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Abstract

Let p be a prime number and F a totally real number field. For each prime p of F above p we
construct a Hecke operator Tp acting on (mod pm) Katz Hilbert modular classes which agrees
with the classical Hecke operator at p for global sections that lift to characteristic zero. Using
these operators and the techniques of patching complexes of Calegari and Geraghty we prove that
the Galois representations arising from torsion Hilbert modular classes of parallel weight 1 are
unramified at p when [F : Q] = 2. Some partial and some conjectural results are obtained when
[F : Q] > 2.
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1. Introduction

With this paper we begin the investigation of local–global compatibility results
for Galois representations attached to torsion classes (of noncohomological
weight) occurring in the coherent cohomology of Hilbert modular schemes. The
existence of such representations was previously proved in [ERX17] (see also
generalizations in [RX17, Bo15+, GKo15+]). Our results are motivated by the
conjectures made in [CG12+] (for example, [CG12+, Conjectures A and B]) by
Calegari and Geraghty, and by the consequent applications to modularity lifting
theorems as in [CG12+].

Let F be a totally real number field of degree g and let p be a prime number.
To simplify the notation of this introduction, we assume that p is unramified
in F . Denote by O the ring of integers in a large enough finite extension
of Qp and let $ be a uniformizer in O. Let S denote a finite set of places
containing all archimedean places, all p-adic places, and all places there the
level structure of Hilbert modular schemes is not hyperspecial. Let M denote
the corresponding Hilbert modular scheme (cf. Section 2.2) with hyperspecial
level structure at p, that is, the fine moduli scheme over SpecO classifying
g-dimensional abelian schemes endowed with a certain prime-to-p polarization,
an endomorphism action by OF , and a suitable tame level structure K p. We
let π : A → M denote the universal abelian scheme over M and we set
ω := π∗Ω

1
A/M.

Let Σ denote the set of p-adic embeddings of F . For each paritious weight
(cf. Section 2.8)

κ = ((kτ )τ∈Σ;w) : ResF/Q Gm/F ×Gm/Q→ Gm/Q,

the natural automorphic line bundle ω̇κ descends to a line bundle ωκ over a
certain finite quotient Sh of M, whose C-points form a (union of) connected
components of the Shimura variety for GL2,F . We choose an appropriate
toroidal compactifications Mtor and Shtor of M and Sh, respectively. The
coherent sheaf cohomology of ωκ over Shtor

O/$m is naturally endowed with an
action of commuting Hecke operators Tq parametrized by the prime ideals
q /∈ S . As proved in [ERX17], Hecke eigenclasses arising from any degree
of coherent cohomology have canonically attached pseudorepresentations of
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G F = Gal(F/F) unramified outside S whose Frobenius traces match the
Hecke eigenvalues. The existence of such representations follows from classical
results when the automorphic line bundle ωκ is twisted by a large enough power
of ω(1,1) with 1 := (1, . . . , 1), since the corresponding modular forms lift to
characteristic zero by the ampleness of ω1 on the minimal compactification
of Sh. On the other hand, when the weight κ is small, such Hilbert modular
forms or cohomological classes might not lift to characteristic zero, and Galois
pseudorepresentations are constructed in [ERX17] by exploiting the stratification
of ShFp

induced by partial Hasse invariants, and by constructing trivializations
of suitable automorphic line bundles restricted to such strata. Our method
was later generalized by [Bo15+, GKo15+]. (We recall that the case of torsion
in Betti cohomology is extensively treated in the groundbreaking work of
Scholze [Sc15].)

In [CG12+], Calegari and Geraghty use the (conjectural) existence and local
properties of Galois representations arising from torsions in the coherent or Betti
cohomology of locally symmetric spaces to prove general modularity lifting
results over an arbitrary number field.

For instance, when F = Q a local–global compatibility theorem is proved in
[CG12+, Theorem 3.11] for Katz modular forms of weight 1 defined over an
arbitrary Zp-algebra, and a minimal modularity lifting result is deduced using
commutative algebra techniques (cf. [CG12+, Theorem 3.26]). Similarly, assume
that g > 1 and let p | p be a prime of F . If we chose a weight κ whose p-
components are all equal to 1, it is natural to conjecture that the corresponding
Galois representations arising from torsions in cohomology are unramified at
p. But one major problem in approaching this conjecture is the lack of a good
Tp Hecke operator acting on such torsion classes. This problem is solved when
F = Q, thanks to [Gr90, Proposition 4.1].

In this paper, we construct a natural Hecke operator at p | p acting on the
cohomology of ShO/$m in any degree, and then we use this and the techniques
of patching complexes of Calegari–Geraghty [CG12+, Section 6] to prove the
following.

THEOREM 1.1. Assume that F is a real quadratic field and p > 3 is a prime
inert in F. Let ρ be a Galois representation arising from H •(Shtor

O/$m , ω(1,−1)) for
some m 6 ∞. Suppose that ρ̄ := ρ ⊗ F̄p is irreducible, ρ̄(Frobp) has distinct
eigenvalues, and that ρ̄(G F) contains SL2(Fp). Then the representation ρ is
unramified at p.

Here Shtor is a toroidal compactification of Sh. This theorem is proved in
Theorem 5.12.
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REMARK 1.2.

(1) Here we used the weight (1,−1) as opposed to (1, 1); this is due to our new
normalization of Hecke operators. See Section 2.9 for more discussion.

(2) The assumption that p is inert in F is just meant to keep our arguments as
simple as possible. The case when p is ramified can be treated by working
over the Pappas–Rapoport splitting model of the Deligne–Pappas modular
schemes.

(3) It would be interesting to see whether the similar techniques together with
some results on the global geometry of the Goren–Oort strata of Hilbert
modular varieties from [TX16a, Section 1.5] could be applied to prove
Theorem 1.1 for a general totally real field F assuming that for each prime
p | p in F we have ep fp 6 2.

(4) The assumption on ρ̄(Frobp) might be removed by suitable adaptation of the
doubling arguments of [CG12+, Sections 3.6–7] and [Wi14].

(5) When g > 2, one can show that the representation ρ coming from H 0

is unramified (see Proposition 5.3 for a proof under the p-distinguished
hypothesis and see [DW15+] without the p-distinguished hypothesis).

(6) For more general ρ coming from higher degree cohomology groups (and
in some partial weight 1 cases), we provide a strategy to approach such a
question (see Proposition 5.16).

1.3. Sketch of the construction of the Hecke operator Tp on torsion classes.
Let p be a prime of F above p with residual degree fp and inertial degree ep. The
naı̈ve attempt of defining Tp f for a Hilbert modular form f ∈ H 0(Shtor

O/$m , ωκ)

via the ‘sum’
(Tp f )(A, . . . ) :=

∑
C

f (A/C, . . . )

over suitable subgroup schemes C ⊂ A[p] of rank p fp does not make sense when
$m
= 0 over the base scheme. Here we lose the usual factor 1/(NmF/Q(p))

comparing to many other literatures; we refer to Section 2.9 for the discussion.
When twisting the automorphic line bundle ωκ by a sufficiently large power of the
ample bundle ω(1,1), a global section over O/$m can be first lifted characteristic
zero and then we can apply the usual Tp operator there, and finally reduce modulo
$m . The problem is that, when the weight κ is fixed, not all Hilbert modular forms
(for instance, in H 0(Shtor

O/$m , ω(1,−1))) lift to characteristic zero. It is not clear a
priori why a Hecke operator Tp should act with the expected q-expansion on
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nonliftable forms. Moreover, for our purposes we would like to have a Tp Hecke
action on the entire cohomology H •(Shtor

O/$m , ω(1,−1)), and not just on H 0, so that
the trick adopted in [Gr90, Proposition 4.1] when g = 1 (which relies on lifting
a mod p Katz elliptic modular form of weight 1 to an a priori meromorphic form
in characteristic zero) does not apply in our situation.

Our construction is inspired by the work of Conrad [Con07]. Let us motivate
by recalling the definition of the Hecke operator at a prime q /∈ S . We construct
a covering Sh(q) of Sh by adding an Iwahori level structure at q, and consider the
Hecke correspondence attached to the two canonical projections π1, π2 : Sh(q)→
Sh given respectively by forgetting the Iwahori level structure, and by quotienting
by it. More precisely, the Hecke action of Tq is obtained by composing the natural
map (twisted by the Kodaira–Spencer isomorphism, cf. Section 3.10)

π1∗π
∗

2ω
′κ
→ π1∗π

∗

1ω
κ (1.3.1)

with the finite-flat trace map

trff : π1∗π
∗

1ω
κ
→ ωκ , (1.3.2)

and finally taking the cohomology.
It is a nonobvious fact that this geometric approach to define the Hecke action

works also in characteristic p when g = 1 and q = (p), as proved in [Con07,
Section 4.5]. The key here is to show that the composition π1∗π

∗

2ω
′k
→ ωk of the

morphisms (1.3.1) and (1.3.2) between sheaves on MO has image inside p · ωk

if k > 1, because it is so over the open dense ordinary locus.
Unfortunately, when g > 1 there are additional complications as the projections

π1, π2 are not finite flat anymore over the special fiber of Sh. For instance, when
g = 2 and p is inert in F , the preimage under π1 (or π2) of the superspecial points
of the special fiber of Sh is the union of two projective lines. To overcome this
issue, we use in this paper the dualizing trace map

tr : Rπ1∗Dp→ D

instead of the finite-flat trace map to construct the Hecke operator. (Here Dp and
D denote the dualizing complexes on Sh(p) and on Sh, respectively). Twisting by
the Kodaira–Spencer map we can identify D with the automorphic line bundle
ω((2,...,2),0) on Sh, and the compatibility between the dualizing trace map and
the finite-flat trace map guarantees that our construction of T n

p (an appropriately
normalized Tp-operator) coincides with the usual one on the ordinary locus of
Sh. Following [Con07, Section 4.5], it suffices to show that the composition
Rπ1∗π

∗

2ω
′κ
→ ωκ factors through NmF/Q(p) · ω

κ in the derived category of
bounded complexes of coherent modules of Sh. It is not difficult to check this
over the ordinary locus (cf. Proposition 3.17).
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Now we come to the second technical issue. This was a gap in the previous
version of the paper and we thank Pilloni for pointing this out to us. Unlike in
the case of F = Q, since we are working with the derived category, knowing
the factorization over the ordinary locus a priori does not imply the factorization
over the entire Sh. Luckily, when κ satisfies certain natural and mild conditions
(cf. (3.11.1)), this implication holds. Indeed, by some standard homological
algebra argument (cf. Proposition 3.18), the factorization question is reduced to
proving that the set-theoretical support of R jπ1∗π

∗

2ω
′κ

Fp
for j > 0 has codimension

at least j + 1 in the special fiber ShFp
, which is the content of Proposition 3.19.

Let us point out that the proof of Proposition 3.19 makes use of some deep
geometric result of the map π1 : Sh(p)Fp

→ ShFp
, along the line of [GKa12,

He12, TX16a]. We single out this proof in Section 4 as we believe that it has its
own interest. To summarize the key points: we show that

• all fibers of π1,Fp
are unions of products of P1-bundles, and

• the restriction of π∗2ω
′κ

Fp
to every P1-bundle which affects the proof of

Proposition 3.19, is O(n) for some n > −1, and hence has zero higher
derived pushforward.

1.4. Sketch of the proof of Theorem 1.1. Recall that p is assumed to be inert
in F . We fix a mod p irreducible Galois representation ρ̄ : G F → GL2(Fp)

which is modular of weight (1,−1). We assume that ρ̄ is p-distinguished,
that is, the Frobenius eigenvalues of ρ̄(Frobp) are distinct. (The case for H 0

without this further assumption on ρ̄(Frobp) is treated by Dimitrov and Wiese
[DW15+].) The cohomology groups H ∗(Shtor

O/$m , ω(1,−1))m are modules for the
Hecke algebra T generated by the Hecke operators attached to primes away from
S (cf. Section 5.2). We consider the localization at the maximal ideal m of T
corresponding to ρ̄.

Having available a Hecke operator at p acting on torsion classes, we can prove
(cf. Proposition 5.3) that representations arising from H 0(Shtor

O/$m , ω(1,−1))m are
unramified at p. As in the elliptic modular case (cf. [Ed92] and [CG12+, proof
of Theorem 3.11]) the proof of this fact uses that the Hecke operator T n

p has
the expected q-expansion on H 0 (Remark 3.14), and consists of computing the
commutator between T n

p and the total Hasse invariant acting on forms of weight
(1,−1). By Serre duality (Lemma 2.10), the result on H 0 can also be read as an
unramifiedness result for representations arising from H g (see Proposition 5.6).

From the Galois deformation point of view, the (framed) cohomology group

H ∗(Shtor
O/$m , ω

(1,−1))�m := H ∗(Shtor
O/$m , ω

(1,−1))m ⊗O/$m O/$m
[[z1, z2, z3, z4]]
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becomes a module over the full universal (framed) O-deformation ring R�p of
ρ̄|G Fp

(with fixed determinant), where G Fp = Gal(Qp/Fp) is the local Galois
group. This ring contains a proper ideal I cutting out the locus of unramified
lifts. The existence of the T n

p -operator implies that the action of R�p on H 0,�

and H g,� through the quotient R�p /I . Moreover, when g = 2, a ‘squeezing’
argument (cf. Proposition 5.9) gives:

I 3
· H 1(Shtor

O/$m , ω
(1,−1))�m = 0. (1.4.1)

At this point, we make use of the Calegari–Geraghty version [CG12+,
Section 6] of the Taylor–Wiles–Kisin patching argument. Denote by r the
number of finite prime-to-p places in S . For each N > 1 let QN be a
set of cardinality q > 1 of Taylor–Wiles primes congruent to 1 modulo
pN . Let Sh(QN )

tor
1 → Sh(QN )

tor denote the corresponding étale cover of
compactified Shimura varieties with a (variant of) K p

∩ Γ1(QN )-level structure
and a K p

∩Γ0(QN )-level structure (cf. Section 5.1). Then one can construct as in
[CG12+, Section 7.2] complexes computing the cohomology of Sh(QN )

tor
1,O/$m

localized at a suitable maximal ideal mQN . Such complexes are endowed with
an action of a Hecke algebra TQN ,mQN

and of the group-algebra O[(Z/pNZ)q],
where q is the dimension of a suitable dual Selmer group. Following the proof of
[CG12+, Theorem 6.3], we can patch these complexes together when N increases.
Introducing framing by j := 4(r + 1) − 1 variables, this process produces a
perfect complex P�,∗

∞
of S�

∞
:= O[[x1, . . . , xq+ j ]]-modules. Moreover, H •(P�,∗

∞
)

is endowed with an action of a complete local Noetherian R�p -algebra R′
∞

of relative Krull dimension 4r + q − g (cf. Section 5.10). Since g = 2 and
I 3
· H ∗,� = 0 by (1.4.1), we conclude that the action of R′

∞
on the patched

modules factors via R∞ := R′
∞
/I 3.

The fact that
dim(R�p /I

n) = dim(R�p /I ) = 4

implies that the following numerical condition is satisfied:

dim R∞ = dim S�
∞
− g.

This guarantees that
codimS�

∞
H ∗(P�,∗

∞
) = g.

Since g is also the length of our complexes computing coherent cohomology,
[CG12+, Lemma 6.2] implies that the patched complex P�,∗

∞
is a projective

resolution of its top-degree cohomology. In particular, we have an isomorphism
of R�p -modules:

TorS�
∞

i (H g(P�,∗
∞
),O/$m) ' H i(Shtor

O/$m , ω
(1,−1))�m.

https://doi.org/10.1017/fms.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.26


M. Emerton, D. Reduzzi and L. Xiao 8

Loosely speaking, the coherent cohomology of ShO/$m is controlled by the top-
degree cohomology of some patched complex P�,∗

∞
. Since H g(P�,∗

∞
) is built by

patching the top cohomology groups of the schemes Sh(QN )
tor
1,O/$m for varying

N > 1, and since these give rise to unramified representations, we deduce
Theorem 1.1 (cf. Theorems 5.12, and 5.16).

REMARK 1.5. We remark that the only point in which we used g = 2 in the
argument is to show that a 4-dimensional quotient of the local deformation ring
R�p was acting on our (framed) cohomology (namely, R�p /I

3). The argument
just described would go through exactly in the same way for an arbitrary degree
g = [F : Q] and arbitrary p > 3 if one could prove the following conjecture
(cf. Conjecture 5.15):

CONJECTURE. Let F be a totally real number field of degree g and denote by
I the ideal cutting out the unramified locus of the deformation ring R�p . There
exists a positive integer n depending on g such that:

I n
· H •(Mtor

O/$m , ω
(1,−1))�m = 0.

