¥, we have a canonical multivalued
map Locy(F) — Locy(F ® V) sending G to the irreducible Jordan-Hélder
constituents of G ® V. For example, for any flat model X3; — S of relative
dimension d considered in Assumption 2.1.1, for any nonzero étale sheaf V; as
in [45, Proposition 3.2], which is defined over all of X3 (under the assumption
that £ # p), and for any i : s = Spec(k) — S, j : n = Spec(K) — S,
i:5 = Spec(lg) — S,and j : j = Spec(l?) — S as in [45, Section 5.1], the
supports of RWx,, (A[d]) and R¥x,, (V:[d]) (which are perverse sheaves on (X );
by [27, 4.5]) coincide. Therefore, for the sake of simplicity, we shall often focus
on the trivial coefficient case.

REMARK 3.7.6. In Cases (Nm) and (Spl), when 7 has a high level at p, we have
no geometric information about the ‘bad reduction’ of X3; — S. Nevertheless, by
definition, the supports of R¥x_, (A[d]) still give important topological invariants
of this bad reduction. We show that these supports have good properties near the
boundary of (X3); (or, more precisely, near the boundary of any (X;‘z 5)s), even
though we do not know their precise shape in the interior.

Let us introduce the following:

ASSUMPTION 3.7.7. All the proper surjective morphisms C — Z (in Proposition
2.1.2) are smooth and has (nonempty) connected geometric fibers.

REMARK 3.7.8. Assumption 3.7.7 holds, for example, in the contexts of
Remark 2.1.8 and Lemmas 2.1.9 and 2.1.10.

LEMMA 3.7.9. Suppose that Assumption 3.7.7 holds, and that U — quf{j and
U — E(o) Xspeczy C are étale morphisms as in Corollary 2.1.7, with U the
common preimage of Xyy and E Xspeczy C in U. Up to replacing U with an open
subscheme, we may and we shall assume that the induced morphisms U — X;(_’Z’ 5
and U — E(0) Xspeczy C have connected geometric fibers. Let ¢ : U — Z
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denote the induced morphism. Then we have the following two cases for Y €
Supp(RWx,, (Ald])):

(1) The pullback of Y to U; is empty.

(2) The pullback Yy of Y to U; coincides with the pullback under ¢ of some
YZJ € Supp(R¥z(Aldz])), where dz := dim(Z,). Moreover, the pullbacks
of sheaves G in Locy (RW¥x,, (Ald])) and g; in LOCYZu(RlI/z(A[dz])) to Yy
define a bijection

Locy (RW,, (A[d]) = Loc,: (R¥(Ald)), (3.7.10)

such that, when G is matched with g;, we have
m(Y,G) =m(Y;, G3). (3.7.11)

Proof. Since ¢ : U — Z is smooth, we have
@ *R¥7(A) = RYy(A) = (RPx,, (A)]y; (3.7.12)

(see [3, XV, 2.1] and [16, XIII, 2.1.5]). Moreover, since ¢ is smooth of relative
dimension d? := d — dz, the functor ¢*[d?] is t-exact for the middle perversity
by [6, 4.2.5]. Therefore, it sends a Jordan—Holder filtration to a filtration. By [6,
4.2.6.2], since ¢ : U — ¢(U) has nonempty connected geometric fibers, ¢*[d?]
induces a fully faithful embedding of the category of perverse sheaves over ¢(U)
as a thick subcategory of the category of perverse sheaves over U. Consequently,
the restriction of the functor ¢*[d?] to the category of perverse sheaves over ¢(U)
respects Jordan—Holder filtrations, as desired. (For our purpose, the restriction
from Z to its open subscheme ¢(U) is irrelevant because any th in case (2) has a
nonempty intersection with the open subscheme ¢ (U); of Z;.) ]

Lemma 3.7.9 shows that studying the nearby cycles R¥, (A) near the
boundary of any (X, 5); is essentially the same as studying the nearby cycles
RW7(A) over the smaller analogues Z; of (X4);. More precisely, we have the
following:

PROPOSITION 3.7.13. Suppose that Assumption 3.7.7 holds. Then every Y in
Supp(RWx,, (Ald])) is a (reduced) well-positioned subscheme of (Xy;); as in
Definition 2.2.1 (with T = § there), with minimal and toroidal compactifications
Y™" and Y as in Definition 2.3.1 and Theorem 2.3.2.

Under the assumption (in (4) of Proposition 2.1.2) that X is smooth, we have

Supp(RWxy;  (Ald]) = {Y5" : Y € Supp(RW¥x, (Ald])}. (3.7.14)
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For each Y € Supp(RWx,, (Ald])) and each G € Locy (R¥x,, (A[d])), we have a
canonical extension Gy € Locyuwr (Supp(R lpx“’,;j (A[d)))), with

m(Y,G) =m(Ys', GY). (3.7.15)

Proof. Let Y™ and Y denote the (reduced) schematic closures of Y in (XL‘:Z");
and (XH 5 )s, respectively. Suppose U,U,and ¢ : U — Z are as in Corollary 2.1.7
and Lemma 3.7.9. Then Lemma 3.7.9, with the YZJ there, implies that ¢(U); N

YZu =oU);NY min a5 subsets of Z;, and that the pullback of the canonical open
immersion Jyw : Y — Y3' (induced by the canonical open immersion Jyor

Xy < X3, 5) under U — M ;. coincides with the pullback of the canonical
open immersion

i
Jy 5 %2 (E(0) Xspeez) C) * Y Xz (E X Spec(Z) C) — Y Xz (E(G) X Spec(Z) C)

induced by Jg(, : E <> E(0) and the identity morphisms on YZ and C. Since the
respective pullbacks of the étale morphisms U — X/ 5 and U — E(0) Xspec(z) C
to Zjs; and E, Xgpeezy C are both open immersions (see Corollary 2.1.7),
by gluing in the Zariski topology, the pullback of the canonical isomorphism

B, = Zj,) in (8) of Proposition 2.1.2 to 5 induces a canonical isomorphism

YZu Xz By = Yz,,, where Yz, := 2 X Y. Consequently, the canonical

isomorphism X7 = (& (0))U ‘o B (X‘qf‘r =) .7 in Proposition 2.1.3
Z' TCOo e): TCOo

induces a canonical 1somorphlsm (Yn Xz _,(cr)) = (Y“’f) 20y’ and the

analogues of the other properties 1n Proposmon 2.1 2 follow By matchlng also the
closed subscheme Ur sy (Y Xz &) of Y Xz & (o) with the locally closed
subscheme |, =5 .vce Yz of Y (see Corollary 2.1.7 again), the analogue of
Proposition 2.1.3 also follows. This shows that Y is a well-positioned subscheme,
and that YZu and Y7z =27 X ymin Y™ coincide as subsets of Z;, by Theorem 2.3.2.
As for the assertions in the last paragraph, under the assumption that X' is
smooth, the morphism E (o) — Spec(Z) is smooth for each o in X7. Hence,
the same argument as in the proof of Lemma 3.7.9 (see, in particular, (3.7.12))
shows that Rl.I/XerJr (A[d)) is étale locally near (Z;,); the pullback of RWz(A[d]),
and so its supports are étale locally the pullbacks of those of RWz(A[dz]). Thus,
we can conclude the proof by comparing these with the assertions in Lemma 3.7.9
for Supp(RWx,, (A[d])). ]

,TCo

REMARK 3.7.16. It may happen that a support ¥ does not meet any boundary
strata in the sense that Yz = Z Xymin Y0 is empty for each stratum Z of X3;".
Equivalently, by Proposition 3.7.13, Yz, = Zj5) Xxg . Y3 is empty for each
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stratum Zj,; of Xj/ 5. In this case, we have ¥ = Y™ and Y = Y¥. (For
studying supercuspidal representations of G(Q,), such supports might be the most
interesting.)

4. Well-positioned étale sheaves

4.1. Definition. Let T be a locally noetherian scheme over S as in Section 2.2,
which we assume to be separated and of finite type over a regular scheme of
dimension < 1, or over a quasiexcellent finite-dimensional scheme. Consider any
rational prime number £ # p. Let A be a coefficient ring that is either Z/¢"7Z
(for some integer m > 1), Zy, Q,, Q,, or a finite extension of any of these. For
simplicity, we shall also denote by A the constant étale sheaf with values in A. We
shall denote by D’(-, A) the bounded derived category of A-étale constructible
sheaves over (-), when defined. (See [15, 1.1], [17], and [49] when A is not
torsion.) When discussing perverse sheaves, we shall assume (as in [6, 2.2.14])
that T = Spec(k) for some field k that is either algebraically closed or finite, and
that A = Q, or Q,. ‘
Given any stratum Z of X3,", we shall write

2 = U Z[r],

[rlexf/r

which is the reduced subscheme of the preimage of Z in X;(_’Z .. Suppose Y is a well-
positioned subset of (X3)7, with associated Y* = {Y3} as in Definition 2.2.1. Let
us equip Y and Y”Z with their canonical reduced subscheme structures, for all Z.
Let Y™, Y5, and Yz =2 X xin Y™™ be as in Definition 2.3.1 and Theorem 2.3.2.

Let _
. tor
Yz =7 XX%,E YE .
Let
ayz . YZ — Yl;r
and

VS i
aYZ.YZ—>YZ

denote the canonical morphisms.
DEFINITION 4.1.1. Consider a collection Uz = {(U;, ay,, a% o) ier,, where
ag, : Ui > X3 5

and
i

aU,‘,E(G,‘) : Ui g E(Ui) XSpec(Z) C
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are €tale morphisms like the U — Xif{, 5 and U — E(o) Xspeezy C N
Corollary 2.1.7, which we assume to have connected geometric fibers (which is
possible up to replacing U with an open subscheme).

(1) We say that Uz induces an affine open covering of Z if each U, is affine and
if
w;

i = Ui xxe 2> Zyiep,

is an affine open covering of Z.

(2) We say that Uz is adapted to a well-positioned subset Y (as above) if the
pullback of Y§' under ag, coincides with the pullback of Y under the

morphism
a% U, - Z
induced by a’. for each Z and for each i € I7.

Ui, E(0i)’

LEMMA 4.1.2. Given any Uz inducing an affine open covering of Z as in
Definition 4.1.1, up to replacing Uz with an étale refinement, we may assume that
Uz is adapted to any finite collection {Y;};c; of well-positioned subsets of (Xy)7.

Proof. This is achieved by an analogue of the argument of the proof of (7)
of Theorem 2.3.2, by refining the output of Corollary 2.1.7, using Artin’s
approximation, which matches not just the stratifications but also the pullbacks of
the locally closed subschemes Y; and YF_E(G) of (Xy)T and (& (0))T, respectively,
for all i (assuming without loss of generality that S is excellent and that T is of
finite type over S). O

DEFINITION 4.1.3. With the setting (of Y, Y'Y, and so forth) as above, we say

that a complex F in Df (Yl;r, A) is a well-positioned complex (over Ytg) if there
exists a collection

Fr={(Fp 1))z

indexed by the strata Z of X"H““, where .7-"; e D! (Y%, A), and where
% ~ g
lz: aYz]: — ay, F5 4.1.4)

is an isomorphism in D?(Ys, A), for each Z, satisfying the following
compatibility condition: For each Z, there exists some collection

77 h
Uz ={(U;, ag,, anﬁE(m)}ielz
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which induces an affine open covering of Z and is adapted to Y as in
Definition 4.1.1, which induces canonical morphisms

VY _—_T7. tor tor
av, Yy, :=Ui xxg Yy = Yy

and
RV h
ay, Yz, — Yo,

such that the restriction of ¢z to

YU:r =Yg, xxo . Z,
for each i € Iz, extends to an isomorphism
g, s ay, F = ay’ F; (4.1.5)

in D’(Yy,, A).

We say that an JF as above is a well-positioned sheaf (respectively well-
positioned perverse sheaf, when T and A are as in the beginning of this section)
if, moreover, JF is a sheaf (respectively perverse sheaf). We often suppress the
isomorphisms ¢z from the notation when they are canonical ones or are clear from
the context.

REMARK 4.1.6. Certainly, the above applies to the special case with Y = (Xy)1
and Y’ = {Z7}2, as in Section 3.1.

REMARK 4.1.7. In Definition 4.1.3, if we replace Uz = ((U;, ag,, a% E(a'))}ielz

. 7T g . . .
with a refinement U, = {(U,, ag,, aﬁﬁ,,E(a,.,))}"’eli’ then the isomorphism (7, in

(4.1.5) induces an isomorphism t;, in D?(Yg:, A) when ﬁ;, refines U;.

REMARK 4.1.8. For a well-positioned perverse sheaf F as in Definition 4.1.3,
when Y”C — Y3 is smooth, we typically have .7-'2“ perverse only up to shifting by
dim(Y) — dim(Y5). (See Lemma 4.2.13 below.)

REMARK 4.1.9. In Definition 4.1.3, we allow .7-"; = 0, which will be the case for
any Z such that 7 = 0 near Y. For Z # Z', we do not require any compatibility

between (F2, 17) and (]:2,, 7).
REMARK 4.1.10. In Definition 4.1.3, the complex F does not necessarily

determine the collection F*. Nevertheless, under the assumption (in (4) of
Proposition 2.1.2) that X' is smooth, if Y — Y5 is smooth and has nonempty
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connected geometric fibers, for each Z, and if F and ]:; are either lisse sheaves
or perverse sheaves, then .7-"; is uniquely determined by F, by [6, 4.2.6.2].

Alternatively, if A = @[, and if Assumption 4.3.1 below holds, then .7-'; is
uniquely determined by F (by Theorem 4.3.16; see Remark 4.3.32 below).

REMARK 4.1.11. The automorphic étale sheaves V; defined as in [45, Section 3]
typically (for nontrivial £) do not extend to well-positioned complexes over X;‘z 5

As a partial justification of Definition 4.1.3, we have the following:

LEMMA 4.1.12. In each of the contexts of Propositions 2.4.1, 2.4.2, and 2.4.3
(where H' = H and X' = X in the context of Proposition 2.4.1), suppose F is
a well-positioned complex over Y's', equipped with a collection F* = {(F. )}z
as in Definition 4.1.3. Let F' denote the pullback of F under Y'y" — Y'w. For
each stratum Z' of X}, above a stratum Z of X},", let F5 "% denote the pullback of

55 > under Y — Yn and let ), denote the pullback of 1z under Y5 — Y3, where

Yz denotes the preimage of ZinY El?r. Then F' is a well-positioned complex over
Y5, equipped with the collection F'* := {(fé,u, L)z

If F is a well-positioned sheaf, so is F'. Under the assumption (in (4) of
Proposition 2.1.2) that X and X' are smooth, if F is a well-positioned perverse
sheaf: if Yi. — YtZ and the induced morphism Y'Cn — Yuz are smooth of the same
relative dimension d* — dg, where dy is the relative dimension of E over Spec(Z),
for each Z' above Z; and if fg[—dz] is a perverse sheaf, for each Z; then F' is
also a well-positioned perverse sheaf.

Proof. For each stratum Z of X;i", let Uy = {(U;, ag,, af/ Eo ))}

ier, b€ as in
Definition 4.1.3. Suppose Z' is a stratum of X}’ above Z, with Z the reduced

subscheme of its preimage in XH,, 5. Suppose there exists a collection

- {(Ul ’aUmat

U, E (o }l el

for X;oj,’ 5 such that it induces an affine open covering of Z and is adapted to
Y’ as in Definition 4.1.1, and such that it refines the pullback of Uz i 1n the sense

that, for each i" € Iz, there exists some i € Iz such that ay, and aU/ EGo; lift

the pullbacks of ag, and a’ respectively, via some étale morphisms U =

Ui,E(0i)’
U; x X 5 X5y 5 and Uy — U; Xz, E'(0)). Then the pullbacks of 1z and ¢, to

Z.=7 xye Y3 and Y5 := Uy Xxr, | Y5, respectively, induce the desired ¢,
and L— The question (in the last paragraph of the lemma) of whether F” is a sheaf
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or a perverse sheaf can be answered étale locally, essentially by definition. (For
perverse sheaves, see [6, 2.2.12 and 2.2.19].) Hence, by using the isomorphisms
i, and (for perverse sheaves) by the 7-exactness of smooth morphisms up to
sh’ifting by the relative dimensions (see [6, 4.2.5]), the question has an affirmative
answer by the assumptions we made. It remains to construct such a Iy,

In the context of Proposition 2.4.1, we can just take Llé, = Uz, since these
collections are defined over the same X ;. regardless of the base change T' — T.

In each of the contexts of Propositions 2.4.2 and 2.4.3, let us fixed a choice of
some i € I7. Let ﬁJr denote the pullback of Z under ag, : U; — X/ . Suppose

that x is a point of X0 /> whose image y in X;ff 5 1s contained in the image of
the open immersion U’ ;= Z induced by ag,, so that y lies on the stratum Z,,
of Xtor . Up to replacing U; with an affine open subscheme still containing y, we

may and we shall assume that af :U; — E(o;) Xspeczy C 18 induced by

Ui,E(0i)
an étale morphism aU P : U; — E(0;) such that, over the image of this étale
morphism, & (o;) is 1som0rphic to E(o;) x speczy C as schemes over C (cf. [45,

Lemma 2.3]), and such that af Eon and a S differ by this last isomorphism.

Then U, ; coincides with the pullback of

Eey'= |J &c&w

T€X;,TCO
under aJU_ Eon)’ Consider the pullbacks
1
T . TT tor tor
av; : U[- =U,; XX“’;_ZVZ X?{’,E’ g X'H’,Z’
and
b . ﬁ” U —rg P
a, = Xz &' (0;) — E'(0])

-
U;.8'@6) " i

of ag, and ai 2o respectively, where o] € Z‘”+ is some cone such that x lies
—/+
on stratum Z[,,] of X3, 5. Let U =U; xxg Xy 5, U}

—/

U./ =U,; x 2@ 2'(0]), and U = Ui X 5 &' (o). Then ﬁ;’+ coincides with
the pullback of y4 ,and U, ; " coincides with the pullback of

. 77t tor
— Ui XXer,): XH’,E/’

Ew)t= |J E&.c&)

veryt 7 cy;

. ) =t . .
and the induced morphisms U; — Z and U;” — E’(¢/)* are open immersions

with the same image, the preimage of U inZ. Therefore, (U )2 7+ and (U ),,,+
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are both canonically isomorphic to (X;‘I, s)2.+. Moreover, for each affine open
2T
formal subscheme 20 = Spf(R) of ( ;‘f 5 7,+, the pullbacks to W = Spec(R) of

the stratifications of X3, 5, and &’(o;) coincide with each other.
By the same appr0x1mat10n argument as in the proofs of (7) of Theorem 2.3.2

and of Lemma 4.1.2, there exists a scheme ﬁw with étale morphisms UW — U/.
///

and U, — U such that the induced étale morphisms ag : Xlor 5 and
atU,_,, 2o 79 ; — &'(0]) satisfy the same properties as the etale morphlsms U—
X5 s and U — E (o) in (9) of Proposition 2.1.2 do, and are adapted to Y’ in the
sense that the pullback of Y under ag coincides with the pullback of Y. under

aim & It ; and such that the image of agr contains x, so that x is lifted to a point
of U ;- By [45, Lemma 2.3, and its proof], up to replacing U, ; " with an affine open
subscheme still containing x, we may and we shall assume that, over the image
of a’, T oy’ there is an isomorphism between &’(0/) and E'(0/) Xspeczy C’ as
schemes over C’, which lifts the pullback of the isomorphism between & (o;) and

E(07) Xspee(zy C over the image of ai e and hence a”,,,, 5o induces an étale

morphism ai,,, U — E'(0]) Xgpeczy C' lifting a’ Thus, since i € I

E]) UiE@)’
and x are arbltrary, by collecting (and reindexing) such (U i ag’s a”,,,, B )) we
obtain the desired collection Uy, for X3y, ;.. O

REMARK 4.1.13. In Lemma 4.1.12, without the assumptions in the last paragraph
there, F' is generally not a perverse sheaf even when F is.

4.2. General properties and examples. In this subsection, suppose Y and Y’
are well-positioned subsets of (X,)T, such that Y is a (locally closed) subset of Y,
with associated Y* = {Y3}z and Y"* = (Y3}, respectively, as in Definition 2.2.1.
Let Y3 and Y3 denote the partial toroidal compactiﬁcations of Y and Y/,
respectively, as in Definition 2.3.1. Let J : Y3 < Y, J5 : Y5 < Y5, and

7+ Y58 < Y denote the canonical locally closed immersions, for all Z. Let
. V. tor RV rtor L N/ g AV 7,0
ay, : Yz > Yy, ay; : Y; = Y Ay, Y; — Y5, and ay, Y5 — Y3 denote
the canonical morphisms, for each Z.
LEMMA 4.2.1. Suppose F and F' are well-positioned complexes over Yl;r

and Y, equipped with collections F* = {(Fy, 12)}z and F"* = {(F5", i)}z,
respectively, as in Definition 4.1.3. Then:
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(1) L F' is a well-positioned complex over Ylg, equipped with the collection
((Jz, T35, J3.7)}z. In particular, J Ayyor is a well-positioned sheaf over
Y'Y, equipped with the collection {Jz,gAY/Z,n}z.

(2) J*F is a well-positioned complex over Yy, equipped with the collection
(3 F5 T3}z

(3) HI(F) is a well-positioned sheaf over Y'5', equipped with the collection
{(HU(F3), H4(12)))z, for each q.

Proof. By Lemma 4.1.2 and Remark 4.1.7, we may assume that each collection
Uz as in Definition 4.1.3 that we consider is adapted to both Y and Y'. Since
the canonical morphism Y5 — Y5 Xy, Y5 induces an isomorphism between the

reduced subschemes, the lemma follow from the definitions, and (for the assertion
(1)) from [3, XVII, 5.1.2]. O

LEMMA 4.2.2. Suppose F' is as in Lemma 4.2.1. Suppose T is just a point. Under
the assumption (in (4) of Proposition 2.1.2) that X' is smooth, suppose moreover
that the induced morphism Y& — Y3 is smooth (which is the case if C — Z is)
for each Z. Then the canonical morphisms

ay,RI.F' — RJZ,*QT('ZJ:/ (4.2.3)

and
ay, RIz Fy" — Rz .ay F5' (4.2.4)

are isomorphisms in D* (Y3, A), and hence the isomorphism
N RJZ*aY’;‘J-“g”
canonically induces an isomorphism
iz : a3, RILF = ay Riz.F5' (4.2.5)

in D°(Y3, A), for each Z. Moreover, RJ,.F' is a well-positioned complex over
Y‘;‘, equipped with the collection {(RJz,*fé’u, tz)}z. In particular, RJ*AY;:m isa
well-positioned complex over Y'y', equipped with the collection {RJZ,*AYIZ,t }z.

Proof. For each Z, let Uz = ((U;, agi,a% - (0_))}i612 be any collection as in
Definition 4.1.3 (for F, adapted to Y’), which we may and we shall assume to be
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also adapted to Y, by Lemma 4.1.2 and Remark 4.1.7. For each i € Iz, consider
the canonical morphisms

NV A tor tor
ayvi . YU,‘ = U,‘ XXlOny): YE —> YE 5
[ VN /,tor 7,tor
ay,, Yg, = Ui xxe Y5 —> Y,
NV ]
ay, Yz, — Yo,

and

LIV 7.
aY/U. Yﬁz —>YZ,

where the restriction of
/—_'/ ~ g,* FCJ

to

! !
YU,~+ = YU;' XX 5 z
extends to an isomorphism
’ AN f,* 1,0
g, aY F' — aY, 55

in D® (Y/U,»’ A), by assumption.

To show that (4.2.3) and (4.2.4) are isomorphisms, and that RJ,F is a well-
positioned complex over Y[;r, equipped with the collection {(RJZ_*]-;’”, tz7)}z, it
suffices to fix the choices of some i € Iz as above, and show that the restrictions
of (4.2.3) and (4.2.4) to the open subscheme

Yo =Yg, Xxg , Z
of Y5 are isomorphisms, and that the isomorphism
(@, RIF )y, = (ay) RIz F; v, .

(which should be the restriction of iz to Yz+) induced by the restrictions of (4.2.3),
(4.2.4), and RJ5 1, to Y+ extends to an isomorphism

g, © ay, RJ. F = ay RJZ*}"

over Yg,. Let iy, : Yy : YL+ — Y5, Jg, : Y5 — Yg,, and

Jgr Y7+ s Y—+ denote the canonical morphlsms For these purposes, it suffices

+—>Yﬁ,./

to show that the canonical morphism

- ¥ 0% 7,0 . b, % 1.0
Ny, Rlgway Fz' = Rlg: iy, ay F7 (4.2.6)

Yﬁ[

is an isomorphism, by the commutativity of the following commutative diagram
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@23y,
(a¢ZRJ*JT-'/)|YU_+ (RJZ**ai/zf/NYU‘JF
can.lz can. |2
/ . * /
v aY RI.F' v RJU . ,U']: éRJUI_F,*erU‘aY/U.‘F
i RJUI_.*L/UI_lZ RJUI_+1*(L/Z|YU?_) : 4.2.7)
t x g (4.2.0) % 7,0
v aY RJZ, T LU iy, RJU . ]:z — Rl 1§ v, Oy 55
can.lz can. |2
“29ly_,
f.% 1,1 i f,% 7,0
(CZY2 RJZ,**FZ )|YU~+ (RJZ,*aY’Z‘FZ )|YW

in Df (YW, A), in which ‘b.c.’ means base change morphisms, which (under the
smoothness assumptions) are isomorphisms by the smooth base change theorem
(see [3, X VI, 1.2]); and in which the composition of the three vertical arrows at the
rightmost column is the restriction of RJ3 (5 to the open subscheme Yﬁ;r of Y;.