1.6. Organization of the paper. In Section 2 we recall the definition of the
Hilbert Shimura varieties, and the stratification induced on them by generalized
partial Hasse invariants. Since we allow p to ramify in F , we work with the
Pappas–Rapoport splitting model ShPR. In Section 3 we construct the Hecke
operator T n

p acting on the cohomology of ShPR
O/$m (m 6 ∞) with coefficient

in an automorphic sheaf of paritious weight κ (satisfying some conditions).
This construction relies on key Proposition 3.19, which is subsequently proved
in Section 4. In Section 5 we use the construction of T n

p -operator to prove
unramifiedness of the representations arising from (nonliftable) Katz Hilbert
modular forms of weight 1, and then we specialize to the case g = 2 to prove
unramifiedness of Hilbert modular classes.

2. Splitting models of Hilbert modular schemes

We present here some preliminaries on splitting models of Hilbert modular
schemes, as constructed by Pappas and Rapoport in [PR05]; we follow [RX17].
We also recall the stratification induced by suitable generalized partial Hasse
invariants on the special fiber of such models (cf. [RX17]). Along the way,
we make a small generalization following [TX16b, Section 2.3] to allow more
general tame level structure, which is required for later application to Taylor–
Wiles–Kisin and Calegari–Geraghty patching argument.
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2.1. Setup. Let Q denote the algebraic closure of Q inside C. We fix a rational
prime p and a field isomorphism Qp ' C. Base changes of algebras and schemes
will often be denoted by a subscript, if no confusion arises.

Let F be a totally real field of degree g > 1, with ring of integers OF and group
of totally positive units O×,+F . Denote by d := dF the different ideal of F/Q. Let
C := {c1, . . . , ch+} be a fixed set of representatives for the elements of the narrow
class group of F , chosen to be coprime to p. For a nonzero ideal a of F , we write
N(a) for its norm #(OF/a).

We fix a large enough coefficient field E which is a finite Galois extension of
Qp inside Qp. We require that E contains the images of all p-adic embeddings
of F(

√
u; u ∈ O×,+F ) into Qp. Let O denote the valuation ring of E ; choose a

uniformizer $ of O and denote by F the residue field.
We write the prime ideal factorization of pOF as pe1

1 · · · p
er
r , where r and ei are

positive integers. We also set Fpi = OF/pi and fi = [Fpi : Fp]. Let Fp denote
the residue field of Zp, and let σ denote the arithmetic Frobenius on Fp. We label
the embeddings of Fpi into Fp (or, equivalently, into F) as {τpi ,1, . . . , τpi , fi } so that
σ ◦τpi , j = τpi , j+1 for all j , with the convention that τpi , j stands for τpi , j (mod fi ). For
each pi , denote by Fpi the completion of F for the pi -adic topology. Let W (Fpi )

denote the ring of integers of the maximal subfield of Fpi unramified over Qp. The
residue field of W (Fpi ) is identified with Fpi . Each embedding τpi , j : Fpi → F of
residue fields induces an embedding W (Fpi )→ O which we denote by the same
symbol.

Let Σ denote the set of embeddings of F into Q, which is further identified
with the set of embeddings of F into C or Qp or E . Let Σpi denote the subset of
Σ consisting of all the p-adic embeddings of F inducing the p-adic place pi . For
each i and each j = 1, . . . , fi , there are exactly ei elements inΣpi that induce the
embedding τpi , j : W (Fpi )→ O; we label these elements as τ 1

pi , j , . . . , τ
ei
pi , j . There

is no canonical choice of such labeling, but we fix one for the rest of this paper.
We choose a uniformizer $i for the ring of integers OFpi

of Fpi . Let Epi (x)
denote the minimal polynomial of $i over the ring W (Fpi ): it is an Eisenstein
polynomial. Using the embedding τpi , j , we can view this polynomial as an
element Epi , j(x) := τpi , j(Epi (x)) of O[x]. We have:

Epi , j(x) = (x − τ 1
pi , j($i)) · · · (x − τ

ei
pi , j($i)).

2.2. Moduli space of Hilbert–Blumenthal abelian varieties with additional
information. Let S be a locally Noetherian O-scheme. A Hilbert–Blumenthal
abelian S-scheme (HBAS) with real multiplication by OF is the datum of an
abelian S-scheme A of relative dimension g, together with a ring embedding
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OF → EndS A. We have natural direct sum decompositions

ωA/S =

r⊕
i=1

ωA/S,pi =

r⊕
i=1

fi⊕
j=1

ωA/S,pi , j ,

where W (Fpi ) ⊆ OFpi
acts on ωA/S,pi , j via τpi , j .

Let c ∈ C be a fractional ideal of F (coprime to p), with cone of positive
elements c+. We say that a HBAS A over S is c-polarized if there is an
S-isomorphism λ : A⊗OF c

∼

−→ A∨ of HBASs under which the symmetric elements
(respectively the polarizations) of HomOF (A, A∨) correspond to the elements of
c (respectively c+) in HomOF (A, A ⊗OF c). For such a HBAS, each ωA/S,pi , j is a
locally free sheaf over S of rank ei .

We define the tame level structures following [TX16b, Section 2.3]. For a
positive integer N relatively prime to p, a principal level N-structure on a HBAS
A over S is an OF -linear isomorphism of finite étale group schemes over S:

αN : (OF/NOF)
⊕2 ∼
−→ A[N ].

In general, let ÔF (respectively Ô(p)
F ) denote the direct product of completions

of OF at all finite places (respectively all finite places relatively prime to p). For
K p an open compact subgroup of GL2(Ô(p)

F ), we choose a positive integer N
relatively prime to p such that K p contains

K (N )p
=

{(
a b
c d

)
∈ GL2(Ô(p)

F ) | a − 1, b, c, d − 1 ≡ 0 mod N
}
. (2.2.1)

Then a K p-level structure on a HBAS A over S is a collection of, for each
connected component Si of S with a fixed geometric point s̄i ∈ Si , a π1(Si , s̄i)-
invariant K p/K (N )p-orbit of αN ,s̄i above. This does not depend on the choices
of N and s̄i . We put K p = GL2(OF,p) and K = K p K p. When K p

=
{(

a b
c d

)
∈

GL2(Ô(p)
F ) | c, d − 1 ≡ 0 mod N

}
, the notion of a K p-level structure recovers

the notion of Γ00(N )-level structure considered in [ERX17] and [RX17]. Most of
the statements of [ERX17] and [RX17] continue to hold for this general K p-level
structure; we shall point out the change in case it is needed.

Fix an open subgroup K p
⊆ GL2(Ô(p)

F ). Denote by MPR
c =MPR

c,K the functor
that assigns to a locally Noetherian O-scheme S the set of isomorphism classes
of tuples (A, λ, α,F ), where

• (A, λ) is a c-polarized HBAS over S with real multiplication by OF ,

• α is a K p-level structure, and
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• F is a collection (F (l)
pi , j)i=1,...,r; j=1,..., fi ;l=0,...,ei of locally free sheaves over S

such that

– 0 = F (0)
pi , j ( F (1)

pi , j ( · · · ( F (ei )
pi , j = ωA/S,pi , j and each F (l)

pi, j is stable under
the OF -action (not just the action of W (Fpi )),

– each subquotient F (l)
pi , j/F

(l−1)
pi , j is a locally free OS-module of rank one (and

hence rankOS F (l)
pi , j = l), and

– the action of OF on each subquotient F (l)
pi , j/F

(l−1)
pi , j factors through OF

τ l
pi , j
−−→

O, or equivalently, this subquotient is annihilated by [$i ]− τ
l
pi , j($i), where

[$i ] denotes the action of $i as an element of OFpi
.

We use MDP
c to denote the functor obtained from MPR

c by forgetting the filtrations
F .

Both MPR
c and MDP

c carry an action of O×,+F :

for u ∈ O×,+F , 〈u〉 : (A, λ, α,F ) 7−→ (A, uλ, α,F ). (2.2.2)

This action is trivial on the subgroup (K ∩O×F )2 of O×,+F .
It is well known (cf. [RX17, Proposition 2.4]) that, when K p is sufficiently

small, the functor MDP
c (respectively MPR

c ) is represented by an O-scheme of
finite type, that we denote by MDP

c (respectively MPR
c ). Moreover, the moduli

space MDP
c is normal [DP94, Corollaire 2.3]. Let MRa

c denote its smooth locus,
called the Rapoport locus [Ra78]. Then MRa

c is the open subscheme of MDP
c

parameterizing those HBASs for which ωA/S is a locally free (OF⊗ZOS)-module
of rank one. The natural morphism

π :MPR
c →MDP

c

is projective, and it induces an isomorphism of an open subscheme of MPR
c onto

MRa
c [RX17, Proposition 2.4(3)]. As in [RX17, Theorem 2.9], one can prove that

MPR
c is smooth over O.

By [TX16b, Proposition 2.4 and Lemma 2.5], we may always shrink K p so
that the following hypothesis holds, which we then assume from now on.

HYPOTHESIS 2.3. We assume the following for the open subgroup K p
⊆

GL2(Ô(p)
F ).

(1) K p is of the form
∏

q-p Kq for an open subgroup Kq ⊆ GL2(Fq) such that
Kq = GL2(OFq) for all but finitely many place q,

(2) K p is sufficiently small so that each MDP
c and each MPR

c are O-schemes of
finite type, and
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(3) K p is sufficiently small so that the action of O×,+F /(K p K p ∩ O×F )2 on each
MDP

c and each MPR
c are free on geometric points.

2.4. Integral model of Shimura varieties. In virtue of Hypothesis 2.3, the
quotients of MPR

c and MDP
c by the group O×,+F /(K p K p ∩ O×F )2, denoted by

ShPR
c and ShDP

c respectively, are O-schemes of finite type, and the quotient
morphisms are étale. We point out that when K p satisfies Hypothesis 2.3,
conditions (2) and (3) also hold for any open subgroup K ′p ⊆ K p as long as
K ′p K p ∩O×F = K p K p ∩O×F .

For ? ∈ {DP,PR,Ra} we denote by A?
c the universal abelian scheme over M?

c.
We set

M?
:=

∐
c∈C

M?
c, Sh?

:=

∐
c∈C

Sh?
c, and A?

:=

∐
c∈C

A?
c.

Notice that the universal abelian scheme A? may not descent to Sh?.
Denote by ωA?/M? the pullback via the zero section of the sheaf of relative

differentials of A? over M?. We let F = (F (l)
pi , j) denote the universal filtration of

ωAPR/MPR . For each p-adic embedding τ = τ l
pi , j of F into Qp, we set

ω̇τ := F (l)
pi , j/F

(l−1)
pi , j ;

it is an automorphic line bundle on the splitting model MPR. The additional dot
in the notation ω̇τ is placed in order to distinguish this sheaf from its descent ωτ
to ShPR, which will be introduced later. We provide ω̇τ with an action of O×,+F
following [DT04, Section 4]: a positive unit u ∈ O×,+F maps a local section s of
ω̇τ to τ(u)−1/2

· 〈u〉∗(s), where 〈u〉 is defined by (2.2.2). It is clear that this action
factors through O×,+F /(K ∩O×F )2.

Similarly, for each p-adic embedding τ of F , we define

ε̇τ :=
(
∧

2
OF⊗ZOMPR

c

H1
dR(APR/MPR

c )
)
⊗OF⊗ZOMPR

c
,τ⊗1 OMPR

c

∼= (cd−1
⊗Z OMPR

c
)⊗OF⊗ZOMPR

c
,τ⊗1 OMPR

c
, (2.4.1)

where the canonical isomorphism is induced by the universal polarization as in
[RX17, Lemma 2.5]. While ε̇τ is a trivial line bundle as seen in (2.4.1), it carries
a nontrivial action of O×,+F /(K ∩O×F )2 given as follows: a positive unit u ∈ O×,+F
maps a local section s of ε̇τ to τ(u)−1

· 〈u〉∗(s).
It is proved in [RX17, Theorem 2.9] that the sheaf of relative differentials

Ω1
MPR/O admits a canonical Kodaira–Spencer filtration whose successive

subquotients are given by

ω̇⊗2
τ ⊗OMPR ε̇

⊗−1
τ for τ ∈ Σ. (2.4.2)
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2.5. Toroidal compactifications. We need to slightly generalize the notation
of cusps from standard references, such as [Di04, Section 3], [KL05, Section 1.6],
and [Ra78]. For an ideal c ∈ C, a K p-cusp is an equivalence class of tuples
C = (a, b, L , i, j, λ, α), where

• a and b are two fractional ideals of F , relatively prime to p, such that ab−1
= c,

• L is an OF -lattice of F2 that sits in an exact sequence

0→ a−1d−1 i
−→ L

j
−→ b→ 0,

• λ : ∧2
OF

L
∼

−→ c−1d−1 is an isomorphism of OF -modules, and

• α is a K p/K (N )p-orbit of isomorphisms (OF/NOF)
⊕2 ∼

−→ N−1 L/L of OF -
modules, where N is a positive prime-to-p integer such that K p contains
K (N )p (as defined in (2.2.1)).

This definition does not depend on the choice of N . The equivalence of the
tuples is as explained in [Di04, Définition 3.1] (plus requiring it to be compatible
with the level structure α). In particular, for a fixed (a, b, λ), L is always
noncanonically isomorphic to a−1d−1

⊕ b by choosing a section of j , and such
sections form a torsor under abd. So the essential choice of α is parametrized by
the double cosets(

1 OF/NOF

0 1

) ∖
GL2(OF/NOF)

/
(K p/K (N )p). (2.5.1)

We write (a, b, λ, [γC]) for the corresponding cusp, where γC ∈ GL2(OF/NOF)

is a representative of the double coset in (2.5.1). We write X [γC ] for the fractional
ideal of OF contained in (1/N )ab such that

1
N
ab/X [γC ] ∼= (γC(K

p/K (N )p)γ −1
C )

⋂(
1 OF/NOF

0 1

)
,

and let X ∗+
[γC ]

denote the totally positive elements in X ∗
[γC ]
:= X−1

[γC ]
d−1
⊆ F ⊗Q R.

To proceed, we fix a smooth rational polyhedral admissible cone decomposition
Φ[γC ] of X ∗+

[γC ]
for each isomorphism class of K p-cusps. Now, one can apply the

construction in [Ra78, Sections 4–5] for the level K p
= K (N )p and then take

invariants under K p/K (N )p-action, (or make use of the more general reference
[La13, Section 6]). This way, we construct the toroidal compactification MRa,tor

c

of MRa
c . Gluing over MRa

c gives toroidal compactifications MPR,tor
c and MDP,tor

c

of the O-schemes MPR
c and MDP

c . The scheme MPR,tor
c is proper and smooth
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over SpecO. We set M?,tor
:=
∐

c∈CM?,tor
c for ? ∈ {DP,PR,Ra}. The boundary

Ḋ :=M?,tor
−M? is a relative simple normal crossing divisor on M?,tor.

Let Sh?,tor denote the quotient of M?,tor by the action of the group
O×,+F /(K ∩ O×F )2. Put D := Sh?,tor

− Sh?; it is the quotient of Ḋ and it is a
divisor with simple normal crossings.

For any τ ∈ Σ , there are automorphic line bundles ω̇tor
τ and ε̇tor

τ over MPR,tor

constructed as in [RX17, Section 2.10]. To lighten the load on notation, we
will simply write ω̇τ and ε̇τ to denote these sheaves when no confusion arises.
Both these line bundles carry natural actions of O×,+F /(K ∩ O×F )2 as described
earlier, and they descend to line bundles over ShPR,tor, which we denote by ωτ and
ετ respectively. We warn the reader that ετ may not be the trivial line bundle over
ShPR,tor; however ε1

:=
⊗

τ∈Σ ετ is a trivial line bundle because the action of O×,+F
on the tensor product of all ε̇τ is the naı̈ve pullback.

We point out that, while the compactification depends on the choice of
the smooth rational polyhedral cone decompositions, the cohomology groups
H ∗(ShPR,tor, ωκ) and H ∗(ShPR,tor, ωκ(−D)) we define below are independent of
this choice (up to canonical isomorphisms) because the derived pushforward ofωκ

and ωκ(−D) from the compactification associated to a finer cone decomposition
to a courser one are canonically isomorphic to ωκ and ωκ(−D) (cf. [La13,
Lemma 7.1.1.4] and [La17, Proposition 7.5].)

REMARK 2.6. If one only cares about Hilbert modular forms of parallel weights,
then defining them using the splitting model and the usual Deligne–Pappas
model is the same. More precisely, the line bundle ε1 on ShPR,tor is the pullback
of an automorphic line bundle ε(1),DP on ShDP,tor, given by extending ∧gωA/S

to the toroidal compactification, and then descending along the Galois cover
ShDP,tor

→ MDP,tor. Then for any k ∈ Z, pulling back along the natural map
π : ShPR,tor

→ ShDP,tor gives an isomorphism

π∗ : H 0(ShDP,tor, ωk) ∼=
−→ H 0(ShPR,tor, ωk). (2.6.1)

Indeed, since ShDP,tor is normal [DP94, Corollaire 2.3] and π is birational, the
Zariski Main Theorem says that π∗OShPR,tor = OShDP,tor . The projection formula
then proves (2.6.1).

NOTATION 2.7. For the rest of this paper, if no confusion arises, we will drop the
superscript PR appearing in the schemes introduced in the previous subsections.
In particular, we set A := APR, M := MPR, and Sh := ShPR. These are
schemes over O, and we denote their special fibers by AF, MF, and ShF
respectively.
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2.8. Geometric Hilbert modular forms. By a paritious weight κ we mean a
tuple ((kτ )τ∈Σ , w) ∈ ZΣ × Z such that kτ ≡ w (mod 2) for every τ ∈ Σ . We
say that κ is regular if moreover kτ > 1 for all τ ∈ Σ . For an integer n, we write
n = (n, . . . , n).

For κ = ((kτ )τ∈Σ , w) a paritious weight, we define

ω̇κ :=
⊗
τ∈Σ

(
ω̇⊗kτ
τ ⊗OMPR,tor ε̇

⊗(w−kτ )/2
τ

)
and ωκ :=

⊗
τ∈Σ

(
ω⊗kτ
τ ⊗OShPR,tor ε

⊗(w−kτ )/2
τ

)
.

They are line bundles over Mtor and Shtor, respectively. We remind the reader
that these line bundles (and also Mtor and Shtor) depend on the fixed choice of an
ordering of the τ l

pi , j ’s.
We point out that our definition of ω((kτ )τ∈Σ ,w) is consistent with

[ERX17, RX17], but is equal to the ω((kτ )τ∈Σ ,w+2) in [TX16b] due to different
normalizations. In fact, the usual modular forms of weight k (for F = Q) should
be, rigorously speaking, of weight (k, k − 2) in our notation, that is, a section of
ωk
⊗ ε−1. However, ε is canonically a trivial bundle over the modular curve, it is

often omitted from the discussion.
For example, by the Kodaira–Spencer filtration on Ω1

M/O we just recalled
before Section 2.5 with successive subquotients (2.4.2), we deduce canonical
isomorphisms (extended to the toroidal compactification; cf. [TX16b,
Section 2.11(4)])

K S : ∧g
OMtor

Ω1
Mtor/O(Ḋ)

∼= ω̇
(2,0) and K S : ∧g

OShtor
Ω1

Shtor/O(D)
∼= ω

(2,0).

(2.8.1)
A (geometric) Hilbert modular form over a Noetherian O-algebra R of level

K p and paritious weight κ is an element of the finite R-module H 0(Shtor
R , ω

κ
R),

where the subscript R indicates base change to R over O. Such a form is
called cuspidal if it belongs to the submodule H 0(Shtor

R , ω
κ
R(−D)). By the Köcher

principle [DT04, Théorèm 7.1], if [F : Q] > 1, we have

H 0(Mtor
R , ω̇

κ
R) = H 0(MR, ω̇

κ
R), and hence H 0(Shtor

R , ω
κ
R) = H 0(ShR, ω

κ
R).

Fix a positive prime-to-p integer N such that K p
⊇ K (N )p. At each cusp

of Mc labeled by the tuple C = (a, b, L , i, j, λ, α), there is a Tate object (see
for example, [Di04, proof of Théorèm 7.2] or [Ka78]) with additional structure
(Tatea,b, λcan, αcan, ηcan

, ζ
can
) defined over a suitable subring of the ring of formal

power series O[[qξ : ξ ∈ X+
[γC ]
]] (this involves a choice of cone decomposition

that we omit here since it will not play any role). Here X+
[γC ]

is the subset of totally
positive elements in X [γC ], and η

can
(respectively ζ

can
) is a collection of canonical

bases of ω̇τ (respectively ε̇τ ) for the Tate abelian variety. Evaluating a (geometric)
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Hilbert modular form f at this Tate object, we obtain the q-expansion of f at this
cusp:

f (Tatea,b, λcan, αcan, ηcan
, ζ

can
)

=

∑
ξ∈X+

[γC ]

aξ ( f, C,Tatea,b) qξ ∈ O/($m)[[qξ : ξ ∈ X+
[γC ]
]]. (2.8.2)

We point out that when changing the tuple C = (a, b, L , i, j, λ, α) representing
the cusp to an equivalent (cf. [Di04, Définition 3.1]) tuple Ct = (ta, tb, L , ti, t j,
λ, α) for t ∈ F× and hence X+

[γCt ]
= t2 X+

[γC ]
, we have

aξ ( f, C,Tatea,b) =
∏
τ

τ(t)−kτ · at2ξ ( f, Ct ,Tateta,tb) (2.8.3)

2.9. Tame Hecke operators. We recall the definition of tame Hecke operators
from [RX17, Section 2.14]. Let S denote a finite set of places of F containing the
archimedean places, p-adic places, and all the places q where Kq 6= GL2(OFq).
We define the Hecke operator Tq for q /∈ S in the same way as in [RX17,
Section 2.14]. (Note that our new setup allows more general level structures in
place of the usual Γ00(N )-level structure, but one can adapt the construction in
[RX17, Section 2.14] to our new tame level structure formulation.) We take this
opportunity to point out a mistake in the formulas [RX17, (2.14.1)] and [ERX17,
(2.2.9.1)]. The factor 1/(NmF

Q(a)) there should be removed. This is because the
Kodaira–Spencer isomorphisms used in [RX17] and [ERX17] are canonical (so
there is no additional twists for Hecke operators).

To benefit the readers, we make explicitly this Hecke operator on the level of
q-expansions. We fix c ∈ C and a positive element ϑc ∈ F× such that c′ϑc = cq for
some c′ ∈ C. Consider a cusp of Mc labeled by C = (a, b, L , i, j, λ, α). Then the
image of π2(π

−1
1 (−)) of this cusp consists of two (possibly isomorphic) cusps:

C ′ = (a, ϑcbq
−1, L ′, i, ϑc j, ϑcλ, α

′) and C ′′ = (aq, ϑcb, L ′′, i, ϑc j, ϑcλ, α
′′),

where L ′ and L ′′ are pullback and pushout of L along the natural inclusions
b ⊂ bq−1 and a∗ ⊂ a∗q−1 respectively, and α′ and α′′ are the naturally induced
level structures. Then we have inclusions X [γC′′ ] ⊂ ϑcX [γC ] ⊂ X [γC′ ] preserving the
positive cones, where the cokernel of each inclusion is isomorphic to OF/q. For
the natural Tate objects at these cusps and ξ ∈ X+

[γC ]
, we have,

aξ (Tq( f ), C,Tatea,b)

=

∏
τ

τ(ϑc)
(w−kτ )/2 ·

(
N(q) · aϑcξ ( f, C ′,Tatea,ϑcbq−1)+ aϑcξ ( f, C ′′,Tateaq,ϑcb)

)
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=

∏
τ

τ(ϑc)
(w−kτ+2)/2

· aϑcξ ( f, C ′,Tatea,ϑcbq−1)

+

∏
τ

τ(ϑc)
(w+kτ )/2aϑ−1

c ξ ( f, C ′′
ϑ−1
c
,Tateϑ−1

c aq,b). (2.9.1)

Here the additional factor τ(ϑc)
(w−kτ )/2 on the first line comes from different

ζ
can

’s at different cusps. The equality of the two lines follows from (2.8.3), and
C ′′
ϑ−1
c
= (ϑ−1

c aq, b, L ′′, ϑ−1
c i, j, ϑcλ, α

′′) is obtained from C ′′ using the procedure
just before (2.8.3). (We shall see later that a normalization of the second line of
(2.9.1) is also valid for the Hecke operator T n

p we construct later.)
If for some prime-to-p finite place q ∈ S , the corresponding level structure Kq

satisfies (
1 OF,q

0 1

)
⊂ Kq ⊂

(
O×F,q OF,q

qOF,q O×F,q

)
,

then there is a natural Uq-operator associated to the double coset Kq

(
$q 0

0 1

)
Kq,

acting on the cohomology groups H ∗(Shtor, ωκ) and H ∗(Shtor, ωκ(−D)).
We also define a Hecke operator Sn

q for any finite place of F (allowing q to
divide p). For each c ∈ C, let c′′ ∈ C denote the fixed representative of the strict
ideal class of cq2, so that ϑc2cq2

= c′′ of a positive element ϑc2 ∈ F×. We define
an isomorphism

Ṡq :Mc

∼= //Mc′

(A, λ, α,F )
� // (A′ := A ⊗OF q−1, λ′, α′,F ′

),

where α′ and F ′ are naturally induced level structure and filtrations, and

λ′ : A′ ⊗OF q−1c
1⊗ϑc2
−−−→ A ⊗OF cq

λ
−→ A∨ ⊗OF q ∼= (A ⊗OF q−1)∨

is the induced polarization. This map extends to the cusps, by sending the K p-
cusp with label C = (a, b, L , i, j, λ, α) to the K p-cusp with label C ′′ = (aq,
ϑc2bq−1, L ⊗ q−1, i ⊗ q−1, j ⊗ q−1ϑc2, ϑc2λ, α′), where α′ is the obvious induced
level structure. Since X [γC′′ ] = ϑc2 X [γC ], we may take the cone decomposition
Φ[γC′′ ] of X ∗+

[γC′′ ]
to be the one induced by that at C, namely ϑ−1

c2 Φ[γC ]. This way, the

isomorphism Ṡq extends to an isomorphism Mtor
c

∼

−→Mtor
c′ . Moreover, the moduli

description (together with the induced isogeny on the universal semiabelian
varieties) induces a natural pullback morphism

Ṡq : Ṡ∗qω̇
′tor
→ ω̇′tor,

where the prime indicates the similar sheaf of relative differentials on Mtor
c′ .

Similarly, we have a natural morphism Ṡq : S∗qε̇
′tor
τ → ε̇tor

τ . From this, for a
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paritious weight κ = ((kτ )τ∈Σ , w), we define a natural (properly normalized)
isomorphism

Ṡn
q : Ṡ∗qω̇

′κ ∼= Ṡ∗q(ω̇
′κ−(2,0))⊗ S∗q(∧

gΩMc′
)

N(q)−w ·S∗q⊗1
−−−−−−−→ ω̇κ−(2,0)⊗ (∧gΩMc)

∼= ω̇
κ .

(2.9.2)
(Note that when q is a p-adic place, it is essential to normalize the map Ṡq so that it
is an isomorphism.) Taking quotient of this map by the action of O×,+F /(K ∩O×F )2
and taking the union over all c ∈ C, we obtain isomorphisms

Sq : Shtor ∼
−→ ShPR,tor and Sn

q : H ∗(Shtor
R , ω

′κ
R (−D))→ H ∗(Shtor

R , ω
κ
R(−D))

for any O-algebra R. We can define similar action of Sn
q on H ∗(Shtor

R , ω
κ
R). We

point out that, although the map Ṡn
q depends on the choice of the element ϑc (up

to multiplication by O×,+F ), the induced action Sn
q is independent of this choice.

Finally, we make explicit this map Ṡn
q on the q-expansions. To better present

the theory, let c′ ∈ C be representative of the class of cq in the strict ideal class, so
that ϑcc

′
= cq for a positive element ϑc ∈ F×. Consider the two cusps C and C ′′

above, then we have (for ξ ∈ X+
[γC ]

)

aξ (Sn
q( f ), C ′,Tatea,b) = N(q)−w ·

∏
τ

ϑ
(w−kτ )/2
c2 · aϑc2 ξ

(
f, C ′′,Tateaq,ϑc2bq−1

)
= N(q)−w

∏
τ

(
ϑ
(w−kτ )/2
c2 ϑ kτ

c

)
· aϑ−2

c ϑc2 ξ

(
f, C ′′

ϑ−1
c
,Tateϑ−1

c aq,ϑ−1
c ϑc2bq−1

)
.

(2.9.3)

Now, we call the polynomial ring

Tuniv
S := O[tq, sn

q; q a place of F not in S]

the universal tame Hecke algebra. For an O-algebra R, it acts on the cohomology
groups H j(Shtor

R , ω
κ
R) and H j(Shtor

R , ω
κ
R(−D)) via the assignment tq 7→ Tq and

sn
q→ Sn

q.

LEMMA 2.10. Let κ = ((kτ )τ∈Σ , w) be a paritious weight and let q /∈ S be a place
of F. Since ω(0,2) is a canonically trivial vector bundle on Shtor (as explained in
Section 2.5), we have the following compatibility of Hecke operator with such
trivialization and Serre duality.
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(1) For any integer w0, we have the following commutative diagram

H ∗(Shtor
m , ω

((kτ ),w)
m )

∼=

��

N(q)w0 ·Tq // H ∗(Shtor
m , ω

((kτ ),w)
m )

∼=

��

Sn
q // H ∗(Shtor

m , ω
((kτ ),w)
m )

∼=

��
H ∗(Shtor

m , ω
((kτ ),w+2w0)
m )

Tq // H ∗(Shtor
m , ω

((kτ ),w+2w0)
m )

Sn
q // H ∗(Shtor

m , ω
((kτ ),w+2w0)
m ).

(2.10.1)

(2) We define κ∨ := ((2−kτ )τ∈Σ , w) to be the dual weight of κ . (Note that we do
not change the normalizing weight w.) The triviality of ω(0,2) in Section 2.5
identifies the Serre dual of ωκ with

∧g
Ω1

Shtor ⊗ (ω
κ)−1 (2.8.1)

∼=

// ω(2,0)(−D)⊗ ω−κ ∼= ωκ
∨

(−D) (2.10.2)

the dual line bundle. Then the Serre duality

H i(Shtor, ωκm)
∼= H g−i

(
Shtor, ωκ

∨

(−D)⊗$−mO/O
)∨ (2.10.3)

intertwines the action of Tq on the first term and the transpose T ∨q on the
second term.

Proof. (1) The commutativity of the left square follows from the fact that, for
the Hecke correspondence Shtor π1

←− Sh(q)tor π2
−→ Shtor (cf. [RX17, 2.14]) the maps

π∗2ω
′((kτ ),w) → π∗1ω

((kτ ),w) and π∗2ω
′((kτ ),w+2w0) → π∗1ω

((kτ ),w+2w0) are differed by
the factor N(q)w0 . The commutativity of the right square follows from the fact
that Ṡn

q : Ṡ∗qω̇
′((kτ ),w)→ ω̇((kτ ),w) is independent of w (as we normalized in (2.9.2)).

(2) Following the proof of [Ed92, Proposition 7.3], the Lemma is a
consequence of the commutative diagram

H i (Shtor
m , ω

κ
m)

π∗2

��

SD // H g−i
(
Shtor

m ,∧
gΩ1

Shtor
m
⊗ (ωκm)

−1
)∨ (2.10.2) //

(π2,∗)
∨

��

H g−i (Sh(q)tor
m , ω

κ∨

m (−D))
∨

(π2,∗)
∨

��
H i (Sh(q)tor

m , π
∗

2ω
κ
m)

T ∗q

��

SD // H g−i
(
Sh(q)tor

m ,∧
gΩ1

Sh(q)tor
m
⊗ (π∗2ω

κ
m)
−1
)∨ π∗2 (2.10.2)//

N(q)w ·(T ∗q)∨

��

H g−i (Sh(q)tor
m , π

∗

2ω
κ∨

m (−D))
∨

(T ∗q)
∨

��
H i (Sh(q)tor

m , π
∗

1ω
κ
m)

π1,∗

��

SD // H g−i
(
Sh(q)tor

m ,∧
gΩ1

Sh(q)tor
m
⊗ (π∗1ω

κ
m)
−1
)∨ π∗1 (2.10.2)//

(π∗1 )
∨

��

H g−i (Sh(q)tor
m , π

∗

1ω
κ∨

m (−D))
∨

(π∗1 )
∨

��
H i (Shtor

m , ω
κ
m)

SD // H g−i
(
Shtor

m ,∧
gΩ1

Shtor
m
⊗ (ωκm)

−1
)∨ (2.10.2) // H g−i (Shtor

m , ω
κ∨

m (−D))
∨.
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Here we use SD to denote Serre duality (2.10.3). The Hecke correspondence
Shtor π1
←− Sh(q)tor π2

−→ Shtor is as defined in [RX17, Section 2.14].