Let 7 denote the pullback of 7" to Y;'. Consider

E@) = |J E. CE@),
TeX] . TCo;
1.4 . /)
Yo = E©0)" Xspeety Ye
and
b . b
YE(a )+ = E(O’i)+ xSpec(Z) YC'

Let Jo : Y/(’:t — YC and Jge,+: Y Eeyt Y? Eet denote the canonical
morphisms. Since Y - = = E(0:)" Xg@,) Yz, and Y‘F = E(0)" Xg@n Y
order to show that (4. 2 6) is an isomorphism, by the smooth base change theorem

(and the smoothness assumptions) again, it suffices to show that the canonical
morphism

(YE(01)+ — th)*RJC’*J_'.ét — RJE(o'i)‘F’*(Y/E(G’_)«', — Y/éu)*féu (428)

is an isomorphism. Since Jg )+ is by definition the product IdE(m_); xt1Jc, the
morphism (4.2.8) can be identified with the Kiinneth morphism

Apoy X (RicF¢ D — R(Idg ) X7J0)u(Apy: e Fih, (4.2.9)

which is an isomorphism, because T is a point, by [6, 4.2.7], as desired. O
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LEMMA 4.2.10. Suppose that T = S is Henselian, thatY' = Y, and Y/Z‘J = (YDZ),,,
and that F' is as in Lemma 4.2.1. Consider the nearby cycle functors RWy and
RlI/YuZ , for all Z, defined by some compatible choices of geometric points 1 and

5 above the generic and special points n and s of S, respectively, as in [45,
Section 5.1]. Under the assumption (in (4) of Proposition 2.1.2) that X is smooth,
suppose moreover that Y¢. — Y5 is smooth for each Z. Then Ry (F') is a
well-positioned complex over (Y');, equipped with a collection {(RlI/YnZ (‘7-";),
tz)}z, for some canonical isomorphisms iz, as in Definition 4.1.3. In this case,
iz can be taken to be not just in D’((Y3)s, A), but also in D*((Y3); x 7, A);
and the isomorphisms v, can be taken to be not just in Df ((Yg,)5, A), but
also in D?((Yy)s x 1, A). (Here D2((-)5 x 7, A) denotes the bounded derived
category of A-étale constructible sheaves over (-); with compatible continuous
Gal(k(n)/k(n))-actions.)

Suppose that A = Q, or Q,, and that Yi. — YuZ is smooth of relative
dimension d* — dg, where d* := d — dz, d := dim((Xy),), dz := dim(Z,),
and dg = dim(E,), for each Z. If F' is a well-positioned perverse sheaf over
Y3 = (YY), and if F5'[—d?] is a perverse sheaf over Y3 = (Y3),, for each
Z, then R (F') is a well-positioned perverse sheaf over (Y[g) 5, equipped with
the collection {(RlI/YuZ (.7:2”), tz)}z as above, where RWY:Z (Fé’”)[—dz] is a perverse
sheaf, for each Z.

Proof. For the first paragraph of the lemma, by the same reduction steps as in the
proof of Lemma 4.2.2, we are reduced to showing that the canonical morphism

7,8 \

AE(m);r giL (RWY:C (fc )) - RlI/E(m)ngY”C (AE(gi);r Xs féj) (4.2.] 1)
(cf. (4.2.9)) in DP((E(0y)$ xs Yi)s x i, A) is an isomorphism, where F.’
denotes the pullback of F;* under Y¥ — Y5, for each Z. Since o; is smooth by
assumption, E(o;)" is a relative normal crossings divisor on the smooth scheme
E (0;) over Spec(Z). Hence, by [16, XIII, 2.1.11] (or rather its proof), we have a
canonical isomorphism

Ageyr = R¥pe: (At

in D’(E(0;)¥ x 7, A), via which (4.2.11) induces the Kiinneth morphism

(R 015 (Ao ) B (RWy: (FC)) = Ry v (Ao By FeD.

4.2.12)
Thus, (4.2.11) is an isomorphism because (4.2.12) is, by [27, 4.7]. The second
paragraph of the lemma then follows from [27, 4.5] and [6, 4.2.8]. O
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LEMMA 4.2.13. Suppose that T = Spec(k) for some field k that is either
algebraically closed or finite, and that A = Q, or Q. Suppose that (Xy)1 and
Z1 are equidimensional of dimensions d and dz, respectively, for each Z. Under
the assumption (in (4) of Proposition 2.1.2) that X' is smooth, suppose moreover
that YJC — YJZ is smooth of relative dimension d? — dg, where d? := d — dz and
dg := dim(ET), for each Z. Suppose F' is a well-positioned perverse sheaf over
Y, equipped with a collection F"* = {.7:/’”}2, where ]:é’u[—dz] is a perverse
sheaf over Yz , foreach Z. Then ag .7:/[ 1] anda .7:2“[— 1] are perverse sheaves

(isomorphic to each other under LZ[—l]) in Dé’(Y/~ , A); and a;“(z(J!*]:’)[—l] and

a\t(‘;Jz,,*(fé’”[—dZ])[dZ — 1] are perverse sheaves in Df(Yz, A). Moreover, we

have canonical isomorphisms
ay, (JF)=1] = Ty F1=11) (4.2.14)

and
aY (7 (FZ [ =d*D)d* = 11 > J5, ,*(a” FFS—1]) (4.2.15)

in D’ (Y5, A) extending the compositions of canonical isomorphisms
J3a3,(JFH=1]1 - ay J*(JuF)I=1] — ay F'1=1] (4.2.16)
and
Jay, (Jzu(F7 [=d*D)d* = 1] > ay" J; (Jzu(F7 [=d*D)ld® = 1]
= ai{“]—?[—l], (4.2.17)
z
respectively, in D?(Y5, A). Hence, the isomorphism
T (l=1D[T : Jg @y, F =D = Jy, (@ F (= 1D[1]
canonically induces an isomorphism
iz 2 ay JF — aY'Z*Jz_!*(]-'g”[—dz])[dZ], (4.2.18)

in D2 (Y5, A), for each Z; and J,,.F' is a well-positioned perverse sheaf over Yy,
equipped with the collection {(Jz,,*(Fé’”[—dZ]))[dZ], 17)}z.

In particular, suppose Y' = Y¢, and Y = (Ynz)sm in the above, which are
valid choices by Lemma 2.2.10, so that Y's, of = (Y§)sm. Consider the intersection
complexes I_Cylg = Ju (A [d]) andI_CYuZ = JZ’!*(AY”z,sm [dz]). Then I_CY? is

a well-positioned perverse sheaf, equipped with the collection {I_CY:Z [d?])z.
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Proof. In addition to showing that aj, F'[—1], ai‘f}"é‘”[—l], a\*(z(J,*]:’)[—l], and
z z

af,';Jz,!*(fé’”[—dz])[dz — 1] are all perverse sheaves, since the assignment of
middle perversity extensions is functorial and fully faithful (see [29, Corollary
II1.5.11]), in order to also show that the compositions of canonical isomorphisms
(4.2.16) and (4.2.17) (necessarily uniquely) extend to the desired canonical
isomorphisms (4.2.14) and (4.2.15), so that all remaining assertions of the lemma
will follow, it suffices to show that the perverse sheaves ai}z(Jg*f "[—1] and
a\t(’z* Jz.14 (]:é" D[—dz])[dZ — 1] are isomorphic to the middle perversity extensions

of their restrictions to Y3, respectively. Essentially by definition (see also [29, the
criterion on page 148, after Lemma-Definition II1.5.2]), both the perversity and
this last property can be verified étale locally.

For each Z, let Uz = {(U;, ag,, aDU o ))},elz be as in Definition 4.1.3 (for F/,

adapted to Y’), which we may and we shall assume to be also adapted to Y, by

Lemma 4.1.2 and Remark 4.1.7. Since Uz induces an affine open covering of Z
by assumption, by the explanation in the previous paragraph, and by using the
canonical isomorphisms induced by (, and LL for each i € Iz, it suffices to show

that zy, a .7-" [—1] is a perverse sheaf in D” (Y7+, A), and that the composition

of canomcal isomorphisms
Tty Ugaeay FOI=11= iy T U,y FOI-1]

= iV, at ' f”[ 1]. (4.2.19)
in D? (Y'w, A) (necessarily uniquely) extends to some isomorphism
iy, (J7, may /”)[ 1] oy, ay’ J—"/ [-1D) (4.2.20)

in D?(Y5+, A). (Then iy, (Jvh,*afz F;H[—111s a perverse sheaf in D (Yg+, A)
i i U i

that is isomorphic to the middle perversity extension of its restriction to Y/ﬁf J)

Under the assumption that X is smooth, E(o;)" is a relative normal crossings
divisor on the smooth scheme E (o;) over Spec(Z), and hence A E(onE [de —1]isa
perverse sheaf over E(0;), by [29, Lemma I11.6.5]. Since F,°[—d?] is a perverse
sheaf, under the assumption that Y;. — Y3 is smooth of relative dimension d% —
dg, by the smooth base change theorem (see [3, XVI, 1.2]) and by the 7-exactness
of smooth morphisms up to shifting by the relative dimensions (see [6, 4.2.5]),

Feil=dg] == (Y& = Y5y Ty [—dg]
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is also a perverse sheaf. Since ai and aY are pullbacks of the composition

U;
2 . il
of the étale morphism 4. £ U, > E (a,) Xspeezy C with the canonical

morphism E(0;) Xspeezy C — Z, and since ly/ and ly, are pullbacks of

the closed immersion E(o0;)t — E(0), it follows that ’y; ai,* .7-"'“[ 1] and

1Y7 (Jg, .a ”’* ¥ Fy)[—1] are perverse sheaves in Db(Y7+, A) and D2 (Yy+, A),

respectlvely, because they are compatibly isomorphic to the pullbacks under
compatible étale morphisms of the perverse sheaves

(Aptlde — 11) B (FE[—dg])

and
(At lde — 11) BE (Jer(FE[—dg)

(see [6, 4.2.8]), respectively; and that (via these compatible isomorphisms)
the composition (4.2.19) can be identified with the pullback of the canonical
isomorphism

(Udgs XTI)* (Apyz [dr — 11) RE (Je o (FE[—dED))
= (Agyildp — 11 RE (FE[—dg)). 4.2.21)

Since (4.2.21) extends to the Kiinneth isomorphism

(Apytlde — 1) Bt (Je, W(Fe[—dE)))
S (dgys XTIOn(Ape:lds — 1) BE (Fe'[—dg])  (4.2.22)

(see [6, 4.2.8] again), it follows that (4.2.19) also extends to some isomorphism
(4.2.20), which can be identified with the pullback of (4.2.22), as desired. O

LEMMA 4.2.23. Suppose that S is Henselian, and that A = Q, or Q. for
simplicity. Consider the nearby cycle functors RWyq —and RWz, for all Z, defined
by some compatible choices of geometric points 1 and s above the generic and
special points n and s of S, respectively, as in [45, Section 5.1]. Under the
assumption (in (4) of Proposition 2.1.2) that X' is smooth, suppose moreover that
C — Z has connected geometric fibers and is smooth of relative dimension d* —
dg, where d := dim((Xy),), dz := dim(Z,), d? :=d—dz, and dy = dim(Ev), for
each Z, so that Assumption 3.7.7 holds. Suppose that Y € Supp(R Pyor (Ald))

and G € Locy(RlIIXer‘E (A[d])), with corresponding an € Supp(RWz(Aldz])) and
g; € Locyé(R'J/z(A[dz])), for each Z, as in Lemma 3.7.9 and Proposition 3.7.13.
Then Y N (Xy); is a well-positioned subset of (Xy);, by Proposition 3.7.13,
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with its toroidal compactification Y as in Definition 2.3.1. Moreover, there exist
smooth open subschemes Y° and Y. Zu.O of Y and th (with their reduced subscheme
structures), respectively, for each Z, over which G and g; are defined, such that
YN (Xy); is a well-positioned subset of (Xy,);, with its toroidal compactification
Y° as in Definition 2.3.1. Let Jy : Y° < Y and Jy: Y;" < Y, denote the

canonical open immersions, for each Z. By [20, Appendix, Theorem 10.1] and [6,
5.3.1,5.3.2, and 5.34], ZC, (G) := Jy.(G[dim(Y)]) (respectively I_Cyzu (g;) =

Tys 1 (G3[dim(Y;)]), for each Z) is a pure perverse sheaf. By [6, 5.3.5 and 5.3.8],
the ZC, (G)-isotypic subquotient H of Ry (Ald]) (respectively I—CYZ” (gé) [d?]-
isotypic subquotient an of RYz(A[d))) is defined. Then H is a well-positioned

pure perverse sheaf over Y, equipped with a collection {(’Huz, tz7)}z, where 17 is
induced by its analogue for nearby cycles as in Lemma 4.2.10, for each Z.

Proof. These follow from Proposition 3.7.13, from Lemmas 2.2.10, 4.2.10,
and 4.2.13 and their proofs, and from the following: For each Z, and for each
collection Uy = {(U;, ag,, atﬁi‘ - (m))},»e 1, as in Definition 4.1.3, the isomorphisms
tz and (37, for all i € Iz, are induced by their analogues for nearby cycles, because
the corresponding isotypical subquotients of nearby cycles match over U;, for all
i € Iz, and because the fibered category of perverse sheaves is a stack (see [6,

2.2.19)). O

EXAMPLE 4.2.24. (This is a more detailed version of a remark we made in the
introduction.) Suppose that we are in the setting of Section 3.4. For simplicity,
assume that O ®7 Q is simple and involves no factor of type D, in the sense of
[36, Definition 1.2.1.15], so that G ®7 Q is connected. Suppose that

H = U(nep™") := ker(G(Z) — G(Z/(nop* 7)),

for some ny > 3. By Lemma 2.1.9, C — Z is an abelian scheme, for each
Z. Consider any Newton stratum (Xy)’, for some b € B(G ®z Q,), as in
Proposition 3.3.1, and any Ekedahl-Oort stratum (XH);‘), for some w € WMo,
as in Proposition 3.5.1, which are well-positioned subschemes of (X3),, by
Propositions 3.3.9 and 3.5.5. By Lemma 2.2.3 and Proposition 2.3.12, any
irreducible component Y of the intersection (Xz,)? N (X3 (with its reduced
subscheme structure) is a well-positioned subscheme of (Xy),. Thus, the
(generally infinite-dimensional) coherent cohomology of its partial toroidal
compactification still satisfies our generalization of Koecher’s principle, by
Theorem 2.5.11. Moreover, by Lemmas 4.2.1, 4.2.2, and 4.2.13, if we denote by
J:Y — (X;‘z 5)s the canonical immersion, then J,QQ, (respectively RJ.Q,
respectively the intersection complex I_Cylgr) is a well-positioned sheaf
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(respectively complex, respectively perverse sheaf) over (XEfZ 5)s, and we have
generalizations of Pink’s and Morel’s formulas for these in Sections 4.3 and 4.5
(see Theorems 4.3.16 and 4.5.26 below).

4.3. Pink’sformula. The goal of this subsection is to generalize [72, Theorem
5.3.1]. We first state its original form for automorphic étale sheaves (see
Theorem 4.3.10 below), and then its generalization for tensor products with well-
positioned complexes (see Theorem 4.3.16 below).

Let us start with some preparations. For simplicity, in this subsection, let us
make the following assumptions (although some of them can be relaxed):

ASSUMPTION 4.3.1.

(1) In all cases, assume that H = H“PU,(¢")H,, where H"? C G(Z“’)
and H, C G(Z,) are open compact subgroups, and where U (¢") =
ker(G(Z,) — G(Z /' 7)), for some r > 1.

(2) In Cases (Sm), (Nm), or (Spl), also assume that O ®z Q involves no factor
of type D (as in [36, Definition 1.2.1.15]), so that G ® Q is connected.

(3) InCase (Sm), assume in addition that £ ¢ O. (This is forced by the condition
(1) above when r > 1.)

(4) In Cases (Nm), (Spl), and (Hdg), assume in addition that C — Z is an
abelian scheme torsor (of constant relative dimension) over a finite étale
cover, for each Z (cf. Remark 2.1.8). In Cases (Nm) and (Spl), this is true, for
example, when we assume that 7 is a principal level, and that we are in the
setting preceding Lemma 2.1.9. (See also Remark 2.1.11). In Case (Hdg),
this is true, for example, when p > 2 and H, is a maximal hyperspecial
open compact subgroup of G(Q,) (see [50, Sections 4.3 and 5.3]).

LEMMA 4.3.2. Under Assumption 4.3.1, there exists a system of open compact
subgroups HY) C H, labeled by integers r' > r, such that:

(1) For eachr’ > r, we have H¢ ) = HE U (0 YH , where HEP and H,, are
as above, and where U, (£") = ker(G(Z,) — G(Z/t" Z)).

(2) By writing H' = HED for simplicity, the corresponding canonical
morphisms Xy — Xy and their boundary analogues &' — Z, C' — C
and Z' — Z are finite étale. The morphisms C — Z and C' — Z' are
abelian scheme torsors over finite étale covers of the base schemes, and the
morphisms & — C and E' — C’ are torus torsors. The induced morphism

C' — C xz Z is étale locally over Z' the multiplication by £~ on an
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abelian scheme, and the canonical morphism &' — & x¢ C' is Zariski
locally over C' the multiplication by € =" on a torus.

Proof. Part (1) of the lemma is just the definition of H¢ C H, for each r' > r.
It remains to verify the assertions in part (2) of the lemma. In Case (Sm), these
follow from the constructions in [36, Sections 6.2.2-6.2.4; see also the errata].
In Cases (Nm) and (Spl), since H/H' = U,(£")/U,(£"), we can define relative
moduli C"™9 and E"™ over C and & parameterizing the £-power parts of the
degenerations of level structures, as in [36, Section 6.2.4] (see also [42, Section
1.3.2]), which are finite étale over C and &, respectively, and have the desired
property as (instead of C’ and &’) in the last sentence of the lemma. Then the
induced morphisms C' — C"™¢ and &’ — Z"™¢ are isomorphisms by Zariski’s
main theorem, because they are finite morphisms between normal schemes which
induce isomorphisms in characteristic zero. In Case (Hdg), these follow from the
boundary descriptions in characteristic zero in [50, Section 2.1] (based on [4]
and [71]) and in characteristic p in [50, Sections 4.1-4.2]. [

Let Z be a stratum of X3;".

In Cases (Sm), (Nm), or (Spl), the stratum Z is associated with some cusp label
[(Z3, Px, 6%)], which determines an H-orbit Z4 of a fully symplectic liftable
filtration Z = {Z_;};cz on L Q7 7 (see [36, Definitions 5.2.7.1 and 5.4.2.4]). Then
we fix the choices of P and V = {V_;},cz as in Lemma 3.3.6, where V_, ®¢g A®
lies in the H-orbit of Z_, ®z @, and define various groups as in Definition 3.3.8.

In Case (Hdg), it is the consequence of the characteristic zero theory in [5]
and [71] that the stratum Z is associated with some parabolic subgroup P of G ®
Q whose image in each simple factor of (G ®7 Q)™ is either the whole factor or a
proper maximal parabolic subgroup. Let U and M denote the unipotent radical and
the Levi quotient of P, respectively. Then we have an exact sequence 1 — G;, —
M — G; — 1, where G;, defines the boundary analogue of X3, which is a finite
cover of Z in [71] and [50]. (Unlike in PEL cases, we do not have M = G; x Gy, in
general.) In what follows, we will not be as precise as in Cases (Sm), (Nm), and
(Spl), but only state the bare minimum for the application of Pink’s arguments
in [72].

REMARK 4.3.3. The group I" in Proposition 2.1.2 is by definition a subgroup of
G;(Q). Even in Cases (Sm), (Nm), or (Spl), where M = G; x Gy, it is generally
not true that Hy coincides with the semidirect product H; x H, or H; x H,,
(see [36, Definitions 5.3.1.4 and 5.3.1.1, and the errata], and see [42, Definitions
1.2.1.11 and 1.2.1.12]), and I’ := I" N "H, is a finite index subgroup of I" which
is generally different from I". This discrepancy between I” and I"’ defines a finite
étale cover of Z in characteristic zero, which is consistent with the consideration in
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[71, Section 6.3] (cf. Definition 4.3.4 below). Nevertheless, in Cases (Sm), (Nm),
or (Spl), I'" = I when and exactly when M = G, x G,, induces a direct product
Hm = H; x Hy, in which case H; = H; and H), = H,.o = H,. This is the case,
for example, when H is a principal level (and when the technical assumption [36,
Condition 1.4.3.10] is satisfied).

Consider any algebraic representation & of G ®z Q on a finite-dimensional
vector space V; over (Q,, with an associated étale sheaf V; over Xy, as
explained in [45, Section 3.1] (which is consistent with [72, Sections 1 and
4.9]). The association is functorial and also applies to complexes V' of algebraic
representations of G ®z Q on finite-dimensional vector spaces over Q,, with
associated complexes ) of Q,-étale sheaves over Xy,. For each algebraic group
(-) over Q, let D’(-,Q,) denote the bounded derived category of algebraic
representations of (-) on finite-dimensional vector spaces over (Q;. Then the
above association induces a functor from D?(G ®z Q, Q,) to D?(X, Q) (see
the beginning of Section 4.1).

Following [72, Section 5.2], let us introduce the following definitions:

DEFINITION 4.3.4. For the group I" in Proposition 2.1.2 associated with Z,
consider the Stein factorization

C* = Spec,, ((C = 2).00) > Z.

with an induced action of I". Then we denote by I’ the largest (finite index)
subgroup of I" which acts trivially on C*. (In Cases (Sm), (Nm), and (Spl), this
is the same I'’ as in Remark 4.3.3.)

DEFINITION 4.3.5. Let u := Lie U(Q,) denote the Lie algebra of the ¢-adic
analytic Lie group U(Q,). Foreach V ¢ D’(P, Q,), we denote by RInv(u, V) the
object of D”(M, Q,) whose cohomology computes the Lie algebra cohomology
of V.

DEFINITION 4.3.6. For each object V € DM, @z), we denote by RInv(I™, V)
the object of D’(Gy,, Q;) whose cohomology computes the group cohomology
of V.

REMARK 4.3.7. In Cases (Sm), (Nm), or (Spl), the boundary stratum Z and its
finite cover C* are analogues of Xy associated with G, at levels H,, o and #,,
respectively, and we have C*/(I"/I"") — Z. In Case (Hdg), it is only the C* in
Definition 4.3.4 that is associated with Gy, but we still have C*/(I"/I"") S Z
In all cases, the constructions in [45, Section 3.1] and [72, Sections 1 and 4.9]
associate an object of D?(C*, Q,) with any RInv(I"', V) as in Definition 4.3.6,
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which admits an action of I"/I"’ and defines an object of Df “, @g) (cf.[71,(1.10)
and (4.7)]) because C* — Z is étale by assumption (see (4) of Assumption 4.3.1).

DEFINITION 4.3.8. For each object V € D*(G ®; Q, Q,), we define
V, := RInv(I"', RInv(u, Vp)) (4.3.9)

as in Definition 4.3.6, with an associated object V; of D!(Z, Q,) as in
Remark 4.3.7.

When V is represented by an algebraic representatlon Ve of G ®7 Q on a finite-
dimensional vector space over Q,, we denote by V 2z the unique representative
of V; which is a direct sum of shifts of algebraic representations of G, on finite-
dimensional vector spaces over @@ (which exists because G, is reductive), and by
V;Z the associated direct sum of shifts of QQ,-€étale sheaves over Z representing

V;. As usual, we shall also denote by V¢, Vk, V;Z, and V;ﬁz the induced objects in
the derived categories.

Suppose T is just a point. Let i™" : Zr — (X3;")7 and i : Zr — (X3, )7
(respectively j™" : (Xy)1 <> (Xmm)T and j' : (Xy)T = (X;"{r 5)71) denote the

min

canonical locally closed (respectively open) immersions, which satlsfy mn o=

$oi* and j™" = o/, where ¢ = (f,, )7 : Xy )T = (X5")7 is as in
(1) of Theorem 2.3.2.

THEOREM 4.3.10 (Pink). Let V¢ be an glgebraic representation of G ®z Q on

a finite-dimensional vector space over Qq, which defines V¢, and so on, as in
Definition 4.3.8. For simplicity, we shall denote by the same symbols the pullbacks
of Ve and V;Z under T — S. Then, under Assumption 4.3.1, there exists a
canonical isomorphism

imin'*Rj:ninVs = Vgtz 4.3.11)

in D" (Zr, Qy). More precisely, by the proper base change theorem (see [3, XII,
5.1]), we have a canonical isomorphism

jmins g jminy) % R?§ i ROV, (4.3.12)
Z,x

where 9§z : ZT — Zy is the pullback of ¢. Then the upshot is the existence of an
isomorphism
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R% itor’*Rj:’rVS _N) Vgt,Z’ (4313)
Z,%

which depends only on V|p, such that (4.3.11) is the composition

(4.3.12) (4.3.13)
iR, SR yg TRV, SV (4.3.14)
Z,x

As level varies, such isomorphisms are compatible with Hecke actions of elements
of P(A*®) (when defined). (In characteristic p, we usually cannot expect the
Hecke actions to be defined for all elements of P(A*).)