2.11. Generalized partial Hasse invariants on splitting models. We recall
some constructions from [RX17, Section 3]. For each τ = τ l

pi , j with l 6= 1,
multiplication by $i induces a well-defined morphism:

m(l)
$i , j : F

(l)
pi , j/F

(l−1)
pi , j

// F (l−1)
pi , j /F

(l−2)
pi , j

z � // [$i ](z̃),

where z̃ is a lift to F (l)
pi , j of the local section z. Hence m(l)

$i , j induces a section

ḣτ ∈ H 0(MF, ω̇
⊗−1
τ l
pi , j
⊗ ω̇τ l−1

pi , j

)
that is invariant under the action of O×,+F /(K ∩O×F )2, and therefore descend to a
section hτ ∈ H 0(ShF, ω

⊗−1
τ l
pi , j
⊗ ωτ l−1

pi , j
) [RX17, Construction 3.3].

For τ = τ 1
pi , j , a morphism

Hasse$i , j : ω̇τ 1
pi , j
= F (1)

pi , j −→ ω
(p)
AF/MF,pi , j−1/

(
F (ei−1)

pi , j−1

)(p) ∼= ω̇⊗p
τ

ei
pi , j−1

is constructed in [RX17, Construction 3.6] as follows: let z be a local section
of ω̇τ 1

pi , j
; since it is annihilated by [$i ] acting on H1

dR(AF/MF)pi , j , z belongs
to [$i ]

ei−1
· H1

dR(AF/MF)pi , j . Write z = [$i ]
ei−1z′ for a local section z′ of

H1
dR(AF/MF)pi , j (note this z′ belongs to H1

dR but it might not belong to ω). We
define Hasse$i , j(z) to be the image of Vpi , j(z′) in ω(p)AF/MF,pi , j−1/(F

(ei−1)
pi , j−1)

(p). The
homomorphism Hasse$i , j is well defined and it induces a section

ḣτ 1
pi , j
∈ H 0(MF, ω̇

⊗−1
τ 1
pi , j
⊗ ω̇

⊗p
τ

ei
pi , j−1

)
which descends to a section hτ 1

pi , j
∈ H 0(ShF, ω

⊗−1
τ 1
pi , j
⊗ ω

⊗p
τ

ei
pi , j−1

) [RX17,

Construction 3.6]. Note also that the action of O×,+F on ω̇−1
τ 1
pi , j
⊗ ω̇

⊗p
τ

ei
pi , j−1

is

just the simple pullback (without the twist by powers of τ(u) for u ∈ O×,+F ).
We remark that the total Hasse invariant h is the product of some powers of hτ

for τ ∈ Σ . For a more explicit expression, see [RX17, Lemma 3.8].

2.12. Goren–Oort stratification of ShF. For each p-adic embedding τ ∈ Σ ,
denote by Xτ the zero locus of the generalized Hasse invariant hτ on ShF. In
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general, for a subset T ⊆ Σ , we set XT :=
⋂

τ∈T Xτ , with the convention that
if T is the empty set, this intersection is interpreted to be the entire space ShF.
We define Ẋτ and ẊT on MF similarly. These XT (respectively ẊT) form the
Goren–Oort stratification of ShF (respectively MF) following the pioneer works
of Goren and Oort [GO00, Go01]. We write

X ◦T := XT

∖ ⋃
T′)T

XT′ and Ẋ ◦T := ẊT

∖ ⋃
T′)T

ẊT′

for the corresponding open stratum.
We remark that, although the generalized partial Hasse invariants hτ and ḣτ

depend on the choice of uniformizers $i , their zero loci Xτ and Ẋτ do not.
Moreover, each section ḣτ extends to the fixed toroidal compactification Mtor

F
of MF and, by [RX17, Theorem 3.10], each subscheme Ẋτ is disjoint from the
cusps, which are ordinary points of the moduli space.

PROPOSITION 2.13. The following properties hold.

(1) The closed subschemes Xτ (respectively Ẋτ ) are proper and smooth divisors
with simple normal crossings on ShF (respectively MF). In particular, XT

and ẊT for any proper subset T ⊂ Σ are proper and smooth varieties over
F.

(2) The union of the closed subschemes Xτ (respectively Ẋτ ) when τ varies over
all embeddings of the form τ l

pi , j with l 6= 1 coincides with the complement of
ShRa

F (respectively MRa
F ) in ShF (respectively MF).

(3) The ordinary locus Shord
F (respectively Mord

F ) of ShF (respectively MF)
coincides with the complement of the set

⋃
τ∈Σ Xτ (respectively

⋃
τ∈Σ Ẋτ ).

Proof. It is enough to prove the proposition over MF. The first statement is
contained in [RX17, Theorem 3.10]. To prove the second statement we can
work with closed points of MF, since the Rapoport condition on the Lie
algebra is an open condition. Let then (A, λ, α p,F ) be a k-point of MF,
for k an extension field of F. The abelian variety A with RM satisfies the
Rapoport condition if and only if multiplication by $i induces an isomorphism
F (l)

pi , j/F
(l−1)
pi , j →F (l−1)

pi , j /F
(l−2)
pi , j for all i , all j , and all l 6= 1. This is clearly

equivalent to the given condition on the divisors Ẋτ . Statement (3) follows from
the fact that the total Hasse invariant is the product of powers of hτ ’s, as remarked
at the end of Section 2.11.
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3. Hecke operators at p in characteristic pm

In this section, we construct the Tp-operator acting on the cohomology of some
automorphic line bundles with torsion coefficients. We work exclusively with
the Pappas–Rapoport splitting model, as indicated in Notation 2.7. The general
construction of Iwahori level structure on the splitting model is already explained
in [PR05] (in a much more general setup). We here make it more explicit in
our particular setup. Our construction of Tp is inspired by the work of Conrad
[Con07]. The essential main technical input is Proposition 3.11 whose proof we
complete in the next section.

We fix a prime ideal p ∈ {p1, . . . , pr }; denote by f its residual degree, and by e
its inertial degree. We write $p for the chosen uniformizer at p as in Section 2.1.
For every fractional ideal c ∈ C we choose once and for all a positive isomorphism
θc : cp ' c′ of cp with a (uniquely determined) fractional ideal c′ ∈ C.

3.1. Splitting models with Iwahori level structure. For a fixed c ∈ C we
define the corresponding splitting models with Iwahori level structure following
[Pa95, PR05].

Let Mc,θc
(p) denote the functor that assigns to a locally noetherian O-scheme

S the set of isomorphism classes of tuples ((A, λ, α,F ); (A′, λ′, α′,F ′
);φ,ψ)

where:

(1) [(A, λ, α,F )] is an S-point of Mc,

(2) [(A′, λ′, α′,F ′
)] is an S-point of Mc′ ,

(3) φ : A → A′ and ψ : A′ → A ⊗ c(c′)−1 are OF -equivariant S-isogenies
satisfying:

(a) both φ and ψ have degree p f ,

(b) the compositions ψ ◦ φ and (φ ⊗ c(c′)−1) ◦ψ are the natural isogenies

A→ A⊗c(c′)−1 and A′→ A′⊗c(c′)−1 induced by OF ⊆ p−1 θc
' c(c′)−1,

(c) φ is compatible with the polarizations, that is, φ ◦ λ ◦ φ∨ = λ̃′, where
λ̃′ is the map (A′)∨ → A′ ⊗ c induced by composing λ′ with the map

c′
θ−1
c
' cp ⊂ c,

(d) both φ andψ are compatible with the level structures, that is, φ◦α = α′

and ψ ◦ α′ = α ⊗ c(c′)−1, and
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(e) φ and ψ are compatible with the filtrations, that is, for any indices
i ∈ {1, . . . , r} and j ∈ {1, . . . , fi} the morphisms of OS-modules

φ∗ : ωA′/S,pi , j → ωA/S,pi , j

and ψ∗ : ωA/S,pi , j
∼= ωA/S,pi , j ⊗ c(c′)−1

→ ωA′/S,pi , j

preserve the filtrations F •

pi , j and F ′•

pi , j .

We point out that φ and ψ determine each other, but we need to keep both
isogenies in the data to state the condition that φ∗ and ψ∗ preserve the filtrations
F •

pi , j and F ′•

pi , j . In particular, for pi 6= p,

F ′(l)
pi , j

φ∗

−−→F (l)
pi , j

ψ∗

−−→F ′(l)
pi , j

are isomorphisms for all j = 1, . . . , fi and l = 1, . . . , ei . Moreover, the
construction also gives a commutative diagram:

A∨ λ // A ⊗ c

A′∨

φ∨

OO

λ′ // A′ ⊗ c′.

ψ

OO (3.1.1)

Without the additional filtrations, the moduli problem Mc,θc
(p) is the same as

the one in [Pa95, Definition 2.2.1] and is hence representable by an O-scheme
of finite type by [Pa95, Theorem 2.2.2]. Introducing the additional filtrations
amounts to building a further Grassmannian bundle and requiring compatibilities
with φ and ψ is a closed condition. So Mc,θc

(p) is represented by an O-scheme
Mc,θc(p) of finite type.

There are two natural forgetful maps π1,θc : Mc,θc(p) → Mc and π2,θc :

Mc,θc(p) → Mc′ induced by only keeping (A, λ, α,F ) and (A′, λ′, α′,F ′
),

respectively. A different choice of positive isomorphism θ ′c : cp ' c′ is of the form
uθc for some u ∈ O×,+F . Then there is a natural isomorphism Θ :Mc,θc(p)

∼

−→

Mc,θ ′c
(p) given by

((A, λ, α,F ); (A′, λ′, α′,F ′
);φ,ψ)

7−→ ((A, λ, α,F ); (A′, u−1λ′, α′,F ′
);φ,ψ).

It then follows that

π1,θc = π1,θ ′c ◦Θ and π2,θc = u · π2,θ ′c ◦Θ. (3.1.2)

Now the group O×,+F /(K ∩ O×F )2 acts freely on Mc,θc(p) (by acting
simultaneously on A and A′). We denote by Shc(p) the corresponding quotient.
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We set M(p) :=
∐

c∈C Mc,θc(p) and Sh(p) :=
∐

c∈C Shc(p). Both π1,θc and π2,θc
are equivariant for the action of O×,+F /(K ∩O×F )2 and induce maps:

π1 = (π1,θc) : Sh(p)→ Sh and π2 = (π2,θc) : Sh(p)→ Sh.

By (3.1.2), the natural maps π1 and π2 are independent of the auxiliary choice of
the isomorphisms θc.

REMARK 3.2. When p is unramified in F (or if we only consider the ordinary
locus), the moduli space Mc(p) can also be described as the moduli space of
tuples (A, λ, α;C)/S where

• [(A, λ, α)] is an S-point of Mc (the filtration datum on ωA/S is uniquely
determined in this case);

• C is a finite flat, closed, OF -stable S-subgroup scheme of A[p] of rank p f

(which is necessarily isotropic with respect to the Weil paring induced by λ).

It is not clear whether such interpretation could be extended to the splitting model.
For this reason, we defined Mc(p) as a moduli space of isogenies.

PROPOSITION 3.3. The scheme Mc(p) (respectively Shc(p)) is a flat local
complete intersection of relative dimension g over O. In particular, it is
Gorenstein, and hence Cohen–Macaulay. Moreover, the special fiber Mc(p)F
(respectively Shc(p)F) is smooth outside a closed subscheme of codimension 1,
and Mc(p) (respectively Shc(p)) is normal.

Proof. It is enough to prove the statements for Mc(p), since the natural quotient
map Mc(p) → Shc(p) is finite and étale. The proof is then reduced to an
argument in terms of local models similar to [DP94, Théorèm 3.3] and [Pa95,
Theorem 3.3.1] (cf. also [PR05] and [Sa14+]). To benefit the readers, we provide
with more details.

The key is to show that for any closed point x0 of Mc(p) with finite residue
field, there exists a (sufficiently small) open neighborhood U ⊆Mc(p) of x0 that
admits a map U → N étale at x0, where N is a fixed moduli problem we explain
below, also known as the local model. For an O-scheme S0, we consider two maps

u(l)pi , j , v
(l)
pi , j : O2

S0
→ O2

S0
(3.3.1)
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given by explicit matrixes

u(l)pi , j :=


(

1 0
0 τ l

pi , j($i)

)
if pi = p(

1 0
0 1

)
if pi 6= p

and v
(l)
pi , j :=


(
τ l
pi , j($i) 0

0 1

)
if pi = p(

1 0
0 1

)
if pi 6= p.

Our local model N is taken to be the product of O-schemes
∏

i, j,l N
(l)
i, j , where

each N (l)
i, j represents the functor on the category of locally noetherian O-schemes

sending a scheme S0 to the set of isomorphism classes of pairs (F ,F ′) of
invertible OS0 -subbundles of O2

S0
satisfying u(l)pi , j(F

′) ⊆ F and v(l)pi , j(F ) ⊆ F ′.
Each G(l)

i, j is clearly a closed subscheme of the product of two Grassmannians.
Explicitly, if pi 6= p, N (l)

i, j
∼= P1

O (as F and F ′ determine each other). If pi = p,
one can show that (see for example, the case N = 1 of [Pa95, Proposition 4.2.2]),
over a small enough open subspaceU ⊆N(l)

i, j where both F and F ′ are trivialized,
there is an étale map

h : U → O[U (l)
p, j , V (l)

p, j ]
/(

U (l)
p, j V

(l)
p, j − τ

l
p, j($i)

)
such that the maps u(l)p, j :F

′
→F and v(l)p, j :F →F ′ are given by multiplication

by U (l)
p, j and V (l)

p, j , respectively. So to sum up, N and hence Mc(p) (if we had
proved that N is a local model) are étale locally isomorphic to the spectrum of
the following ring:

O[(W (l)
pi , j)pi 6=p, j=1,..., fi ,l=1,...,ei ] ⊗O

(
f⊗

j=1

e⊗
l=1

O[U (l)
p, j , V (l)

p, j ]

(U (l)
p, j V

(l)
p, j − τ

l
p, j($p))

)
.

This ring is visibly normal and is a flat complete intersection of relative dimension
g over O, which is also smooth outside a closed subscheme of codimension 1.
This would then prove the Proposition.

Now, it remains to show that for each closed point x0 of Mc(p) with finite
residue field,

(i) there are an open neighborhood U and a map ϕ : U → N , such that

(ii) the map induces an isomorphism ϕx0,∗ : Tx0U → Tx0N on the tangent space
(so that the map ϕx0 : U∧x0

→N ∧ϕ(x0)
on the completion is a closed embedding),

and

(iii) (by deformation theory) that the map ϕx0 is an isomorphism.
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For this, we follow the general method in [DP94, Section 3.3], but we need
to study the deformation functor for points on Mc(p) following [RX17,
Theorem 2.9]. We first quickly recall Grothendieck–Messing deformation theory
of abelian varieties. Let S0 ↪→ S be a closed embedding of locally noetherian
O-schemes whose ideal sheaf of definition I satisfies I2

= 0. Let AbS denote
the category of abelian varieties A over S. For an abelian variety A0 over S0, let
H1

cris(A0/S0)S denote the evaluation of the first relative crystalline cohomology.
Let Ab+S0

denote the category of abelian varieties A0 over S0 together with a lift
ω̂ ⊆ H1

cris(A0/S0)S of ωA0/S0 ⊆ H1
dR(A0/S0) ∼= H1

cris(A0/S0)S0 . The main theory
of crystalline deformation theory (cf. [Gr74, pp. 116–118], [MM90, Ch. II
Section 1]) says that the natural functor

AbS
// Ab+S0

A � // (A ×S S0, ωA/S)

is an equivalence of category. In other words, to lift an abelian varieties A0 over
S0 to S, it suffices to lift the corresponding sheaf of differentials. (Extending
additional endomorphisms on A0 amounts to requiring the lift of the sheaf of
differentials is stable under the action of the endomorphisms.)

Let S0 denote a noetherian O-scheme and Ocris
S0

the structure sheaf on the
crystalline site. Consider an S0-valued point x0 = ((A, λ, α,F ), (A′, λ′, α′,
F ′
);φ,ψ) of Mc(p). Let H1

cris(A/S0) denote the crystalline cohomology sheaf
of A over S0. The action of OF on A induces a natural direct sum decomposition:

H1
cris(A/S0) =

r⊕
i=1

fi⊕
j=1

H1
cris(A/S0)pi , j ,

where W (Fpi ) ⊆ OFpi
acts on H1

cris(A/S0)pi , j via τpi , j . Moreover H1
cris(A/S0)pi , j

is a locally free module of rank two over

OFpi
⊗W (Fpi ),τpi , j Ocris

S0
∼= Ocris

S0
[x]/(Epi , j(x)).