Proof. The existence of the canonical isomorphism (4.3.11) follows from [72,
Theorem 4.2.1 and Proposition 5.2.1], while the later explanatory statements are
based on the proofs there. (We could have referred to [72, Theorem 5.3.1] when
the simplifying assumption Hy, = HcKp there is satisfied, which corresponds
to the assumption that I" = I"” in our setting; cf. [72, paragraph after (3.7.4)],
Remark 4.3.3, and Definition 4.3.4.) Although they were stated only over
Spec(Fyp), the same arguments there work as long as there are systems of minimal
and toroidal compactifications with the same axiomatic properties as in [72,
Sections 3.7-3.11; see also Section 4.9], which is the case here, by considering
higher principal levels at £, thanks to Lemma 4.3.2. 0

REMARK 4.3.15. The proof of Theorem 4.3.10 in [72] is consistent with the one
here: In Cases (Sm), (Nm), and (Spl), this is because of the comparisons in [34,
Theorems 4.1.1 and 5.1.1; see also the errata] and in [37]. In Case (Hdg), this is
because [50] and [72] were based on the same characteristic zero results in [71].

Let Y be a well-positioned subset of (X )7, with associated Y = {Y”Z}z
as in Definition 2.2.1. Let Y™ and Y be its partial minimal and toroidal
compactifications, as in Definition 2.3.1, with the canonical proper surjection
fy = 512(’2 : Yy — Y™ asin Theorem 2.3.2. Let i : Yz — Y™ and i¥" :
Y5 — Y (respectively ji" : Y <> Y™ and j&" : Y < YY) denote the canonical
locally closed (respectively open) immersions, which satisfy iy™™ = fv oiy" and
Japin: — ﬁ( 0j"". Now we can formulate our generalization of Theorem 43. 10

THEOREM 4.3.16. Let F be a well-positioned complex over Y‘;f, equipped with
a collection F* = {(F3,1z)}z as in Definition 4.1.3. Let V; be an algebraic
representatlon of G ®z Q on a finite-dimensional vector space over Q. Let Fv,

Vv, and V , denote the pullbacks of F, Ve, and VE 7 (see Definition 4.3.8) to Y,
Y, and Yz, respectlvely Then, under Assumption 4.3.1, there exists a canonical
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isomorphism
YR Vey @ Fy) = Viy, @8 F5 (4.3.17)

. b ~ . . . . . .
in D?(Yz, Q). As level varies, such isomorphisms are compatible with actions of

elements of P(A™) when they are defined on some collections of Y and .7:5 (which
is possible by Lemma 4.1.12).

In order to prove Theorem 4.3.16, we need some further preparations.

LEMMA 4.3.18. There is a canonical isomorphism

lIYnln*R.lgn:(VEY ®L fY) _’”> R% l$r*RJ¢Oi(VEY ®L fY)v (4319)
Yz,%

where § : Y5 — Yz is the pullback of §,,.
Proof. This follows from the proper base change theorem (see [3, X1I, 5.1]). [

LEMMA 4.3.20. Let A be as in the beginning of Section 4.1. Suppose f : T — T’
is a morphism between schemes of residue characteristics prime to £, which we
assume to be separated and of finite type over some regular scheme of dimension
< 1. Suppose G € DY(T, A) and H € D'(T', A). Then there is a canonical
morphism

(Rf.G) ® H — Rf.(G®" (f*H)) (4.3.21)
in D°(T’, A).

Proof. By adjunction, we have a canonical morphism f*Rf.G — G, which
induces a canonical morphism

FY(RfG) @ H) = (f*RAG) & (f*H) — G & (f*H),
which in turn induces the desired morphism (4.3.21). ]

Consequently, we have a canonical morphism
(RS Vey) ®° F — Rj&" (Vey - F). (4.3.22)

LEMMA 4.3.23. In Lemma 4.3.20, suppose that f : T — T' is a morphism
between schemes of finite type over S, = Spec(k) for some field k, which is
étale locally of the form f = g x5, 1ldg : T = E x5, S — T' = E' xg, S,
where g . E — E’ is a morphism between schemes separated and of finite type
over Sy, and where S is of finite type over Sy. Suppose moreover that such an
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étale local factorization of f can be chosen such that G and H are the pullbacks
of some L € D°(E, A) and M € D’(S, A), respectively. Then (4.3.21) is an
isomorphism.

Proof. Up to étale localization, we may identify the morphism (4.3.21) with the
Kiinneth morphism (Rg,.L) K§ M — Rf, (LK} M), which is an isomorphism
by [6, 4.2.7]. O

REMARK 4.3.24. In Lemma 4.3.20, when f is compactifiable, we have a
canonical isomorphism (RAG) ®* H — RfA(G @ (f*H)), which is the well-
known projection formula (see [3, XVII, 5.2.9]), by the proper base change
theorem (see [3, XVII, 5.2.2]). However, such a formula is false in general for
Rf, instead of Rf,.

COROLLARY 4.3.25. The canonical morphism (4.3.22) is an isomorphism.

Proof. Foreach Z, letUz = {(ﬁi, ag, atU E(,))}ielz be as in Definition 4.1.3. Let
U; denote the common preimage of X3 and E in U, (see Corollary 2.1.7), and let
ay,, Yy, :=Uixx,,Y = Y,ay, :Yg,:=U, meHrEY‘,gr - Yy, Jg. Yy, = Yz,
. —> YtZ denote the induced canonical morphisms. In order to show

that (4.3.22) is an isomorphism, by étale localization, it suffices to show that, for
each Z and each i € I7 as above, the induced morphism

4 .
and ay, Yy,

(RIg, .a5, Vey) ®" @y, F) — RIg, ,ay, Vey Q" Fv) (4.3.26)

is an isomorphism, for each i € 1. Since V is lisse, by using the isomorphism (7, :
a\’;ﬁ F > aﬁ(’; ]-"Z” as in (4.1.5), this follows from Lemma 4.3.23, as desired. [

LEMMA 4.3.27. It suffices to prove Theorem 4.3.16 when Y = (X#)T.

Proof. Let J : Y — (Xy)1 and Jz : Yz — Z7 denote the canonical morphisms.
By [3, XVII, 5.1.2 and 5.1.6], we have

J2iiy™ Ry (Vey @ Fy) = i™™ Rj™M (L (Vey @ Fy)).

Since Ji(Vey ®F Fy) = V; @ (JFy) and Jz,(V] y, ®F F3) = Vi, ®F (J2.F3)
because V; and V;,z are direct sums of shifted lisse sheaves, we are reduced to

constructing (4.3.17) when Y, F, and .7:; are replaced with (Xy)7, Ji.F, and
Jz. F. 2, respectively. Hence, this lemma follows from (1) of Lemma 4.2.1. O
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Proof of Theorem 4.3.16. By Lemma 4.3.27, we may and we shall assume that
Y = (X#)1. In this case, the desired (4.3.17) is the following composition

(4.3.19)

i$1in * mm(])s v ® J_-'Y) _N> R f i?r * tor (VE v ® .FY)
Yz.%

Rfy lmr (4.3.22)71

> R% l\t;)r ((Rjtorng)(X) F)
Yz,

_"’) R% ((tyor*RJtorVEY)® (tor*F))
Yz,

R, (d@iz)

S rf (@rgvst (4 7))
Yz,* YZ
pr3j~
= (R% itYor* lor sz Y> ®L fg
Yz,*

(4.3.13)

= Viy, ® F3, (4.3.28)

where (4.3.13) is applicable because Y = (X3)T and so Y% = Zr; where (4.3.22)
is an isomorphism by Corollary 4.3.25; and where the isomorphism denoted
‘proj.” is based on the well-known projection formula (see [3, XVII, 5.2.9] and
Remark 4.3.24), which is applicable because sz,* is proper. O

REMARK 4.3.29. Instead of using Lemma 4.3.27 and (4. 3 13), we could have
directly established the isomorphism R ., iy"" Rjy", Ve v — V, needed in the
last step of (4.3.28), without assuming Y = (XH)T, by the same argument as in

the proof of Theorem 4.3.10, thanks to Theorem 2.3.2, Proposition 2.4.2, and
Lemma 4.3.2.

REMARK 4.3.30. Theorems 4.3.10 and 4.3.16 have analogues over Z,—we then
need to replace the Lie algebra cohomology in Definitions 4.3.5 and 4.3.8 by
continuous group cohomology. (See [72, Theorem 4.2.1].)

REMARK 4.3.31. We have seen in Theorem 4.3.16 that iy™ Ry (Ve y ®F
Fvy), for any well-positioned complex F, is canonically 1somorphlc to the
(derived) tensor product of V;YZ and F, where VQ,YZ is the pullback of the
complex VQ,Z essentially defined in [72]. This is intriguing because the minimal
compactification is far from being a product near the boundary. As a consequence
of this sheaf-theoretic product structure, we see that the following problems are,
at least intuitively, unrelated:
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(1) Studying the bad reduction of a Shimura variety at p, or studying its nearby
cycles, or studying the constant sheaves or intersection complexes on natural
stratifications such as the Newton or Ekedahl-Oort ones.

(2) Studying the behavior of such complexes near the boundary strata of the
minimal compactification.

REMARK 4.3.32. By Theorem 4.3.16, under Assumption 4.3.1, V”Y L F
is uniquely determined by F and V, for an arbitrary Ve. When V; = Q is
the trivial representation, Vg has a direct summand Q, in degree zero, by
‘Lieberman’s trick’. (This is a representation-theoretic statement independent of
the consideration of integral models.) Therefore, .7-"2 is uniquely determined by
V;YZ ®" F; in this case, and also by F (cf. Remark 4.1.10).

4.4. Mantovan’s formula with boundary terms. The goal of this subsection
is to present a generalization of [51, Section 8, Theorem 22] and [52, Theorem
3.1] in a way different from our previous one [45, Theorem 6.32], which also
shows certain boundary terms. (See Theorem 4.4.7 and Remark 4.4.13 below.)

Let us resume the context of Section 3.3. Assume moreover that p is a good
prime for the integral PEL datum (O, x, L, (-, -), hy) as in [36, Definition
1.4.1.1]; that we are in Case (Nm) with the trivial collection J = {jo} with {(g;,.
L, (-, )0} ={, L, (-, )} as in [38, Example 2.3]; and that O ®zQis
simple and involves no factor of type D, in the sense of [36, Definition 1.2.1.15].
(This is the setting in [45, Section 6.3].) In this case, (G ®; Q)™ is also simple
over Q. Let us also import Assumption 4.3.1 from Section 4.3. For the sake of
concreteness, let us fulfil the requirement in Assumption 4.3.1 that C — Z is
an abelian scheme torsor for each Z by assuming that 7{ is a principal level, by
Lemma 2.1.9. This will be harmless for our purpose in this subsection, because
principal levels are cofinal among all choices of levels.

Suppose S = Spec(Qk), where K is the v-adic completion of Fj at a place
v|p. Consider the nearby cycle functors RW,,, and others, defined by some
compatible choices of geometric points 7 = Spec(K) and § above the generic
and special points 7 = Spec(K) and s of S, respectively, as in [45, Section 5.1].
For each b € B(G ®7 Q,), and for each irreducible algebraic representation & of
G ®z Q on a finite-dimensional vector space V; over Qy, recall that Mantovan
proved the following formula (see [45, Theorem 6.26], with /{ running over a
cofinal system of higher levels, such as all higher principal levels)

Z( D [H, <wa<vg))|xb>1—2< 1Y E(HL (1", VD) (44.1)
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between virtual representations of G(A*?) x G(Q,)" x Wk, where
G(Q)" :=1{g, €G@Q,) : g, (L @2 Z,) C L ®zZ,}

is a submonoid of G(Q,) (cf. [S1, page 599]), where Igb is the limit of the so-
called Igusa varieties over certain central leaf of Xé’ , and where &, is the so-called
Mantovan functor. (For more details, see [45, Section 6.3] and the references there
to [51], [52], and other works.)

Let Z be a stratum of X3;", which is associated with some parabolic subgroup P
of G ®z Q, as in Lemma 3.3.6, with its various quotients of subgroups defined in
Definition 3.3.8. Since O ®; Q is simple by assumption, P is either all of G ®7 Q,
or a proper maximal parabolic subgroup of G ®z Q. For each b € B(G ®7 Q,),
by Proposition 3.3.9 and its proof, Y := (X)" is a well-positioned subset of
(X3)s, associated with the collection Y* := {Y5 := Zf}z, where Zf is either the
empty subset or the Newton stratum Zf” of Z,. In the latter case, (Xy)? # @, and
b is the image of some bp € B(P ®¢ Q,,), with image by = (b, b;) in BM ®q
Q,) =B(G; ®y Q,) xB(G, ®q Q,). Conversely, by the construction of Mumford
families, every b, € B(G, ®¢ Q,) such that Zf’* is nonempty comes from some
b € B(G ®; Q,) as above. For such Y and Y, let (X}, )’ := Y be defined as
in Definition 2.3.1. ~

By Lemmas 4.2.1 and 4.2.10, RWyq (Qm(x‘g_z)’; is a well-positioned complex
over (XHr 5 )i, equipped with the collection {RY7 (@[)| z’g}Z- By abuse of notation,

we shall still denote their extensions by zero to the whole schemes (X;‘_’Lr 5)5 and
Z;, respectively, by the same symbols. Therefore, by Theorem 4.3.16, we have an

isomorphism
iR (Ve @ R, (Q0) | ix,, ) = Vig ®F REZ(Q)l (4.4.2)

in D’(Z;, Q,), where Ve and Vst,z also denote their pullbacks to (X4); and Z;,
respectively. Note that (4.4.2) is not just an isomorphism in D?(Zg, @4), but
also an isomorphism in Df (Z; x 1, Q,), because the proof of Theorem 4.3.16
only uses canonical isomorphisms which are compatible with the actions of
Gal(k(n)/k(n)) = Gal(IZ/K) (cf. Lemma 4.2.10 and its proof).

Since V is lisse, the canonical morphism V; ®* RWx, (Q;) — RWx,, (V) is
an isomorphism in D’((Xy); x 7, Q). Similarly, since the complex V”Z is a
direct sum of shifted lisse sheaves (see Definition 4.3.8), the canonical morphlsm
V;Z QL R¥2(Q,) — R¥z(V Z) is an isomorphism in D?(Z; x 77, Q;). Hence,
(4.4.2) can be rewritten as an 1s0m0rphism

i RN (R W, Vo)l ot) = R¥z (V. )z (4.4.3)
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in D*(Z;, Q,), where Ry, (V§)|<XH)? and RWZ(VQ’Z)lzg abusively denote their
extensions by zero to the whole schemes (X ); and Z;.

As H C G(Z) varies among principal levels, the attached Hp := H N P(A™),
%U =H ﬂU(A“’), %M = Hp/?‘[u, and Hh = (M(Aoo) — Gh (Aoo))(HM) (see
Definition 3.3.8 and Remark 4.3.3) vary accordingly among principal levels in
the respective ambient groups. We can also consider a projective system of higher
level analogues of Z, as 1, = M0 = H; C G4 (A™) vary among principal levels,
which we abusively denote as Z.

However, to formulate the boundary version of (4.4.1), it is better to consider
the G;(A>)-orbit of Z (which is a disjoint union of locally closed subsets in the
limit of the projective system X™" = {X7,"}4, parameterized by principal levels
‘H), which we abusively denote as Xp. The elements of G;(A*) act by twisting
the torus arguments in the cusp labels, without changing the associated filtration
z. The finite level object Xp 3 is the disjoint union of all Z (the strata of X3}")
parameterized by cusp labels [(Z4, @3, 6% )] with the same underlying H-orbit
Z(, where Z4 ®z Q has stabilizer P ®g A*. Such cusp labels [(Z3, Px, )]
are in bijection with G;(Q)\G,(A*)/H; = G;(Q)\G,;(A*>)/H,. The generic fiber
(Xp), admits an action of P(A*°) with trivial restriction to U(A*), and the induced
action of M(A*) = P(A*)/U(A>*) = G;(A*) x G;,(A™) is the combination of
the action of G;(A*°) as above and the action of G,(A*) on Z,,.

Since P*/R%;) = G;(R)/U, « (Where U , is the stablhzer of some element
of P™) is a Riemannian symmetric space associated with G;(R), the group
cohomology of I' can be computed using the cohomology of the manifold
I'\P*/RX,. By putting together the Vg,z over each Z at level H, each of which
being a cohomology complex of I, we obtain the cohomology complex over
G, (Q)\G;(A) /U, «H,;. Thus, by taking limit over all principal levels H, we obtain
a limit V; p over Xp, which admits an admissible action of G;(A*).

Suppose that b € B(G ®; Q,) is the image of some bp € B(P ®q Q,) with
image by = (b;, b)) in BM ®q Q,) = B(G; ®q Q,) x B(G;, ®g Q,). Then we

can define (Xp)f" to be the G;(A>)-orbit of Zh, the preimage of th, and write
symbolically

ips RN (RUVolxe) = R (Vi) (4.4.4)
By applying the analogue of (4.4.1) to Xp, we obtain the following equality

Z( D' [Hf (Kp)s, i RN R (Ve) o))

—Z( 1)/ &, (HZ gy, Vip)]) (44.5)
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between virtual representations of G;(A®) x G, (A*?) x G,(Q,)" x Wk, where
G, (Q,)™ is the submonoid of G,(Q,) analogous to the submonoid G(Q,)* of

G(Q,), where Igll;h is the analogous limit of Igusa varieties over (Xp)?h (whose

pullback to Z; is the usual one associated with G, over some chosen central leaf

at the bottom level), where each Hé’;,(_(lg];h, V;P) admits an admissible/continuous

action of G;(A®) x G,(A*?) x J,, (Q,) x W, and where

&, + Groth(G;(A™) x G, (A*?) x J,,(Q,)) — Groth(G;(A™) x G, (A™) x W).

(4.4.6)
is the combination of the identity functor on Groth(G,;(A*)) and the
corresponding Mantovan functor for Gy, (cf. [45, (6.20)]).

THEOREM 4.4.7 (Cf. [51, Section 8, Theorem 22] and [52, Theorem 3.1], and
also [45, Theorems 6.26 and 6.32]). For each b € B(G ®z Q,), we have an
equality

D (=D THL Xz, (R (Vo)) o)
= Indpie) (Z (=1 &, (1H (Igy", vg,P)])> (4.4.8)
P j

between virtual representations of G(A®?) x G(Q,)" x Wg, where the sum
over P runs over a complete (finite) set of representatives of conjugacy classes
of (rational) parabolic subgroups of G ®z Q that is either (proper) maximal or
G ®z Q itself such that b € B(G ®z Q,,) is the image of some bp € B(P ®q Q)
with image by = (b, b,) inBM®¢ Q,) = B(G, ®¢ Q,) x B(G, ®q Q,). (Note
that by, depends on P.)

Overall, we have an equality

Y (=D [HL (s, R (Vo))

:Zlnd]?(ﬁéj;( > Z(—l)jgbh([Hé{,c(lgﬁ",V;P)])> (4.4.9)
P

bpeB(Gr®0Qp) J

between virtual representations of G(A>?) x G(Q,)* x Wk, and an equality

D (=D HL X, Vo)l

=Zlndl?&?§;( > Z(—l)febh([Hé{,c(Ig?,v;,p)D) (4.4.10)
P

breB(Gy ®@Qp) J
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between virtual representations of G(A®) x Wy, where the sums over P run
over a complete (finite) set of representatives of conjugacy classes of (rational)
parabolic subgroups of G Q@7 Q that is either (proper) maximal or G ®7 Q itself.

Proof. Let X™ denote the limit of X3 over principal levels H C G(Z). By
[37, Propositions A.5.8 and A.5.9], we have a stratification | [, (G(A*®) - Xp) of
X™" where the disjoint union is over the same P’s as in the second paragraph
of the statement of the theorem, and where P(A*) is the stabilizer of Xp in
G(A*). By (2) of Proposition 2.1.2, the same are true over the fibers over 5. By
Proposition 3.3.9, (Xp); contains some nonempty Z? only when b € B(G®7 Q,)
is the image of some bp € B(P ®q Q,). Thus, we obtain the equality (4.4.8)
between virtual representations of G(A*”) x G(Q,)* x Wx by summing the
parabolic inductions of (4.4.5) over the same P’s as in the first paragraph of the
statement of the theorem.
As in [45, (6.24)], we have an equality

D (=D [H (X5, R¥x(V:)]

= > U IHLKE REV))]  @AdD)

beB(GRQQ,) i

between virtual representations of G(A*) x Wy. By combining the contributions
from all b € B(G ®; Q,), we obtain the equality (4.4.9) between virtual
representations of G(A>?) x G(Q,)* x Wg. Thus, by [45, Corollary 5.20 and
Remark 5.35], we obtain (4.4.10) as an equality between virtual representations
of G(A*?) x G(Q,)* x Wk, which then extends to the desired equality between
virtual representations of G(A*) x W (cf. [51, Section 8]). I

REMARK 4.4.12. The term H} (X, (Rlpx(Vg)NX?) in (4.4.9) differs from both
H (X7, (R (Vi) Ixe) and Hj, (X7, (R¥x(Ve))lx:) in general.

REMARK 4.4.13. Compared with its analogue for ) . (=1)' [H} .(X;, V;)] in
[45, (6.33)], the formula (4.4.10) is more elaborate and contains the additional
(boundary cohomology) terms parameterized by all proper maximal parabolic
subgroups P of G ®z Q, although (in theory) these two formulas imply each other
by duality.

REMARK 4.4.14. Here is an alternative argument for establishing the equality

(4.4.10) (which does not rely on Proposition 3.3.9 and Theorem 4.3.16): By
applying the analogues of [45, Corollary 5.20, Remark 5.35, and (6.24)]
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and (4.4.1) for Xp, we obtain an equality
D (=D [HY (Xe)g Vip)]

= D DV EHL gy VipD (4.4.15)

beB(Gr®0Qp) J

between virtual representations of G;(A®) x G, (A*?) x G,(Q,)" x W, which
extends to an equality between virtual representations of G;(A*) x G, (A®) x Wk,
by the same explanation as in [51, Section 8]. By Theorem 4.3.10 (the original
theorem of Pink’s), we can rewrite (4.4.15) as an equality

D (=D HE (Ke)y, i RV

= D> D D EWHLAG VipD (4.4.16)

bpeB(Gy ®QQ/}) j

between virtual representations of G,(A*) x G, (A*) x Wg. Thus, we obtain the
desired equality (4.4.10) by summing the parabolic inductions of (4.4.16) over
the same P’s as in the second paragraph of Theorem 4.4.7. However, such an
argument cannot isolate the contribution of a single Newton stratum as in (4.4.8).

4.5. Morel’s formula. The goal of this subsection is to generalize Morel’s
results concerning restrictions to boundary strata of intersection complexes of
automorphic étale sheaves in [58, Section 5.2], [59, Section 4.2], and [61, Section
1.4] (see also [60]), and their variants in [80, Section 9], [81], and [82], to the case
of general tensor products of automorphic étale sheaves with well-positioned pure
perverse sheaves. (See Theorems 4.5.26 and 4.5.37 below.)

We shall resume the context of Section 4.3, with Assumption 4.3.1, because our
generalization of Morel’s results depends on our generalization of Pink’s formula
there, just as the original results of Morel’s depend on the original formula of
Pink’s. For simplicity, we shall make the following assumption in this subsection:

ASSUMPTION 4.5.1. We are in Cases (Sm), (Nm), or (Spl), and C — Z is an
abelian scheme torsor for each Z.

Recall that, in Section 4.3, we have extended the construction in [45,
Proposition 3.2] to a functor from D(G ®; Q, Q,) to D?(Xy, Q;), and we
have similar constructions over each stratum Z of X"

Let Q denote the algebraic closure of Q in C, and fix a choice of a field
homomorphism Q — @Q,. Since we will be working with weights, it is more
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convenient to work with D*(G ®, @, Qy), which is isomorphic to D*(G ®;, Q,
Qy) (via the above choice of Q — Q).

The hy : C — Endpg,r(L ®z R) in Assumption 2.1.1 (cf. [36, Definition
1.2.1.3]) induces by restriction a central cocharacter G, ®z R — G ®z R, whose
reciprocal descends to a cocharacter w : G, ®z Q > G ®z Q (cf. [14, 1.1.1] for
the general definition). For simplicity, we shall also denote by w the base change
G, ®;,0Q0 - G®;Q.

DEFINITION 4.5.2. We say a complex V € D*(G ®; Q, Q) is pure of weight
—a € Z if, by pullback under the cocharacter w, the group G,, ®; Q acts on
H"™(V) via the character x — x**", for each n € Z.

EXAMPLE 4.5.3. The representation L ®; Q, of G ®; Q (with its tautological
action, placed in degree zero) is pure of weight 1.

LEMMA 4.5.4. Suppose V € D*(G @z Q, Q,) is pure of weight —a € 7 as in
Definition 4.5.2, with associated complex V € Df Xy, Qy). For each functorial
points = Spec(k) — S, where k is a perfect field of characteristic p, the pullback
Vi of V to (Xy); is mixed of weight a (cf. [15, Definition 6.2.2]). More precisely,
H"(V5) is lisse and pointwise pure of weight a + n, for each n € 7 (see [15,
Definition 1.2.2]).

Proof. This follows from [45, Proposition 3.2] and [72, Proposition 5.6.2 and
Lemma 5.6.6]. I

REMARK 4.5.5. Beware that in general } is not pure (as in [15, Definition 6.2.4])
when (Xy); is not smooth (over §). Nevertheless, the restriction of V; to every
smooth subscheme of (X ); is pure of weight a (see [15, Example 6.2.5(b)]).

LEMMA 4.5.6. Consider any t= Spec(k) — S, where k is a field of
characteristic p that is either algebraically closed or finite. Let V € D’'(G®zQ,
Qy) be pure of weight —a € Z, with associated V € D?(Xy;, Q,), whose pullback
to (X)), we abusively denote by the same symbols. Let F be a pure shifted
perverse sheaf of weight b € Z over (X+),. Then V @* F is pure of weight a + b,
and is isomorphic to a direct sum of shifted perverse sheaves. If V is concentrated
in degree zero, and if F is a perverse sheaf, then ¥ @ F is also a perverse sheaf.