The polarization λ : A∨→ A⊗OF c induces a nondegenerate, symplectic pairing

〈·, ·〉 : H1
cris(A/S0)pi , j ×H1

cris(A/S0)pi , j → Ocris
S0
, such that (3.3.2)

〈ax, y〉 = 〈x, ay〉 and 〈ax, x〉 = 0. (3.3.3)

for a ∈ OFpi
and x, y ∈ H1

cris(A0/S0)pi , j (as proved in [RX17, (2.9.1–2)]).
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Analogous constructions, notations, and properties can be introduced for the
abelian scheme A′/S0. The isogenies φ and ψ define morphisms

φ∗ : H1
cris(A

′/S0)pi , j → H1
cris(A/S0)pi , j and

ψ∗ : H1
cris(A/S0)pi , j → H1

cris(A
′/S0)pi , j .

The commutative diagram (3.1.1) implies that

〈x, φ∗(y)〉 = 〈ψ∗(x), y〉′

for x ∈ H1
cris(A/S0)pi , j and y ∈ H1

cris(A
′/S0)pi , j .

Consider S an infinitesimal deformation of S0, that is, S0 ↪→ S is a
closed immersion of locally noetherian O-schemes whose ideal of definition
I satisfies I2

= 0. Since S is a PD-thickening of S0, we can evaluate the
crystalline cohomology over S to obtain H1

cris(A/S0)S and its direct summands
H1

cris(A/S0)S,pi , j . For a subspace F of H1
cris(A0/S0)S,pi , j , we use F⊥ to denote

its orthogonal complement under the pairing (3.3.2).
The submodule ωA/S0,pi , j of H1

cris(A/S0)S0,pi , j is (maximal) isotropic for this
pairing. In particular, F (l)

pi , j ⊂ (F
(l)
pi , j)

⊥ for all i, j, l. Moreover, we have

φ∗(F ′(l)
pi , j) ⊆F (l)

pi , j , φ∗
((

F ′(l)
pi , j

)⊥)
⊆ (F (l)

pi , j)
⊥,

ψ∗(F (l)
pi , j) ⊆F ′(l)

pi , j , and ψ∗
((

F (l)
pi , j

)⊥)
⊆ (F ′(l)

pi , j)
⊥.

Let

H (l)
pi , j(A/S0) :=

{
z ∈ (F (l−1)

pi , j )
⊥
/
F (l−1)

pi , j

∣∣∣ [$i ]z − τ l
pi , j($i)z = 0

}
,

and similarly define H (l)
pi , j(A

′/S0) for each index i, j, l > 1; so that we have
natural morphisms

φ∗H :H
(l)
pi , j(A

′/S0)→H (l)
pi , j(A/S0) and ψ∗H :H

(l)
pi , j(A/S0)→H (l)

pi , j(A
′/S0).

It is shown in the Claim of the proof of [RX17, Theorem 2.9] that H (l)
pi , j(A/S0)

is a rank-two OS0 -subbundle of H1
cris(A/S0)S0,pi , j/F

(l−1)
pi , j . In particular, the sheaf

F (l)
pi , j/F

(l−1)
pi , j is a rank-one OS0 -subbundle of H (l)

pi , j(A/S0).
By crystalline deformation theory for abelian schemes, lifting the S0-point x0

associated to the isogeny φ : A→ A′ to S is equivalent to the following procedure,
applied to each choice of i and j :

(1) Write H (1)
pi , j(A/S0)S and H (1)

pi , j(A
′/S0)S for the kernel of the map [$i ] −

τ 1
pi , j($i) acting on H1

cris(A/S0)S,pi , j and H1
cris(A

′/S0)S,pi , j , respectively.
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Lift F (1)
pi , j ⊂ H (1)

pi , j(A/S0) and F ′(1)
pi , j ⊂ H (1)

pi , j(A
′/S0) to (isotropic) rank-

one OS-subbundles F̃ (1)
pi , j ⊂ H (1)

pi , j(A/S0)S and F̃ ′(1)
pi , j ⊂ H (1)

pi , j(A
′/S0)S

satisfying the conditions φ∗(F̃ ′(1)
pi , j) ⊆ F̃ (1)

pi , j and ψ∗(F̃ (1)
pi , j) ⊆ F̃ ′(1)

pi , j . Here,
the isotropic condition is automatic by condition (3.3.3); see the proof of
[RX17, Theorem 2.9] for more details.

(2) Once lifts F̃ (l)
pi , j and F̃ ′(l)

pi , j are chosen for all l 6 t − 1, set

H (t)
pi , j(A/S0)S :=

{
z ∈ (F̃ (t−1)

pi , j )
⊥
/
F̃ (t−1)

pi , j

∣∣∣ [$i ]z − τ t
pi , j($i)z = 0

}
and similarly for H (t)

pi , j(A
′/S0)S; by the proof of Claim (1) in [RX17,

Theorem 2.9], the sheaves H (t)
pi , j(A/S0)S and H (t)

pi , j(A
′/S0)S are rank-two

OS-subbundles of H1
cris(A/S0)S,pi , j/F̃

(t−1)
pi , j and H1

cris(A
′/S0)S,pi , j/F̃

′(t−1)
pi , j ,

respectively. Then we need to lift rank-one OS0 -submodules F (t)
pi , j/F

(t−1)
pi , j ⊂

H (t)
pi , j(A/S0) and F ′(t)

pi , j/F
′(t−1)
pi , j ⊂ H (t)

pi , j(A
′/S0) to (isotropic) rank-one OS-

subbundles F̃ (t)/(t−1)
pi , j and F̃ ′(t)/(t−1)

pi , j of H (t)
pi , j(A/S0)S and H (t)

pi , j(A
′/S0)S

respectively, such that

φ∗
(
F̃ ′(t)/(t−1)

pi , j

)
⊆ F̃ (t)/(t−1)

pi , j and ψ∗
(
F̃ (t)/(t−1)

pi , j

)
⊆ F̃ ′(t)/(t−1)

pi , j .

Once again, this isotropic condition is automatic by condition (3.3.3). After
this, we define F̃ (t)

pi , j to be the preimage of F̃ (t)/(t−1)
pi , j under the natural

projection (F̃ (t−1)
pi , j )

⊥ � (F̃ (t−1)
pi , j )

⊥/F̃ (t−1)
pi , j and define F̃ ′(t)

pi , j similarly.

Following [Pa95, Lemma 3.3.2], we claim that for any locally noetherian O-
scheme S0, the tuple(

H (l)
pi , j(A/S0),H

(l)
pi , j(A

′/S0), φ
∗

H , ψ∗H
)

is Zariski locally (over S0) isomorphic to the ‘constant’ tuple (O2
S0
,O2

S0
, u(l)pi , j ,

v
(l)
pi , j) of (3.3.1). Indeed, this is obvious at a closed point of S0 of characteristic

zero. At a closed point s ∈ S0 of characteristic p, we observe that ψ∗H ◦
φ∗H and φ∗H ◦ ψ

∗

H are both zero; and the kernels of φ∗H and ψ∗H are at
most one-dimensional, as the kernels of φ∗ and ψ∗ on H 1

dR(A
′/k(s))pi , j and

H 1
dR(A/k(s))pi , j respectively are one-dimensional. It follows that the images of

ψ∗H and φ∗H are both one-dimensional. The claim is clear from that.
The isomorphism of this claim (by the definition of the moduli problem N )

gives, for any given closed point x0 of Mc(p) in characteristic p, a map ϕ : U →
N we sought in (i). Moreover, applying the discussion of deformation theory to
the case of S0 = Spec κ(x0) ↪→ S = Spec κ(x0)[ε]/(ε

2), descriptions (1) and
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(2) of the deformation functor imply that ϕ induces an isomorphism at the level
of the Zariski tangent spaces at x0 of the special fibers of Mx0 and Nϕ(x0). This
shows (ii). Finally, the argument at the end of [DP94, Section 3] (again using the
description of the deformation theory above) implies that ϕx0 is an isomorphism
of formal schemes, and therefore ϕ is étale at x0. This completes the proof that N
is a local model of Mc(p) and concludes the proof of this Proposition.

NOTATION 3.4. The proof of the above Proposition suggests us to define
a stratification of M(p)F, following [He12, GKa12]. The study of certain
geometric structure of these strata is the key ingredient in proving our main
technical result Proposition 3.19 in Section 4.

For two subsets S,S′ ⊆ Σp such that S ∪ S′ = Σp, we write ẎS,S′ for the
subscheme of M(p)F where

• φ∗ :F ′(l)
pi , j/F

′(l−1)
pi , j →F (l)

pi , j/F
(l−1)
pi , j vanishes if τ l

pi , j ∈ S, and

• ψ∗ :F (l)
pi , j/F

(l−1)
pi , j →F ′(l)

pi , j/F
′(l−1)
pi , j vanishes if τ l

pi , j ∈ S
′.

Note that φ∗ ◦ ψ∗ and ψ∗ ◦ φ∗ vanish modulo p by the moduli problem; so we
need the condition S ∪ S′ = Σp otherwise ẎS,S′ is nonempty.

We write YS,S′ ⊆ Sh(p)F for the quotient of ẎS,S′ by the action of O×,+F /

(K ∩O×F )2.

LEMMA 3.5.

(1) There are 3#Σp closed strata ẎS,S′ .

(2) For another pair S1,S′1 ⊆ Σp such that S1 ∪ S′1 = Σp, we have

ẎS,S′ ∩ ẎS1,S
′

1
= ẎS∪S1,S′∪S

′

1
.

(3) Each ẎS,S′ is a smooth variety over F of dimension

g − (#S+ #S′ − #Σp).

(4) The irreducible components of M(p)F are exactly those given by ẎS,Σp\S for
S a subset of Σp.

(5) The open strata are given by

Ẏ ◦S,S′ := ẎS,S′

∖ ( ⋃
(S1,S

′

1))(S,S′)

YS1,S
′

1

)
,

where (S1,S′1) ) (S,S′) means S1 ⊇ S and S′1 ⊇ S′, and the equalities of
sets cannot hold simultaneously.
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Similar statements hold for the strata YS,S′ ⊆ Sh(p)F.

Proof. (1) and (2) are immediate from the definition.
(3) follows from the local model computation in the proof of Proposition 3.3

that ẎS,S′ is étale locally isomorphic to the spectrum of the following ring

F[W (l)
pi , j ]pi 6=p, j=1,..., fi ,l=1,...,ei⊗F

⊗
τ l
p, j∈Σp


F[U (l)

p, j , V (l)
p, j ]/(U

(l)
p, j) if τ l

p, j ∈ S,

F[U (l)
p, j , V (l)

p, j ]/(V
(l)
p, j) if τ l

p, j ∈ S
′,

F[U (l)
p, j , V (l)

p, j ]/(U
(l)
p, j , V (l)

p, j) if τ l
p, j ∈S ∩ S

′.

It follows that ẎS,S′ is smooth of the said dimension.
(4) and (5) are immediate corollaries of (2) and (3). The statements for YS,S′ ⊆

Sh(p)F follow from taking quotient by O×,+F /(K ∩O×F )2.

REMARK 3.6. It seems that these strata YS,S′ are likely to be isomorphic to certain
iterated P1-bundles over (the special fiber of) some other quaternionic Shimura
varieties. One expects that certain variants of the arguments in [He12, TX16a]
can be applied to our situation.

We have the following result.

PROPOSITION 3.7. The morphisms of O-schemes π1, π2 : Sh(p)→ Sh are finite
and flat over the ordinary locus of Sh(p).

Proof. It is enough to prove the statement for the analogous morphisms between
fine moduli spaces. For a locally noetherian O-scheme S, we say that an S-
point ((A, λ, α,F ), (A′, λ′, α′,F ′

);φ,ψ) of Mc(p) is ordinary if and only if
A1 (or, equivalently, A2) is an ordinary abelian scheme.

Recall that we fixed a positive isomorphism θc : cp ' c′, with c′ ∈ C. We
need to prove that, after restricted to the ordinary locus, π1 = π1,θc :Mc(p)

ord
=

Mc,θc(p)
ord
→Mord

c and π2 = π2,θc :Mc(p)
ord
→Mord

c′ are finite and flat.
By [AG05, Remark 3.6] an ordinary abelian variety with RM automatically

satisfies the Rapoport condition, and as such it admits exactly one filtration
satisfying the Pappas–Rapoport conditions of Section 2.2. In what follows we can
then forget about the filtrations appearing in the tuples classified by Mc(p)

ord,

Mord
c , and Mord

c′ . The proof of the proposition is now analogous to the one of
[DR73, V, Lemme 1.12]. For brevity, we only show the finite flatness of:

π1 :Mc(p)
ord
→Mord

c .

Since π1 is proper, it is enough to show that it is quasifinite and the rank of the
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geometric fibers of π1 is constant. Then π1 is forced to be finite and flat (as Mord
c

is reduced) by [DR73, V, Lemme 1.13].
Let k be an O-algebra which is an algebraically closed field of characteristic

p, and let x : Spec k →Mord
c be a k-point of Mord

c defining a tuple (A, λ, α).
(Recall that we can forget about the filtrations.) By Remark 3.2, the fiber T of
π1 over x is the k-scheme representing the functor which assigns to a locally
noetherian k-scheme S the set of isomorphism classes of finite flat, closed, OF -
stable, λ-isotropic, S-subgroup schemes C ⊂ (A ×k S)[p] of rank p f .

Since A is ordinary, the connected-étale exact sequence of A[p] is of the form:

0→ Fp ⊗Z µp/k → A[p] → Fp ⊗Z

(
Z
pZ

)
k
→ 0, (3.7.1)

where the morphisms are equivariant for the natural action of OF/p = Fp. If C ⊂
(A×k S)[p] represents an S-point of T , we can write S = S′

∐
S′′ where C ×S S′

is equal to the connected part (A ×k S′)[p]◦ ' Fp ⊗Z µp/S′ of (A ×k S′)[p], and
C×S S′′ is isomorphic to Fp⊗Z(Z/pZ)S′′ . (To see this notice that if y : Spec l→ S
is a closed point of S for some field extension l of k, and if the group of geometric
points Cy(l̄) of the fiber of C at y is nontrivial, then the existence of an action of
Fp on Cy(l̄) forces Cy to be isomorphic to Fp ⊗Z (Z/pZ)/ l . On the other hand, if
Cy has trivial étale quotient, then it is contained in the connected component of
the identity of (A×k l)[p]; the existence of the Fp-action then forces this inclusion
to be an equality.)

The decomposition S = S′
∐

S′′ induces a corresponding decomposition
T = T ′

∐
T ′′ where T ′ is the reduced k-scheme that assigns (A ×k S)[p]◦

to any locally noetherian k-scheme S, while T ′′ represents the functor of Fp-
equivariant splittings of the exact sequence (3.7.1). Since T ′′ is a torsor under
the group scheme HomFp⊗Zk(A[p]ét, A[p]◦) ' Fp ⊗Z µp/k , we see that T '
Spec k

∐
(Fp ⊗Z µp/k) is finite over k of constant rank equal to 1+ p f .

Let us now assume that k is an algebraically closed field of characteristic zero,
so that A[p] ' (Fp⊗Z (Z/pZ)k)2 is étale. By fixing an arbitrary Fp-stable, closed,
and λ-isotropic k-subgroup scheme of A[p] isomorphic to Fp ⊗Z (Z/pZ)k and
considering the corresponding exact sequence, one sees via arguments similar to
the ones above that there is an isomorphism T ' Spec k

∐
(Fp ⊗Z (Z/pZ)k), so

that the fiber T is still finite over k of rank 1+ p f .
This shows that, in either case, π1 is quasifinite of constant rank 1 + p f and

hence concludes the proof of this Proposition.

REMARK 3.8. When g > 1, the morphisms π1 and π2 are not finite over the
nonordinary part of Sh. This phenomenon already occurs when p is unramified in
F [St97].
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3.9. Extension of Hecke correspondence to the toroidal compactification.
For each c ∈ C fix sufficiently fine rational admissible polyhedral cone
decompositions for the cusps of the Rapoport locus of Mc(p). One can then
construct smooth toroidal compactifications Mc(p)

tor,M(p)tor, and Sh(p)tor of
the splitting models with Iwahori level structure, as in [RX17, Section 2.11]. Here
we require that the cone decomposition we chose at each cusp of the Mc(p)

tor

is a smooth refinement of the pullback via π1 and π2 of the cone decomposition
at the corresponding cusps of Mc and Mc′ , respectively. This way, π1 and π2

extend to maps π1, π2 : Sh(p)tor
→ Shtor. The restriction of π1 to the ordinary

locus π tor,ord
1 : Sh(p)tor,ord

→ Shtor,ord may no longer be finite and flat (due to the
refinement of the cone decomposition), but it is still true that

Rπ tor,ord
1,∗ ωκ ∼= π

tor,ord
1,∗ ωκ . (3.9.1)

See the proofs of [La13, Lemma 7.1.1.4] and [La17, Proposition 7.5].