Proof. The tensor product V ®& F is isomorphic to a direct sum of shifted
perverse sheaves because the fibered category of perverse sheaves is a
category module over the symmetric monoidal fibered category of lisse
sheaves. Consider V" := RHom(V,Q,) in D’(G ®7 Q, Q,), with associated
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VY = RHom(V, Q,) in D’ (X4, Q). In order to show that V ®% F is pure of
weight a + b, it suffices to note that V ®* F is mixed of weight < a + b (by
Lemma 4.5.4), and that

D, (V @ F) = RHom(V " F, K(x,,),)
= VY QL RHom(F, Kx,,) = VY " Dy, (F)

is mixed of weight < —a — b. (See [6, 5.1.13 and 5.1.14].) If V is concentrated in
degree zero, then V is a lisse sheaf concentrated in degree zero, and hence V ®* F
is a perverse sheaf if F is. O

Let Z be a stratum of X";{i", which is associated with some (rational) parabolic
subgroup P of G ®7 Q, as in Lemma 3.3.6, which is the stabilizer of a symplectic
filtration V = {V_;};cz of L ®z Q such that V_, ®gp A™ lies in the #-orbit of
7 _» ®z Q for some representative 72 = {Z_;};cz of 2.

DEFINITION 4.5.7. Consider a collection € = {Z'}, of strata of Xg‘{i“ containing

the open stratum X3. Then the incidence relation among the strata of Xr;j“ induces

a partial order on the indices ¢ by declaring that ¢ < ¢’ whenever 2(6) C 2“ ). We
say that € is a chain if such an induced partial ordering is a total ordering. We
say that a chain 4" ends with Z, in which case we write 6" > Z, if Z is the (unique)
minimal element in %

LEMMA 4.5.8. Suppose V_, and Z_, are as above, and suppose € = {Z'”}. > Z
as in Definition 4.5.7. Let ¢y > ¢| > - -- > ¢, be a total ordering of all the indices
of €, so that Xoy = Z and Z = Z'”. Then there exists a filtration

0=vY vy c...cvYy =v,, (4.5.9)
which induces by base change a filtration

0=V @A C VY ®A® C -+ C VY @A =V, A% =72,®;Q,
(4.5.10)

whose H-orbit depends only on €. The stabilizer Q of (4.5.9) in G ®z Q is a

parabolic subgroup satisfying the following conditions (cf. Definition 3.3.8):

(1) U € Q C P, and so the unipotent radical Uy of Q contains U, and the
Levi quotient Mg := Q/Uq can be identified with the Levi quotient of the
parabolic subgroup Q/U of M.

(2) There is a canonical homomorphism Q/U — Gy, which is surjective and
canonically splits.
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3) Q; := ker((Q/U) — Gy) is a (rational) parabolic subgroup of G;, with
unipotent radical Ug, = Uq/U and Levi quotient Mg, := Q;/Uy,.

Conversely, any (rational) parabolic subgroup of G ®z Q satisfying these
conditions define a chain linking X+ and Z as in Definition 4.5.7.

Proof. Since the incidence relations among the strata of Z™" are the same as their
restrictions to the characteristic zero fibers, the existence of the filtrations (4.5.9)
and (4.5.10) follows from [36, Theorem 7.2.4.1(4) and Lemma 5.4.2.11]. The
bijection between the filtrations as in (4.5.9) and the parabolic subgroups Q of
G ®z Q satisfying the above conditions then follows from [37, Proposition A.5.8
and Lemma A .4.3]. ]

REMARK 4.5.11. By Lemma 4.5.8, such chains correspond to the strata of the
reductive Borel-Serre compactification of (the analytification of) Xy ®g, C above
the stratum Z ®g, C of XL:’Z" ®r, C, where the base changes are defined by any
ring homomorphism Ry — C. (See [9, Sections II1.6 and II1.10, and Propositions
I1.15.2 and 111.15.4].)

DEFINITION 4.5.12. For each € and Q as in Lemma 4.5.8, we define
r(Q) :=r(%) := #%) — 1. (4.5.13)

We also define I to be the image of I" N Q,(Q) (see Definition 4.3.4) under the
canonical morphism Q;(Q) — Mg, (Q), and uq := Lie Ug(Q,).

LEMMA 4.5.14. For any other choice Q' instead of Q as in Lemma 4.5.8, with
Iy and ugy defined as in Definition 4.5.12, there are isomorphisms g — Iy
and ug > ugy of groups and L-adic analytic Lie groups, respectively, inducing
isomorphisms between their cohomology.

Proof. This is because (4.5.9) determines and is determined by (4.5.10), and the
‘H-orbit of the latter depends only on % O

Let 4" and Q be as in Lemma 4.5.8. For each 0 < i < r(Q), the stabilizer P® of
V(_’)2 in G®7 Q is a parabolic subgroup associated with Z ) as in Lemma 3.3.6. By

definition, we have Q = (<< (o) P Moreover, there exists a homomorphism

s [ Gn®z@ > Q®eQ (4.5.15)

0<i<r(Q

which induces a cocharacter

sV GLR,Q = Q®eQ (4.5.16)
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from the ith factor such that s2@ acts:
(1) on V% ®¢ Q by x > x%;
) on (V) /v'Y) ®g Q by x +> x; and

(3) on (L ®z Q)/(V9)) ®¢ Qby x > 1;

for each 0 < i < r(Q). (These are base changes of the graded pieces for
the filtration 0 = v ¢ v'% < (vt = v c v{’ = L ®; Q.) Such
homomorphisms (4.5.15) and (4.5.16) exist because the filtration (4.5.9) splits.
Moreover, the Levi quotient Q — Mg admits a splitting with image in the
centralizer of the image of the homomorphism (4.5.15), or equivalently the
centralizer of the images of the cocharacters (4.5.16), for all 0 < i < r(Q). From
now on, we shall also view Mg as a Levi subgroup of Q using such a splitting.

For each a € Z, for each 0 < i < r(Q), and for each V € D*(Mq ®7, Q, Qy),
which we canonically view as an object in D?(Q Rq Q QZ) by pullback under the
canonical homomorphism Q — Mg, we define

w>a’)(V) = Z (subcomplex of V on which s2@ acts by x > x“ ) “4.5.17)

a'>a
and

wg;l(i)(V) = Z (subcomplex of V on which s©@ acts by x x“), (4.5.18)

a'<a

which are again objects of D*(Mg ® Q, Q,), because Mg, (as a Levi subgroup
of Q) lies in the centralizer of the image of s©@. Since (4.5.15) is the product
of (4.5.16) as i varies, the truncation operators as in (4.5.17) and (4.5.18) also
commute with each other as i varies.

For each 0 < i < r(Q), consider

do.i) == dim(Z\") (4.5.19)

(which does not depend on the choice of S). For each a € Z and each V €
D*(Mg ®qg Q, Qy), consider the subcomplex

<a — Q(V(Q)) QrQ-n . QQ Q.(1)
V W>do.¢@n—a W<dq.o-1-a Wdgo)—a <dQA(1)_a(V) (4.5.20)

in Db Mg ®z @, @g). The assignment of VQ@ to V defines an exact functor

(')Su : D"(Mq ®2 Q. Q) = D"(Mq ®2 Q, Q). (4.5.21)
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DEFINITION 4.5.22. Let ¢ and Q be as in Lemma 4.5.8, and let Iy and ug be as

in Definition 4.5.12. For each a € Z, and for each object V in D*(G ®; Q, Qo).
we define
VoS = RInv(Ig, (RInv(ug, Vig)g"), (4.5.23)

which is a complex in D*(G, ®, @, @,_;), whose isomorphism class depends only
on %, but not on the choice of Q, by Lemma 4.5.14. Then the constructions in [45,
Section 3.1] and [72, Sections 1 and 4.9] associate a complex fo“ in Df? “, @,_;)
(cf. Remark 4.3.7 and Definition 4.3.8) with V%g".

We need one last technical preparation:

LEMMA 4.5.24. Suppose T = Spec(k), where k is a field that is either
algebraically closed or finite. Let Y be a well-positioned subset of (X#)T,
with associated Y* = {Y”Z}z as in Definition 2.2.1, and with partial minimal and
toroidal compactifications Y™ and Y as in Definition 2.3.1 and Theorem 2.3.2.
Suppose that F is a perverse sheaf over Y&, equipped with a collection
F* = {((F5, 12)}z as in Definition 4.1.3, such that ]:g[dz] is a perverse sheaf over
Z, where d? := dim((Xy)7) — dim(Z7), for each Z.
Now let us fix the choice of Z. Suppose we have the morphisms

i S D

which induce o A

Y7 = Y7 = Yz — Y™,
as in Lemma 2.3.16 and its proof. Then, under the assumption (see
Assumptions 4.3.1 and 4.5.1) that Y:, — Y”Z, is an abelian scheme torsor

(of constant relative dimension) for each stratum Z' of Z™ there exists a well-
positioned perverse sheaf G over Z*, equipped with a collection G* = {(gg,,
L’Z,)}z/ indexed by the strata Z' in Z, such that G2, = .7:21, [d?] for each Z', and
such that the pullbacks of 1z[d*] and i, t0 Z' xz Z7),, for some top-dimensional

o € X as in the proof of Lemma 2.3.16, coincide with each other.

Proof. As in the proof of Lemma 4.2.13, since the fibered category of perverse
sheaves is a stack (see [6, 2.2.19]), it suffices to construct G and i}, over the étale
boundary charts of Z*. Let Z' be any stratum of Z Suppose that we have already
defined G over the largest open subscheme of Z'" containing all stratum Z” of z
that contain Z' in its closure but differ from Z’, and defined L’Z,, and its extensions
over some Uy, as in Definition 4.1.3, for all such Z". (When Z' = Z, we simply
have G|z = .7-"; [d?], with t and its extensions being the identity morphisms.)
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Let x be a point of a stratum ZET,,] of Zl[f,r], which lies above a point y of a
stratum Zj,,, of Z above Z'. By using nested approximation as in the proof
of [45, Proposition 4.3], there exist a torus homomorphism E” — E’ and an
abelian scheme torsor C” — C’, and representatives 7”7 and 7’ of [t”] and [7'],

respectively, such that there exists a commutative diagram

—
Zt(;r] - U - E//('C//) XSpec(Z) C//

j L \ (4.5.25)

—
Ztor ~U —— E/(T/) XSpec(Z) C,

in which the squares are both Cartesian, and in which the horizontal morphisms
define compatible étale neighborhoods of x and y such that the preimages of Z and
E’ Xgpeezy C' coincide as an open subscheme U’ of U/; such that the preimages
of Zis1, E" Xspeezy C”, and U’ coincide as an open subscheme U” of 7/; and
such that the pullbacks of the horizontal étale morphisms under the canonical
morphisms Z' xz Z'" — Z*" and E'(t')* Xspeczy C' = E'(T') Xspeezy C' (When
defined) are open immersions. Up to replacing U and U with open subschemes,
we may assume that all étale morphisms above have connected geometric fibers.
Then there exists an étale morphism U" — U" with connected geometric fibers
such that the pullback of (7 and ¢ extend to isomorphisms

e Yy = YE)'F = (Yur = Y9)' 15

and

o Ve YE)F 5 (Ve o Y3 T

(see Definition 4.1.3), where U”" denotes the preimage of U” in ﬁw, and where
Yy = U" xxg Yy and Ygr =T x xer o Y5

Let g”,’U, denote the pullback of G2, = F2,[d?] to Y7,y := U’ Xz Y5", which is
a shifted perverse sheaf because U’ — Z' is smooth of constant relative dimension.
Since Z;,; = C — Z is smooth of constant relative dimension, the further
pullback Q;,’ g Of Q”,’ o 10 Yy, which coincides with the pullback of g;, under
Yy» — Yz, is also a shifted perverse sheaf. Using the isomorphisms ¢y~ and
tz» above up to shifting, the pullback of F;[dz] under Yy — Y5 is isomorphic
to g;q e Since U” — U’ is smooth and has connected geometric fibers, by [6,
4.2.5 and 4.2.6.2], this uniquely descends to an isomorphism between Fo [d?]
and QJ,’U, over the image of Yy~ in Yz. Hence, the pullback g;,ﬁ, of g;, to

—_—/ . . .
Y, = U xzo Y3', which necessarily has no support in Y, — Yz ¢, defines
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an extension of the partially defined G over the image of Y+ — Y, ;. By varying
x (and y), we obtain étale neighborhoods which induce an open covering of the
preimage of Z' in Z'", and hence by descent an extension of G over a larger open
subscheme containing this preimage, with the desired ¢}, and its extensions over
some collection Uz as in Definition 4.1.3. Thus, by inductively repeating this
process until we exhaust all strata Z of Z the lemma follows. |

Now we are ready to state and prove our generalizations of Morel’s results:

THEOREM 4.5.26. Suppose T = Spec(k), where k is a finite field of characteristic
p. Let Y be a well-positioned subset of (X3;)1, with associated Y* = {YJZ}Z asin
Definition 2.2.1, and with partial minimal and toroidal compactifications Y™ and
Y as in Definition 2.3.1 and Theorem 2.3.2.

Suppose that V = Vg is an algebraic representation of G ®@z Q on a finite-
dimensional vector space over Q¢ that is pure of weight —a € 7 (as in
Definition 4.5.2), and that F is a well-positioned pure perverse sheaf of weight
b € Z over Y, equipped with a collection F* = {(Fs, i)}z as in Definition 4.1.3

such that f;[—dz] is a pure perverse sheaf of weight b — d* over Ytz, where
d? := dim((X3)1) — dim(Zy), for each Z.

Let Z be a stratum of X3,". Let i™", iy™ and so forth be defined as in
the paragraphs preceding Theorems 4.3.10 and 4.3.16. Let Fy, Vy, and nggyaz

denote the pullbacks of F, V, and fo" (see Definition 4.5.22) to Y, Y, and Yz,
respectively. Then, under Assumptions 4.3.1 and 4.5.1, we have an equality

l;nm*];m'r;(VY ®L FY)] — Z (_l)r(%)—l [V%’%Yaz ®L f;] (4527)
c>Z

in the Grothendieck group of Df(YZ,@(). (See Definitions 4.5.7, 4.5.12,
and 4.5.22.)

Proof. We shall closely follow the arguments in [59, especially the proofs of 4.2.1
and 4.2.3]. Let w¢,4» and w. ., denote the weight truncation functors defined in
[59, Section 3.1, page 36]. By Lemma 4.5.6, Vy ®F Fy is a pure perverse sheaf
of weight a + b. Therefore, by [59, 3.1.4], there is a canonical isomorphism

Wy ®" Fy) = weasy RGN @ Fy) (4.5.28)
in D? (Y™™ Qy). For each € = {Z'”}. with indices ordered as

Co>C > >Crp)
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as in Lemma 4.5.8, and for each 0 < i < (%), let i iy )t Yy — Y™ denote the
canonical morphism, so that 1(0) = ]\'}““ and z((’("”ﬂ)) =iy By [59,3.1.3 and 3.3.4;

cf. 3.3.5], we have an equahty

[i\r(mn, Weaip R]mm(VY ® fY)] — Z ( l)r(%”) 1 [w<a+b l(r((g)) *R (r(cg) 1)

€>Z
(r(e)-1), - (2) +(2),% p (1) - (1),
Wsa+bh lé R Rl(g + Wsatb l(g *Rl(g + Wsatb l(g “R mm(VY ® fY)]

(4.5.29)

in the Grothendieck group of Df (Yz, Q). '
Let Q be as in Lemma 4.5.8, which is ﬂogigr(% P® as in the paragraph

following Lemma 4.5.14. For each 0 < i < r(%), let U, M9, G,@, and
G\ be defined as in Definition 3.3.8 for P”, with It C G’ (Q) defined
by the corresponding Z” as in Definition 4.3.4, and let u® := Lie U"(Qy).
Let Q¥ := ﬂog i<i PY, let Uqgw denote the unipotent radical of Q", and let
ugo := Lie Ugo (Qy). Let Q) := ker((Q”/U”) — G}), which is a parabolic
subgroup of Gl(i), with unipotent radical UQ;I-) = UQm/U@ and Levi quotient
Mgo = Q/Uqo (cf. Lemma 4.5.8). Let Iyo be the image of Ipn N Q" (Q)
under the canonical homomorphism Ql(i) Q) — MQ;,» (Q) (cf. Definition 4.5.12).

When i > 1, also consider the canonical homomorphism Q® UV — G~V
whose kernel is Q""" and whose image is a parabolic subgroup P\’ of G{'~",
with unipotent radical Uy’ = U® /(U NU“™) = Uqw /Uqga-» and Levi quotient
M = G;,’)l x GY, where G;l’), = MQ;U /MQ1<H>. (Note that we have U? = 1,
G =G®;Q Q" =1,Uyn = 1, and Myo = 1.) Let I} be the image of
Iy under the canonical morphism MQ;n — fo?l, and let 1)’ := Lie U (Q)).
By definition, we have I P = I'go/Tqi-» and u;") = ugo /ugi-n. We also have
MQ{"’ = nlgjgi G;zjl) and Mo, = 1_[1<,<r(<5) G(l)
Suppose that, for some 1 < i < (%), we have a canonical isomorphism

() @i-1) - (1) (D), -(0) L
¢ Rig ' Woapp - Rig Wogipiy "Riy (Vy @ Fy)

= Ve @ Fu (4.5.30)
in D?(Yy, Qp), where V;fya (pre is associated with
RInv(Io, w0 cw@ (RInv(ug, Vigo))) (4.5.31)

in D*(GY” ®; Q, Q;) (cf. Definition 4.3.8 and (4.5.20)). When i = 1, this is just
Theorem 4.3.16 (with no truncation needed in (4.5.31)).
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: 0
Since F5,

since dg, ;) = dz«», by the analogue of Lemma 4.5.6 for Z“V_ and by [59, the proof
of 4.1.2, based on 2.1.4] (cf. Lemma 4.5.4), we have a canonical isomorphism

)[—dz(("")] is a pure perverse sheaf of weight b — d?" over Yz, and

1.<apre L 0 ~ \.<a L Tt
w>a+b(v<g,yz(‘_’_) ® fz(c;)) = V%’Yz("i) 02y -FZQ[) (4.5.32)
. = < . . .
in D*(Yze, Qp), where V%’Y‘;W is associated with

RInv(Igo, w) - wZi)  (RInv(ugo, Vgn))) (4.5.33)

in D*(G}’ ®z Q, Qo).
Since T B = I /Tqw, since Ty C MQ§,-> (Q), since MQI(,) commutes with

G, and hence also with U} *", and since the cocharacters s, ..., s@® act
(i+1) ~

trivially on u, " = uqa+n /uqe, we have a canonical isomorphism
RInv(Tyen, wly) — RInv (™,
Q.- Q.M
(RInV(FQ(i), w<d(l),(,-,1)—a s w<dov(l)7a(RInv(uQm, V|Q(i>))))|P;1i+1)))
~ Q. () Q.(1)
= RInV(FQ<;+1), w<d(')'(i)7a e w<dQ.(])7a(RInV(uQ<i+1>, V|Q(i+1)))).

(4.5.34)

By Lemmas 2.3.16 and 4.5.24, and by applying Theorem 4.3.16 to the pullback
to Yyen of R(Yqen <> Y;‘J;))*(V;i(m QL }‘;(Ci)), we obtain (4.5.30) with i
replaced with i + 1. In the final step, when i + 1 = (%), so that Z©) = 7 the
same argument for showing (4.5.32) gives a canonical isomorphism

weann(VES'T @ Fp) VY @1 (4.5.35)

“ ’YZ(Cr(f))
in Df (Yz, Qp), and hence we obtain a canonical isomorphism

Wearpiy " RIGE Wy Rig), weniy  RIG, W ®F Fy)
= Vs " T (4.5.36)
in D’(Yz, Q). Now, just combine (4.5.28), (4.5.29), and (4.5.36). O
THEOREM 4.5.37. Suppose that V = V; and —a € Z are as in Theorem 4.5.26.
Let d := dim((Xy),). Consider the nearby cycle functors RW,,, and others,

defined by some compatible choices of geometric points 1) and s above the generic
and special points n and s of S, respectively, as in [45, Section 5.1], where
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S = Spec(Ok), and where K is the v-adic completion of Fy at some place v|p,
as in Section 4.4. Then, under Assumptions 4.3.1 and 4.5.1, we have an equality

[ R, (VIdD] = Y (=17 VES @ RUZ(Q)Id]]  (4.5.38)
EC>Z

in the Grothendieck group of Df (Zs x 11, Q).

Proof. We shall closely follow [81], with additional inputs from [62] and [45,
Section 5], and from this article. Since the argument is global, let us consider My,
M3,", and so forth over Spec(Fp) as in Assumption 2.1.1. Note that these are the
generic fibers for the analogues of X4, X"ﬁi", and so forth, with the base scheme
S replaced with some analogue over Spec(Op, (,)) for any good prime g # p for
(O, %, L, (-, -), ho) and H (in the sense that H is maximal hyperspecial at ¢).

Consider the categories M (My,), M(MZ;"), and so forth of horizontal perverse
sheaves which admit weight filtrations, as in [62, 6.1]. For V = V; as in
Theorem 4.5.26, the associated sheaf V[d] over My, (which can be defined using
any analogues of Xy as above over Spec(Op, ) for some good g # p) is an
object in M (Xy,), and it follows from [62, 8.1.4] and the same argument of the
proof of Theorem 4.5.26 (with F and .7-“; being Q,[d] for each Z) that, after
pullback from Spec(F;) to n = Spec(K), we have an equality

iy i (VIdD] = ) (=D Ve 1l (4.5.39)
c>Z

in the Grothendieck group of D’(Z,, Qy), and hence also an equality

L VldDl =) Y (D" Ve [d]) (4.5.40)

Z ez

in the Grothendieck group of Df((X%i"),,, @[), where the objects associated with
Z' are denoted with an additional prime.
By [45, Theorem 5.26], we have a canonical isomorphism

R ji (VLA = it R, (VId]) 4.5.41)

in D® ((X%“)J—. x 7, Q). For each Z', by decomposing the canonical morphism
imin : Z' — X3" as a composition of the open immersion Z' < Z"™" and the
closed immersion Z"™" — X}," using Lemma 2.3.16, by applying [45, Theorem
5231t0 Z — Z”mi“, and by the proper base change theorem (cf. [3, XII, 5.1] and
[16, XIII, (2.1.7.1)]), we have a canonical isomorphism

iRz (Vi) = R¥an (1"VeS) (4.5.42)
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in Df((XifZ“)g x 17, Q,). On the other hand, since Vfgfz is quasi-isomorphic to a
direct sum of shifted lisse sheaves, we have a canonical isomorphism

Vi ®F RW(Q) > Ru/z/(vg;f;;) (4.5.43)

in D?(Z. x 77, Q;) (as we have seen in Section 4.4). Thus, we obtain the equality

DR, VD] =D Y (=D O ™ VS, @ RYz (Qold))]
7 ¢z
, ) (4.5.44)
in the Grothendieck group of D’ ((X3,")5 x 77, Q,) by combining (4.5.39), (4.5.41),
(4.5.42), and (4.5.43). By applying i™™* to (4.5.44), we also obtain the equality
(4.5.38) in the Grothendieck group of Df (Zs; x 1, @5), as desired. I

REMARK 4.5.45. In order to establish (4.5.39) and (4.5.40), instead of resorting
to results in [62], we may proceed as in the proof of [82, 1.4.8] and resort
to Laumon’s Cebotarev density theorem for perverse sheaves as in [47, 1.1.2]
(or rather an analogue of it), by applying Theorem 4.5.26 to Y = (X4), and
F = A(X‘%,;)s [d] (for some smooth X), after replacing X4, and others, with their

analogues over Spec(OF, (), for all good primes g { p¢.

COROLLARY 4.5.46. With the same setting as in Theorem 4.5.371, the perverse
sheaf jm™(RWx,,(V[d])) has no support contained in the boundary of X5Ms.

5, 0%

Proof. As in the case of (4.5.43), we have a canonical isomorphism
V ®F RWy,, (Qi[d]) — R¥x,, (VId]) (4.5.47)

in Df((XH); X 7, Q,). Since Assumption 4.5.1 implies Assumption 3.7.7, by
Lemma 3.7.9, Proposition 3.7.13, and Lemma 4.2.23, we have the following
facts: The pure isotypic subquotients of RW,, (Q,[d]) extend to well-positioned
perverse sheaves JF, over (X;‘_’[’ 5)s, labeled by some index «. Each such F,
is equipped with a collection F:2 = {(Fj’z, le.z)}z, Where fj’z[—dz] is a pure
isotypic subquotient of Rle(@g [dz]), with d7 := dim(Z,)) and d? :=d — dz as
usual, for each Z. Since F, and ]:(5.2 have isomorphic pullbacks to schemes U
smooth over Z of relative dimension dZ, they have the same weight. Moreover,
pure isotypic subquotients of Rle(@g [dz]) are exactly such F iz[—dz], over all

a. By applying Theorem 4.5.26 to such F, and fjﬁz, by summing up identities
like (4.5.27) over all Z and « (which have the same form regardless of the possibly
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varying weights of F,), and by (4.5.44) and (4.5.47), we obtain an identity

[P (R, (VIdD)] = Y[RV " (Ful )] (4.5.48)

in the Grothendieck group of D!((X3"); x 71, Q,). For each «, since V is
quasi-isomorphic to a direct sum of shifted lisse sheaves, and since F, is the
middle perversity extension of a shifted (pure isotypic) lisse étale sheaf over an
irreducible smooth scheme, /" (V ®" (F,|(x,,);)) has no support contained in the

boundary of (X‘;j")g. Thus, the corollary follows from (4.5.48), as desired. I
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