3.10. Construction of Tp. We now construct the Hecke operator Tp over
the SpecO-scheme Sh, extending a geometric construction of Conrad [Con07,
Section 4.5].

Recall that for each fractional ideal c ∈ C we fixed an isomorphism θc : cp ' c′

of fractional ideals with positivity such that c′ ∈ C. Moreover we denoted by
π1 = π1,θc :Mc(p) =Mc,θc(p) →Mc and π2 := π2,θc :Mc(p) →Mc′ the
‘taking the source’ and ‘taking the target’ morphisms at the level of fine moduli
spaces. Denote by f : Ac →Mc (respectively f ′ : Ac′ →Mc′) the universal
abelian scheme over Mc (respectively Mc′). Set ω̇ := f∗Ω1

Ac/Mc
and ω̇′ :=

f ′
∗
Ω1

Ac′ /Mc′
: these are bundles of rank g over Mc and Mc′ respectively. Similarly,

let A(p) and A′(p) denote the two universal abelian varieties over Mc(p) and let
fp : A(p)→Mc(p) and f ′p : A′(p)→Mc(p) denote the natural morphisms.

Define the following morphism of rank-g bundles over Mc(p):

β ′ : π∗2 ω̇
′ ∼= f ′p∗Ω

1
A′(p)/Mc(p)

φ∗

−→ fp∗Ω1
A(p)/Mc(p)

∼= π
∗

1 ω̇,

where the first and the last isomorphism are induced by base change and the
middle arrow is induced by pullback of differentials. There is an analogously
defined map at the level of de Rham sheaves:

β ′′ : π∗2H1
dR(Ac′/Mc′)→ π∗1H1

dR(Ac/Mc),

which induces an isomorphism:

π∗2 ∧
2
OF⊗ZOMc′

H1
dR(Ac′/Mc′)

'

−→ p · π∗1 ∧
2
OF⊗ZOMc

H1
dR(Ac/Mc).
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In particular, the map π∗2 ε̇
′

τ → π∗1 ε̇τ induced by β ′′ is an isomorphism if τ /∈ Σp,
and it is an isomorphism onto τ($p) · π

∗

1 ε̇τ otherwise.
Fix a paritious weight κ = ((kτ )τ∈Σ , w) such that kτ > 1 for all τ ∈ Σ . Take a

positive integer N sufficiently large so that w + N > kτ if τ ∈ Σp. Observe that
β ′′ induces an isomorphism

β ′′κ :
⊗
τ∈Σ

pN
· π∗2 ε̇

′⊗(w−kτ )/2
τ

'

−→ πp,κ,N ·
⊗
τ∈Σ

π∗1 ε̇
⊗(w−kτ )/2
τ

where πp,κ,N := pN ·#Σ∏
τ∈Σp

τ($p)
(w−kτ )/2. Twisting the sheaf ω̇ and ω̇′ by the

character attached to the tuple (kτ )τ∈Σ , and applying the maps β ′ and pN ·#Σπ−1
p,κ,N ·

β ′′κ one obtains a morphism of invertible sheaves:

β : π∗2 ω̇
′κ
→ π∗1 ω̇

κ . (3.10.1)

This map does not depend on the auxiliary choice of N . But one should note that
this map depends on the choice of the uniformizers $p, except when all kτ for
τ ∈ Σp are equal, we may take the canonical choice πp,κ,N := pN ·#Σ

·N(p)(w−kτ )/2

to eliminate the ambiguity.
Denote by D the relative dualizing sheaf of the smooth scheme Mc →

SpecO. The canonical identification D =
∧g

OMc
Ω1

Mc/SpecO, together with the
isomorphisms (2.8.1) give rise to a canonical isomorphism

K S : D
'

−→ ω̇(2,0).

Denote by Dp the relative dualizing sheaf of Mc(p) → SpecO: it exists as an
invertible sheaf on Mc(p) since the latter is a flat local complete intersection over
SpecO, by Proposition 3.7.

We now construct a canonical morphism of sheaves ξ : π∗1 D → Dp as
follows. First, Proposition 3.3 implies that the complement of the O-smooth locus
Mc(p)

sm of Mc(p) is of codimension 2 inside Mc(p). Since Mc(p) is Cohen–
Macaulay, it suffices to construct the desired morphism ξ over Mc(p)

sm. But over
Mc(p)

sm, the dualizing module Dp is given by
∧g

OMc(p)sm (Ω
1
Mc(p)sm/SpecO); so the

natural morphism (π sm
1 )
∗Ω1

Mc/SpecO → Ω1
Mc(p)sm/SpecO induces the sought-for

morphism ξ sm between their top exterior powers (here π sm
1 denotes the restriction

of π1 to Mc(p)
sm).

We now combine the above maps and denote by η the composition of Rπ1∗β :

Rπ1∗π
∗

2 ω̇
′κ
→ Rπ1∗π

∗

1 ω̇
κ with the following morphism in the derived category
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Db
coh(Mc):

Rπ1∗π
∗

1 ω̇
κ
= ω̇κ−(2,0) ⊗ Rπ1∗π

∗

1 ω̇
(2,0) 1⊗K S−1

−→ ω̇κ−(2,0) ⊗ Rπ1∗π
∗

1 D

1⊗ξ
−→ ω̇κ−(2,0) ⊗ Rπ1∗Dp

1⊗trπ1
−→ ω̇κ−(2,0) ⊗D

1⊗K S
−→ ω̇κ−(2,0) ⊗ ω̇(2,0) = ω̇κ ,

where trπ1 : Rπ1∗Dp → D denotes the trace morphism of normalized dualizing
complexes associated to the proper dominant morphism π1 : Mc(p) → Mc.
Recall that trπ1 is nonzero by [BST15, Proposition 2.13], and it is compatible
with localizations on the base scheme.

Applying the construction of η : Rπ1∗π
∗

2 ω̇
′κ
→ ω̇κ to each component Mc of

M and quotienting by the action of O×,+F /(K ∩ O×F )2 we obtain a well-defined
morphism

η : Rπ1∗π
∗

2ω
′κ
→ ωκ

in Db
coh(Sh). We remark that this morphism η over Sh does not depend on the

choice of identifications θc : cp ' c′ for c ∈ C.
Ideally, we would like to extend η to a morphism over the toroidal

compactification and show that this construction does not depend on the choice
of the cone decomposition of Mc(p). (In particular, we could consider the
universal semiabelian varieties and show that the corresponding map β ′′κ is
divisible by the correct power of $ .) However, we content ourselves by making
a remark that one can certainly define η over the generic fiber of the toroidal
compactification (just as how we define tame Hecke operators before), therefore,
for some positive integer M , pMη extends uniquely to a morphism pMη :

Rπ1∗π
∗

2ω
′κ
→ ωκ in Db

coh(Shtor). (But then Proposition 3.11, or more precisely
Proposition 3.17, below shows that η itself extends uniquely to a morphism
η : Rπ1∗π

∗

2ω
′κ
→ ωκ .)

Now the key technical result is the following.

PROPOSITION 3.11. Assume that the weight κ satisfies
∑

τ∈Σp
kτ > e f and the

following conditions:

kτ l+1
p, j
> kτ l

p, j
for all j = 1, . . . , f, and l = 1, . . . , e − 1; (3.11.1)

and pkτ 1
p, j
> kτ e

p, j−1
for all j = 1, . . . , f.

Then the morphism pMη in Db
coh(Shtor) uniquely factors as

Rπ1∗π
∗

2ω
′κ (1/p f )η
−−−−→ ωκ

·p f+M

−−−→ ωκ , (3.11.2)

where the second map is the multiplication by p f+M .

https://doi.org/10.1017/fms.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.26


Unramifiedness of Galois representations 35

Note that the condition (3.11.1) automatically forces all kτ > 0 for τ ∈ Σp. We
also point out that the condition (3.11.1) is similar to the conjectural ampleness
condition in [TX16a, Theorem 1.9], at least when p is unramified over p.

The proof of Proposition 3.11 will be given later in Section 3.16. (We are
informed by Pilloni that he has a different and simpler proof of Proposition 3.11.
But our proof reveals some interesting finer geometry of the map π1 :M(p)→
M.) We assume Proposition 3.11 temporarily to complete our construction of the
operator T n

p on cohomology. The first map in (3.11.2) gives a canonically defined
morphism (1/p f )η : Rπ1∗π

∗

2ω
′κ
→ ωκ . For m ∈ Z>0 ∪ {∞} we denote by ωκm

the sheaf ωκ/($m), with the convention that $∞ := 0. The morphism (1/p f )η

induces a morphism
η̃m : Rπ1∗π

∗

2 (ω
′κ
m )→ ωκm .

DEFINITION 3.12. We define the action of the Hecke operator T n
p on the

cohomology of ωκm as the following composition:

T n
p : H i(Shtor, ωκm)

π∗2
−→ H i(Sh(p)tor, π∗2ω

κ
m)

π1∗
−→ H i(Shtor, Rπ1∗π

∗

2 (ω
κ
m))

η̃m
−→ H i(Shtor, ωκm).

REMARK 3.13. Let R be either a finite extension of Qp or the ring of integers
of a finite extension of Q` where Kq = GL2(OFq) for all primes q above `. The
moduli schemes MR and M(p)R defined in the obvious way over Spec R are
both smooth, and the natural maps π1,R, π2,R : Sh(p)R → ShR are finite and
flat. In particular, one can define the ‘usual’ Hecke operator T n

p,R acting on the
cohomology of ShR by means of the finite-flat trace map attached to π1,R . The
compatibility between the finite-flat trace map and the dualizing trace map implies
that the operator T n

p defined above coincides with the classical Hecke operator
T n
p,R in these settings.

REMARK 3.14. The q-expansion of T n
p f for f ∈ H 0(Shtor

m , ω
κ
m) is ‘as expected’,

namely it is the expression in the second line of (2.9.1) divided by the normalizing
factor p f ∏

τ τ($p)
(w−kτ )/2. In particular, for weight (n, n−2) and p is inert (with

$p = p), this normalizing factor disappears.
In particular, if p is inert in F and we take $p = p and ϑc = p, the formula

(2.9.1) (at the cusps defined therein) simplifies to

aξ (T n
p ( f ), C,Tatea,b) = apξ ( f, C ′,Tatea,b)+

∏
τ∈Σ

pkτ−1ap−1ξ ( f, C ′′p−1,Tatea,b).

Notice that the formula is meaningful in O/($m) since kτ > 1.
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Finally, we remind the reader that we have introduced a normalization by the
factor πp,κ,N in the definition of our Hecke operators (see (3.10.1)). In particular,
since ω(0,2) is a canonically trivial vector bundle on Shtor, the natural isomorphism

H ∗(Shtor, ω((kτ ),w)m )
'

−→ H ∗(Shtor, ω((kτ ),w+2w0)
m )

for any integer w0 is equivariant for the action of T n
p .

REMARK 3.15. The morphism K S ◦ (trπ1 ◦ ξ) ◦ K S−1
: Rπ1∗π

∗

1 ω̇
(2,0)
→ ω̇(2,0)

that appears in the composition defining η coincides, over an open subscheme
of Mc on which the map π1 is finite flat, with the usual finite-flat trace map
π1∗π

∗

1 ω̇
(2,0)
→ ω̇(2,0). This follows from the compatibility between the dualizing

trace map and the finite-flat trace map (cf. [Con00]). In particular, when g = 1 (so
that π1 is finite flat over the entire space M =Mc), our construction coincides
with the construction given in [Con07, Section 4.5].

3.16. Outline of the proof of Proposition 3.11. Since the morphism η is
obtained by taking invariants under O×,+F /(K ∩ O×F )2 of the (homonymous)
morphism Rπ1∗π

∗

2 ω̇
κ
→ ω̇′κ on Mtor, it suffices to prove the result for the

latter morphism, as a morphism in Db
coh(Mtor). This will follow from the three

propositions below.

PROPOSITION 3.17. Suppose that
∑

τ∈Σp
kτ > e f . Let M be as in the end of

Section 3.10. Restricting pMη to Mtor,ord (noting that π1 has no higher derived
pushforward over Mtor,ord), the homomorphism pMη : (π1∗π

∗

2 ω̇
′κ)|Mtor,ord →

ω̇κ |Mtor,ord of coherent sheaves factors uniquely as

(
π1∗π

∗

2 ω̇
′κ
)∣∣

Mtor,ord → ω̇κ |Mtor,ord
·p f+M

−−−−→ ω̇κ |Mtor,ord .

PROPOSITION 3.18. Suppose that the support of Rtπ1,∗π
∗

2 ω̇
′κ
F has codimension at

least t + 1 in the special fiber MF for all t > 1. Then η factors uniquely as

Rπ1∗π
∗

2 ω̇
′κ
→ ω̇κ

·p f

−−→ ω̇κ (3.18.1)

in Db
coh(M) if the restriction of η does on the ordinary locus (as shown in

Proposition 3.17).

PROPOSITION 3.19. Suppose that the weight κ satisfies the condition (3.11.1).
Then the assumption in Proposition 3.18 holds.
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Proposition 3.18 is a formal homological algebra result. Proposition 3.17 is a
straightforward generalization of [Con07, Theorem 4.5.1]. The proof of these two
propositions will be given shortly in Sections 3.20 and 3.21, after we summarize
the basic idea of the proof of Proposition 3.19 (whose proof will be given in
Section 4).

By Grothendieck’s formal function theorem, the cohomological dimension of
Rπ1,∗π

∗

2 ω̇
′κ
F is bounded by the dimension of the fiber of the map π1 :M(p)F →

MF. Since the source and the target of π1 have the same dimension, localizing
at a codimension t point x of MF, R>tπ1,∗π

∗

2 ω̇
′κ
F is automatically trivial, and

the contribution to the localization of Rtπ1,∗π
∗

2 ω̇
′κ
F at x only comes from the

irreducible components of M(p)F of (maximal) dimension g (see Lemma 3.5
for the description of these strata). Recall that MF admits the Goren–Oort
stratification (cf. Section 2.12). The proof of Proposition 3.19 consists of the
following ingredients.

• The image of each irreducible component of M(p)F is a closed Goren–Oort
stratum (Proposition 4.5 below); so it suffices to look at those open Goren–
Oort stratum X ◦T whose closure is the image of some irreducible component of
M(p)F;

• over the geometric generic point of the open stratum X ◦T, only the dimension
t = #T fibers are relevant (by Proposition 4.8 below), namely the ones given by
the irreducible components of M(p)F; and

• these dimension t fibers are unions of products of P1’s, such that the restriction
of π∗2 ω̇

′κ is O(n) on each P1-factor for some n > −1 (cf. Section 4.9 below).

3.20. Proof of Proposition 3.17. Since ω̇κ is an invertible sheaf on a scheme
Mtor,ord smooth over SpecO, it suffices to prove the proposition over a Zariski
dense open subscheme, for example, the ordinary locus Mord

⊂Mtor,ord before
taking the toroidal compactification. This is further equivalent to checking for the
stalks at each closed point of Mord. Let k be a separably closed extension of F and
let x : Spec k →Mord be a map of SpecO-schemes. Let y : Spec k →M(p)ord

be an element in the scheme-theoretic fiber π−1
1 (x). Denote by Rx the strictly

henselian local ring of the stalk of OM at x , and similarly for Ry and Rπ2(y).
By Proposition 3.7, the morphism π1 is finite flat over the ordinary locus of

MF, so that the fiber π−1
1 (x) is a finite scheme over Spec k and the map Rx → Ry

is finite flat. By Remark 3.15 it then suffices to show that the composition:

ω̇κπ2(y)

ηκy
−→ ω̇κp,y ' (π

∗

1 ω̇
κ)y = Ry ⊗Rx ω̇

κ
x

Try|x⊗1
−→ ω̇κx (3.20.1)
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has image in p f ω̇κx . Here ηκy is induced by pulling back differentials, the
isomorphism is induced by the ‘contraction map’, and Try|x : Ry → Rx is the Rx -
linear finite-flat trace map. In particular, the information of the Kodaira–Spencer
isomorphism is contained in the trace map Try|x .

Assume that x corresponds to the abelian scheme A/Spec k with extra
structures, and that y corresponds to an isogeny A → A′ defined over Spec k
and with kernel C (notice that we can forget about the filtrations because we are
working over the ordinary locus). The closed, finite-flat k-group scheme C ⊂ A[p]
has rank p f and it comes with an action of OF/p =: Fp.

We now prove the desired result distinguishing two cases, depending on
whether C is étale or multiplicative (no other possibilities occur in our settings
as A is ordinary and C is OF -stable). We work with the strict henselization of the
stalks modulo p f .

Case 1. C is multiplicative. In this case the kernel of the universal isogeny φ
over Ry/(p f ) is isomorphic to Fp ⊗Z µp/Ry/(p f ). Recall that Σp denotes the set
of field embeddings F → Qp inducing the p-adic place p. For each τ ∈ Σp the
pullback map (ω̇π2(y))τ → (ω̇p,y)τ is zero modulo τ($p). In particular, ηκy is zero
modulo p f as desired, since hence

∑
τ∈Σp

kτ > e f .

Case 2. C is étale. The R̂x/(p f )-algebra R̂y/(p f ) (the ‘hat’ denotes
completion) classifies splittings of the connected-étale sequence of A[p], where
A is the universal ordinary abelian scheme over R̂x/(p f ). These splittings form
a torsor under the group scheme

HomFp,Spec(R̂x /(p f ))(A[p]ét,A[p]◦) ' Fp ⊗Z µp/R̂x /(p f )

defined over R̂x/(p f ). Such torsors are classified by the cohomology group
H 1

fppf(Spec R̂x/(p f ),Fp⊗Zµp/R̂x /(p f )), which by Kummer theory is equal to Fp⊗Z

(R̂x/(p f ))×/

(R̂x/(p f ))×p. Therefore there are units ui ∈ (R̂x/(p f ))× which are not pth
powers such that

R̂y/(p f ) '
R̂x/(p f )[X1, . . . , X f ]

(X p
1 − u1, . . . , X p

f − u f )
.

This implies that the R̂x/(p f )-linear trace map R̂y/(p f )→ R̂x/(p f ) is zero: the
only thing to check is the vanishing of the trace on the identity element, which
occurs since R̂y/(p f ) has rank p f as an R̂x/(p f )-module. We deduce that also
the trace map Try|x : Ry/(p f ) → Rx/(p f ) is zero, and hence the map (3.20.1)
vanishes modulo p f , as desired.
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3.21. Proof of Proposition 3.18. Using the exact sequence

0→ π∗2 ω̇
′κ ·$
−→ π∗2 ω̇

′κ
−→ π∗2 ω̇

′κ
F → 0,

we see that, if Rtπ1,∗π
∗

2 ω̇
′κ
F (for t > 0) is zero when localized at a codimension

t point x ∈ MF, then multiplication by $ is surjective on Rtπ1,∗π
∗

2 ω̇
′κ when

localized at x . By Nakayama’s Lemma, this means that Rtπ1,∗π
∗

2 ω̇
′κ is trivial

when localized at x , as Rtπ1,∗π
∗

2 ω̇
′κ is a coherent sheaf. So the condition of this

Proposition implies that

• the (set-theoretical) support of Rtπ1,∗π
∗

2 ω̇
′κ has codimension > t in the special

fiber MF for all t > 1.

For two complexes C•, D• ∈ Db(M), we may define the sheaf of morphisms
Hom Db(M)(C•, D•) as the (coherent) sheaf on M whose evaluation on an open
affine subspace U ⊆M is

HomDb(U)
(
C• ⊗OM OU , D• ⊗OM OU

)
.

This is the same as the H 0 of the derived RHom Db(M)(C•, D•). For i ∈ Z, we
write Hom i

Db(M)
(C•, D•) for Hom Db(M)(C•, D•[i]).

Consider the long exact sequence obtained by applying the derived functor

Hom•Db(M)
(Rπ1,∗π

∗

2 ω̇
′κ ,−) to 0 → ω̇κ

·p f

−→ ω̇κ → ω̇κ/p f
→ 0. To show that

the map η factors uniquely as (3.18.1), it is enough to show that

(a) (existence of factorization) the composition Rπ1,∗π
∗

2 ω̇
′κ η
−→ ω̇κ → ω̇κ/p f is

the zero element in Hom Db(M)(Rπ1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ), and

(b) (uniqueness of the factorization) Hom−1
Db(M)

(Rπ1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ) = 0.

We claim that the natural map π1,∗π
∗

2 ω̇
′κ
→ Rπ1,∗π

∗

2 ω̇
′κ induces an injection

Hom i
Db(M)

(Rπ1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ) ↪→ Hom i

Db(M)
(π1,∗π

∗

2 ω̇
′κ , ω̇κ/p f )

∼= Hom i
OM

(π1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ), (3.21.1)

for i = −1, 0. Here Hom−1
OM

(π1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ) is automatically zero because

Hom is left exact; so (b) follows from this injectivity. Similarly, when i = 0, the
injectivity implies that a map in Hom Db(M)(Rπ1,∗π

∗

2 ω̇
′κ , ω̇κ/p f ) is zero if and

only if its induced map in HomOM(π1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ) is zero, which is in turn

equivalent to its restriction to Mord is zero. So this together with the assumption
of the Proposition implies (a). In summary, it is enough to prove the claim on the
injectivity of (3.21.1).
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Represent Rπ1,∗π
∗

2 ω̇
′κ by a complex C•. For t ∈ Z>0, we denote by τ6tC•

its truncation at degree 6 t , that is, the unique object in Db(M) (up to quasi-
isomorphism) such that H>t(τ6tC•) = 0, and there is a map τ6tC• → C•

inducing isomorphisms on the cohomology groups with degree 6 t . In particular,
τ60C• ∼= π1,∗π

∗

2 ω̇
′κ and τ6tC• ∼= C• for t � 0.

To (inductively) prove the injectivity of (3.21.1), it suffices to prove that the
following map is injective for every t > 1 and i = −1, 0:

Hom i
Db(M)

(τ6tC•, ω̇κ/p f ) ↪→ Hom i
Db(M)

(τ6t−1C•, ω̇κ/p f ).

Using the long exact sequence associated to the tautological exact triangle

τ6t−1C•→ τ6tC•→ Rtπ1,∗π
∗

2 ω̇
′κ
[−t]

+1
−→,

it suffices to show that

Ext j
OM

(Rtπ1,∗π
∗

2 ω̇
′κ , ω̇κ/p f ) = 0 for j = t − 1, t.

Looking at the long exact sequence induced by the following exact sequence 0→

ω̇κ
·p f

−→ ω̇κ → ω̇κ/p f
→ 0, it is enough to show that

Ext i
OM

(Rtπ1,∗π
∗

2 ω̇
′κ , ω̇κ) = 0 for i = t − 1, t, t + 1.

Since M is regular, the condition that the (set-theoretical) support of Rtπ1,∗π
∗

2 ω̇
′κ

has codimension> t in MF (and hence codimension> t + 1 in M), implies that

Ext6t+1
OM

(Rtπ1,∗π
∗

2 ω̇
′κ , ω̇κ) = 0.

This completes the proof of Proposition 3.18.

4. Proof of Proposition 3.19

This section is entirely devoted to proving Proposition 3.19. While this is the
essential technical core of the construction of Tp, readers may choose to skip it
and proceed to the last section directly. We keep the notation from the previous
sections.

4.1. Recollection of the moduli problems for M and M(p). We first recall
from the definition of M in Section 2.2 that, for the universal abelian variety A
over M, we have a universal filtration

0 = F (0)
pi , j ( F (1)

pi , j ( · · · ( F (ei )
pi , j = ωA/M,pi , j for i = 1, . . . , r; j = 1, . . . , fi ,
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with subquotients ω̇τ l
pi , j

. For l = 1, . . . , ei , we put

H(l)
pi , j :=

{
z ∈ (F (l−1)

pi , j )
⊥/F (l−1)

pi , j

∣∣ [$i ]z − τ l
pi , j($i)z = 0

}
,

where (F (l−1)
pi , j )

⊥ is the orthogonal complement of F (l−1)
pi , j in H 1

dR(A/M)pi , j

with respect to the natural pairing induced by the polarization. By [RX17,
Corollary 2.10], we have

(1) each H(l)
pi , j is a locally free coherent sheaf of rank two over M,

(2) F (l)
pi , j/F

(l−1)
pi , j is a rank-one subbundle of H(l)

pi , j (this is in fact a corollary of the
previous point because F (l)

pi , j/F
(l−1)
pi , j is a subbundle of H 1

dR(A/M)pi , j/F (l−1)
pi , j

contained in H(l)
pi , j since [$i ] − τ

(l)
pi , j($i) kills F (l)

pi , j/F
(l−1)
pi , j ), and

(3) there is a canonical isomorphism ∧2
OM

H(l)
pi , j
∼= ε̇τ l

pi , j
.

Moreover, by [RX17, Constructions 3.3 and 3.6], the partial Hasse invariants we
recalled in Section 2.11 extend to surjective homomorphisms over MF

m(l)
$i , j : H

(l)
pi , j � F (l−1)

pi , j /F
(l−2)
pi , j ⊂ H(l−1)

pi , j and

Hasse$i , j : H(1)
pi , j � ω̇

⊗p
τ

ei
pi , j−1
⊂
(
H(ei )

pi , j−1

)(p)
, (4.1.1)

for i = 1, . . . , r , j = 1, . . . , fi , and l = 2, . . . , ei .
Now, we recall from the definition of M(p) in Section 3.1 that, over M(p), we

have the following two isogenies of universal abelian varieties.

φ : A→ A′ and ψ : A′→ A.

We write F ′(l)pi , j and H′(l)pi , j for the corresponding constructions for A′. By the proof
of Proposition 3.3, we see that φ∗ and ψ∗ induce homomorphisms

φ∗pi , j,l : H
′(l)
pi , j → H(l)

pi , j and ψ∗pi , j,l : H
(l)
pi , j → H′(l)pi , j , (4.1.2)

such that φ∗pi , j,l and ψ∗pi , j,l are isomorphisms if pi 6= p, and, over MF, we have

Im(φ∗p, j,l) = Ker(ψ∗p, j,l) and Im(ψ∗p, j,l) = Ker(φ∗p, j,l)

and both modules are subbundles of rank one of the corresponding rank-two
vector bundles over MF. One can check from the definition that φ∗pi , j,l and ψ∗pi , j,l
respect the partial Hasse invariant maps (4.1.1), namely we have commutative
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diagrams of sheaves over M(p)F

H(l)
pi , j

ψ∗pi , j,l //

m(l)
$i , j

��

H′(l)pi , j

φ∗pi , j,l //

m(l)
$i , j

��

H(l)
pi , j

m(l)
$i , j

��
H(l−1)

pi , j

ψ∗pi , j,l // H′(l−1)
pi , j

φ∗pi , j,l // H(l−1)
pi , j

H(1)
pi , j

ψ∗pi , j,l //

Hasse$i , j

��

H′(1)pi , j

φ∗pi , j,l //

Hasse$i , j

��

H(1)
pi , j

Hasse$i , j

��
(H(ei )

pi , j−1)
(p)

ψ∗pi , j−1,l // (H′(ei )
pi , j−1)

(p)
φ∗pi , j−1,l // (H(ei )

pi , j−1)
(p),

for i = 1, . . . , r , j = 1, . . . , fi , and l = 2, . . . , ei .

4.2. Frobenius factor. Let k be a perfect field. A map g : Y → X of k-
schemes is called a Frobenius factor if it induces bijection on closed points,
and there are an integer s ∈ N and a morphism g′ : X (ps )

→ Y such that the
composition g ◦ g′ is the relative ps-Frobenius on X , where X (ps )

:= X ×k,Frobpr k.
It is proved in [He12, Proposition 4.8] that if g : Y → X is a proper morphism

of k-schemes of finite type that induces bijection on geometric points and if Y is
reduced and X is normal, then g is a Frobenius factor.

NOTATION 4.3. For a subset S ⊆ Σp, we write Sc for Σp\S. Recall that e and f
denote the ramification and inertia degree of p over p.

Recall that, elements in Σp come with a chosen order, as fixed in Section 2.1.
We consider the map θ : Σp→ Σp given by θ(τ l

p, j) = τ
l+1
p, j if l < e and θ(τ e

p, j) =

τ 1
p, j−1. When p is unramified over p, θ is exactly the action of Frobenius σ onΣp.

This way, the partial Hasse invariant map at τ (4.1.1) is a map

ω̇τ −→ ω̇θ−1τ or ω̇
⊗p
θ−1τ

.

We recommend the readers to assume that p is unramified over p when reading
this section first time. It helps to understand the key point of the argument.

To better imitate the unramified case, we rename τ l
p, j into τ( j−1)e+l and set

τa = τa mod e f , so that we have θ(τa) = τa+1. Accordingly, we write Hτ( j−1)e+l for
H(l)

pi , j , write φ∗τ( j−1)e+l
for φ∗p, j,l , write ψ∗τ( j−1)e+l

for ψ∗p, j,l , and write Haτ( j−1)e+l for the
corresponding partial Hasse invariant map (4.1.1) on AF, namely m(l)

$, j if l 6= 1
and Hasse$, j if l = 1. Similarly, Ha′τ denotes the partial Hasse invariant maps
between H′τ ’s that are defined for A′F.
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4.4. A combinatorics construction. For later convenience, we make explicit
the following combinatorics construction: for each S a nonempty proper subset of
Σp, we decompose the set S into the union of ‘adjacent places’ (according to the
action of θ on Σp), namely, we write

S = {τat−1, . . . , τat−λt , τat−1−1, . . . , τat−1−λt−1, . . . , τa1−1, . . . , τa1−λ1}, (4.4.1)

where the numbers

(1) a1, . . . , at ∈ {1, . . . , e f } are in increasing order such that ai+1 − ai > 2 for
all i > 2 and a1 + e f − at > 2, and

(2) λi ∈ {1, . . . , ai − ai−1 − 1} for all i > 2 and λ1 ∈ {1, . . . , a1 + e f − at − 1}.

Then we have

T := θ(S)\S = {τa1, . . . , τat }, and S\θ(S) = {τa1−λ1, τa2−λ2, . . . , τat−λt }.

Recall the stratification ẊT of MF in Section 2.12 and the stratification ẎS,S′ of
M(p)F in Notation 3.4. The following is a key geometric result on the restriction
of the natural map π1 :M(p)F→MF when restricted to these strata.

PROPOSITION 4.5. Let S be a subset of Σp, and put T := θ(S)\S. Then
π1(ẎS,Sc) = ẊT. More precisely, if we write pr : Ẏ ′S,Sc → ẊT for the (P1)#T-bundle
given by

∏
τ∈S\θ(S) P(Hτ ) (where the product is taken over ẊT), then π1|ẎS,Sc

factors as
ẎS,Sc

g
−→ Ẏ ′S,Sc

pr
−→ ẊT,

where g is a Frobenius factor.

Proof. The cases of S = ∅ and S = Σp correspond to the closure of the ordinary
locus of M(p)F. In this case, π1 is the Frobenius map and an isomorphism,
respectively. From now on, we assume that S is a nonempty proper subset of Σp.
We may assume that S is as described in Section 4.4 so that T = {τa1, . . . , τat }.

We first show that π1(ẎS,Sc) ⊆ ẊT. Take an S-point of ẎS,Sc , and we write Hτ

and H ′

τ for the evaluation of Hτ and H′τ at this S-point. For τ ∈ T = S\θ(S),
namely τ ∈ S and θ−1τ ∈ Sc, consider the following commutative diagram

Hτ

ψ∗τ //

Haτ
��

H ′

τ

φ∗τ //

Ha′τ
��

Hτ

Haτ
��

(Hθ−1τ )
(p)

ψ∗
θ−1τ // (H ′

θ−1τ
)(p)

φ∗
θ−1τ // (Hθ−1τ )

(p).

(4.5.1)
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Here and later, if τ = τa with a 6≡ 1 mod e, we loose all the Frobenius twists on
the modules at θ−1τ . The condition θ−1τ ∈ Sc implies that Ker(φ∗

θ−1τ
) = ω̇

⊗p
A′,θ−1τ

(which would be ω̇A′,θ−1τ if τ = τa with a 6≡ 1 mod e, as said above). Since
the image of Ha′τ :H

′

τ →H ′(p)
θ−1τ

is exactly ω̇⊗p
A′,θ−1τ

, we see that the composition
φ∗
θ−1τ
◦Ha′τ is the zero map, so is the composition Haτ ◦φ∗τ . In particular, this means

that Im(φ∗τ ) ⊆ Ker(Haτ ). But τ ∈ S implies that ω̇A,τ ⊆ Ker(ψ∗τ ) = Im(φ∗τ ). This
shows that Haτ (ω̇A,τ ) = 0, meaning that the image of this S-point under π1 lies in
Ẋτ (for our chosen τ ∈ T). Applying this to each τ ∈ T shows that π1(ẎS,Sc) ⊆ ẊT.

We now construct the map morphism g that factors the morphism π1. Given
an S-point y of ẎS,Sc , π1(y) belongs to ẊT as shown above. For each τ ∈

S\θ(S) = {τa1−λ1, τa2−λ2, . . . , τar−λr }, the image φ∗τ (H
′

τ ) ⊆ Hτ defines a rank-
one subbundle of the latter. So this lifts the map π1 to a map

g : ẎS,Sc −→ P(Hτa1−λ1
)×ẊT

· · · ×ẊT
P(Hτar−λr

) =: Ẏ ′S,Sc .

Since ẎS,Sc is reduced and Ẏ ′S,Sc is normal (as both are smooth over F), we
may use the criterion of Frobenius factors as recalled in Section 4.2. To prove
the Proposition, it suffices to show that g induces a bijection on k-points for any
algebraically closed field k containing F.

We start with a k-point ẋ = (A = Aẋ , λ, α,F = F ẋ) of ẊT ∩Mc, with k
algebraically closed. We write Hτ for Hτ,ẋ , and we ignore the Frobenius twist on
each Hτ (τ ∈ Σp), as it is a two-dimensional vector space over an algebraically
closed field.

Claim. Giving a k-point y in ẎS,Sc ∩ π−1
1 (ẋ) is equivalent to specifying, for

each τ ∈ Σp, a one-dimensional subspace Mτ ⊆ Hτ (which will be the image
φ∗τ (H

′

τ )), such that

(i) Haτ (Mτ ) ⊆ Mθ−1τ , and

(ii) for each τ ∈ Sc, Mτ = ω̇A,τ , and

(iii) for each τ ∈ θ(S), Mτ = Ker(Haτ ).

We temporarily assume this Claim and deduce the Proposition. Note that, for τ ∈
Sc
∪ θ(S), Mτ is already uniquely determined by (ii) and (iii). Actually, for τ ∈

Sc
∩ θ(S) = T, Mτ is ‘over-determined’ as required to be equal to both ω̇A,τ by

(ii) and Ker(Haτ ) by (iii), but these two subspaces of Hτ are equal as the Hasse
invariant ḣτ vanishes at ẋ . The only unspecified Mτ ’s are those with τ ∈ S\θ(S),
or explicitly with τ ∈ {τar−λr , τar−1−λr−1, . . . , τa1−λ1} in terms of the combinatorics
of Section 4.4. Their choices are equivalent to specifying a point in Y ′S,Sc over ẋ .
To conclude, we observe that (i) holds for any such choice of Mτ .
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• If τ ∈ θ(Sc), Haτ (Mτ ) ⊆ Im(Haτ ) = ω̇A,θ−1τ = Mθ−1τ by (ii).

• If τ ∈ θ(S), Haτ (Mτ ) = 0 by (iii).

This completes the proof of the Proposition assuming the Claim.
Now we turn to the proof of the Claim. First, given a point

ẏ = ((A, λ, α,F ); (A′, λ′, α′,F ′
);φ,ψ) ∈ ẎS,Sc ∩ π−1

1 (ẋ),

we set Mτ := φ
∗

τ (H
′

τ ). Since ẏ ∈ ẎS,Sc , we deduce (ii) and (iii) as follows, which
further imply (i) formally as shown above.

• for each τ ∈ Sc, Mτ := Im(φ∗τ ) = Ker(ψ∗τ ) = ω̇A,τ , and

• for each τ ∈ θ(S), ω̇A,θ−1τ = Ker(φ∗
θ−1τ

); so φ∗
θ−1τ
◦ Ha′τ = 0, or equivalently

Haτ ◦ φ∗τ = 0. From this we see that Mτ := Im(φ∗τ ) = Ker(Haτ ).

Conversely, given Mτ for τ ∈ Σp satisfying (i)–(iii), let D̃(A) denote the
contravariant Dieudonné module, which decomposes into the direct sum

D̃(A) =
r⊕

i=1

fi⊕
j=1

D̃(A)pi , j

according to the OF -action, so that each summand D̃(A)pi , j is a free module of
rank two over OFpi

⊗W (Fpi ),τpi , j W (k) =: OFpi ,k
(which is a complete discrete

valuation ring). In particular, D̃(A)pi , j/p ∼= H 1
dR(A)pi , j is a k[xi ]/(x

ei
i )-module

free of rank two, where the xi acts by [$i ]. In particular, we write x for the action
of [$ ] on D̃(A)p, j . We write

µpi , j : D̃(A)pi , j → D̃(A)pi , j/p ∼= H 1
dR(A)pi , j

for the naturally induced map. For each l = 0, 1, . . . , e, we write F̃ (l)
p, j for the

preimage of F (l)
p, j under the map µp, j , and for l = 1, . . . , e, write H̃ (l)

p, j :=

x−1F̃ (l)
p, j so that its image under

µ
(l)
p, j : D̃(A)p, j

µp, j
−−→ H 1

dR(A)p, j → H 1
dR(A)p, j/F

(l−1)
p, j

is exactly H (l)
p, j . In particular, H̃ (l)

p, j contains F̃ (l)
p, j = xH̃ (l−1)

p, j as OFp,k-modules
with colength 1, and H̃ (1)

p, j = x−1 pD̃(A)p, j . Here and later, we say an inclusion
M ⊆ N of OFp,k-modules has colength i if N/M is a successive extension of i
copies of OFp,k/($)

∼= k as an OFp,k-module.
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Now for each l = 1, . . . , e, we define H̃ ′(l)
p, j to be the preimage of Mτ ⊆Hτ for

τ = τ l
pi , j under the above map µ(l)p, j ; it is an OFp,k-submodule of H̃ (l)

p, j of colength
1. Consider the OF -stable submodule M̃ =

⊕r
i=1

⊕ fi
j=1 M̃pi , j of D̃(A) with

M̃pi , j :=

{
D̃(A)pi , j if pi 6= p,

p−1xH̃ ′(1)
p, j if pi = p.

We shall show that M̃ is a Dieudonné submodule of D̃(A), namely, pM̃ ⊆ V M̃ ⊆
M̃ . This is clear for the summands with pi 6= p. At p, in fact, we shall prove the
following stronger statements.

(a) For each j = 1, . . . , f and l = 1, . . . , e−1, we have an inclusion xH̃ ′(l+1)
p, j ⊂

H̃ ′(l)
p, j of colength 1 (which in particular implies that H̃ ′(l)

p, j ⊂ H̃ ′(l+1)
p, j ).

(b) For each j = 1, . . . , f , we have an inclusion x1−eV (H̃ ′(1)
p, j ) ⊂ H̃ ′(e)

p, j−1 of
colength 1, which in particular implies that H̃ ′(e)

p, j−1 ⊂ p−1V (H̃ ′(1)
p, j ) (note

that x e and p define the same ideal in OFp,k).

Provided (a) and (b), we deduce the following inclusion

V M̃p, j = V (p−1xH̃ ′(1)
p, j )⊂ H̃ ′(e)

p, j−1 ⊂ x−1H̃ ′(e−1)
p, j−1 ⊂ · · · ⊂ x1−eH̃ ′(1)

p, j−1 = M̃p, j−1,

which has total colength e (accumulating 1 from each inclusion). So in particular,
pM̃p, j−1 is also contained in V M̃p, j . We now check (a) and (b). For (a), we first
note that the multiplication by x map: ·x : H̃ (l+1)

p, j → H̃ (l)
p, j is injective and its

reduction modulo x is exactly the partial Hasse invariant Haτ l+1
p, j
:H (l+1)

p, j →H (l)
p, j .

The fact Haτ l+1
p, j
(Mτ l+1

p, j
) ⊆ Mτ l

p, j
from (i) immediately implies that ·x sends H̃ ′(l+1)

p, j

into H̃ ′(l)
p, j , where the cokernel can be easily computed to have length 1. To see

(b), we first claim that the map x1−eV takes H̃ (1)
p, j into H̃ (e)

p, j−1. But this is clear, as

x1−eV (H̃ (1)
p, j ) = x1−eV (x−1 pD̃(A)p, j) = ω̃A,p, j−1,

and it is an OFp,k-submodule of H̃ (e)
p, j−1 of colength 1. Moreover, inspecting the

construction of Hasse$, j recalled in Section 2.11, we see that the reduction of the
map x1−eV modulo x is exactly Hasse$, j . The condition (i) Hasse$, j(Mτ 1

p, j
) ⊆

Mτ e
p, j−1

in turn implies that x1−eV takes H̃ ′(1)
p, j into H̃ ′(e)

p, j−1, and the cokernel of
this map is one-dimensional over k. This completes checking (a) and (b).

Now by standard Dieudonné theory, the inclusions pM̃ ⊆ V M̃ ⊆ M̃ we just
proved above imply that there exists an abelian variety A′ together with OF -
equivariant isogenies φ : A → A′ such that the induced map on Dieudonné

https://doi.org/10.1017/fms.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.26


Unramifiedness of Galois representations 47

modules φ∗ : D̃(A′) → D̃(A) can be identified with the natural inclusion
M̃ ⊆ D̃(A). By construction D̃(A)/M̃ is a free module of rank one over Fp⊗Fp k
as opposed to having rank one over Fp[x]/(x e) ⊗Fp k. (Note that the latter
condition would give rise to an isogeny such that φ ◦ ψ is multiplication by p,
but not ‘multiplication by the ideal p’.) We see that there exist a (dual) isogeny
ψ : A′→ A and a polarization λ′ : A′∨→ A′⊗OF c

′ satisfying condition (3)(a)–(d)
in Section 3.1. The tame level structure i on A naturally propagates to A′. So it
suffices to define a filtration F ′ on ωA′ satisfying (3)(e) of Section 3.1 and check
that the point defined lies on ẎS,Sc . If pi 6= p, φ∗ and ψ∗ induce isomorphisms
between H 1

dR(A)pi , j and H 1
dR(A

′)pi , j ; this forces F ′(l)
pi , j = φ∗(F (l)

pi , j). We now
consider the case at p. For j = 1, . . . , f and l = 1, . . . , e − 1, we set

F ′(l)
p, j := xH̃ ′(l+1)

p, j /pD̃(A′)p, j and F ′(e)
p, j := V D̃(A′)p, j+1/pD̃(A′)p, j = ωA′,p, j ;

they are subspaces of H 1
dR(A

′)p, j . Note that by (a) above, we have an inclusion
F ′(l)

p, j ⊆ F ′(l+1)
p, j of colength 1, for l = 1, . . . , e − 1. Similarly, by (b) above, we

have an inclusion

xH̃ ′(e)
p, j ⊂ xp−1V (H̃ ′(1)

p, j ) = xp−1V (px−1 M̃p, j) = V D̃(A′)p, j+1,

which has colength 1. In other words, we have an inclusion F ′(e−1)
p, j ⊂ F ′(e)

p, j of
colength 1. All these imply that F ′(l)

p, j ’s define the needed filtration F on ωA′ .
Analogous to the situation on A, for j = 1, . . . , f and l = 1, . . . , e, we set
ω̇′
τ l
p, j
:=F ′(l)

p, j /F
′(l−1)
p, j .

Finally, we check that the point we constructed belongs to ẎS,Sc , For this, it is
enough to check the following.

• For τ ∈ Sc, ω̇τ = Ker(ψ∗τ ) = Im(φ∗τ ), which follows from the construction and
condition (ii).

• For τ ∈ S, ω̇′τ = Ker(φ∗τ ), which is equivalent to Haθτ ◦ φ∗θτ = 0, which further
follows from the construction and condition (iii).

This concludes the verification of the Claim and hence completes the proof of
the Proposition.

COROLLARY 4.6. Let T be a subset of Σp with t = #T.

(1) Over the open stratum Ẋ ◦T, the fiber dimension of π1 is less than or equal to t .
The equality holds only when T is sparse (this is called spaced in [GKa12]),
namely, τ and θτ do not belong to T simultaneously for any τ ∈ Σp.
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(2) Suppose that T is a sparse subset of Σp, then the t-dimensional fibers of
π−1

1 (ẊT) are the (not necessarily disjoint) union of ẎS,Sc such that T =
θ(S)\S.

(3) We write Sλ for the subset S given in (4.4.1) as determined by T and a tuple
λ = (λ1, . . . , λt). Then for any two tuples λ, λ′, if |λ′i − λi | > 2 for some
i ∈ {1, . . . , r}, then π1(ẎSλ,S

c
λ
∩ ẎSλ′ ,S

c
λ′
) is disjoint from the open stratum Ẋ ◦T.

(4) Let λ and λ′ be two tuples such that λ′i = λi for i 6= i0 and λ′i0
= λi0 + 1.

Then the ideal sheaf defined by the inclusion ẎSλ,S
c
λ
∩ ẎSλ′ ,S

c
λ′
↪→ ẎSλ,S

c
λ

is

ω̇A′,τai−λ
′
i
⊗ ω̇−1

A,τai−λ
′
i
.

Proof. (1). By Proposition 4.5, each irreducible component ẎS,Sc is a fiber bundle
of pure dimension #(θ(S)\S) over Ẋθ(S)\S. The base is the union of all open
strata Ẋ ◦T′ with T′ ⊇ θ(S)\S. In particular, the codimension of Ẋ ◦T′ is #T′ which
is greater than or equal to the fiber dimension #θ(S)\S and the equality holds
exactly when T′ = θ(S)\S (which implies that T′ is sparse). Since this holds true
for all irreducible components, (1) is clear.

(2). This is an immediate corollary of (1).
(3). We know that ẎSλ,S

c
λ
∩ẎSλ′ ,S

c
λ′
= ẎSλ∪Sλ′ ,S

c
λ∪S

c
λ′
. by Lemma 3.5(2). If λ′i−λi >

2 for some i , then this intersection is contained in ẎS′,S′c for

S′ = Sλ ∪ {τai−λi−2}.

But then θ(S′)\S′ = T ∪ {τai−λi−1}. So we have

π1(ẎSλ,S
c
λ
∩ ẎSλ′ ,S

c
λ′
) = π1(ẎSλ∪Sλ′ ,S

c
λ∪S

c
λ′
) ⊆ π1(ẎS′,S′c) ⊆ ẊT∪{τai−λi−1}.

In particular, π1(ẎSλ,S
c
λ
∩ ẎSλ′ ,S

c
λ′
) does not intersect with Ẋ ◦T.

(4) Note that the condition implies that Sλ′ = Sλ∪{τai−λ
′

i
}. So ẎSλ,S

c
λ
∩ ẎSλ′ ,S

c
λ′
=

ẎSλ′ ,S
c
λ

is a closed subscheme in ẎSλ,S
c
λ

defined as the vanishing locus of

φ∗τai−λ
′
i
: ω̇A′,τai−λ

′
i
−→ ω̇A,τai−λ

′
i
.

The statement of (4) follows, because the ideal sheaf of the vanishing locus of a
section of a line bundle is the inverse line bundle.

Before proceeding, we need some additional geometric information regarding
the map π1 : ẎS,Sc → ẊT.
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PROPOSITION 4.7. Let S be a subset of Σp and put T := θ(S)\S.

(1) We have the following isomorphisms of line bundles on ẎS,Sc :

if τ, θ−1τ ∈ S, ω̇A′,τ ∼=

{
ω̇
⊗p
A,θ−1τ

if τ = τa with a ≡ 1 mod e,
ω̇A,θ−1τ otherwise,

(4.7.1)

if τ, θ−1τ ∈ Sc, ω̇A,τ ∼=

{
ω̇
⊗p
A′,θ−1τ

if τ = τa with a ≡ 1 mod e,
ω̇A′,θ−1τ otherwise.

(4.7.2)

(2) For each τ ∈ S\θ(S), we write Oτ (−1) for the canonical subline bundle on
Ẏ ′S,Sc at the P1-factor indexed by τ . Then we have

ω̇A′,τai−λi
∼= g∗Oτai−λi

(1), and

g∗Oτai−λi
(−1) ∼=

{
ω̇
⊗p
A′,τai−λi−1

if ai − λi ≡ 1 mod e,

ω̇A′,τai−λi−1 otherwise.
.

Proof. (1) We shall prove (4.7.2) and the proof of (4.7.1) is similar. So we assume
that τ, θ−1τ ∈ Sc. For simplicity, we assume that τ = τa with a ≡ 1 mod e; the
argument for the other case is similar by loosing all the Frobenius twists in the
proof (and hence getting ω̇A′,θ−1τ as opposed to ω̇⊗p

A′,θ−1τ
on the right hand side

of (4.7.2)). Take an S-point of ẎS,Sc ; we look at the commutative diagram (4.5.1)
which we copy to below

Hτ

ψ∗τ //

Haτ
��

H ′

τ

φ∗τ //

Ha′τ
��

Hτ

Haτ
��

(Hθ−1τ )
(p)

ψ∗
θ−1τ // (H ′

θ−1τ
)(p)

φ∗
θ−1τ // (Hθ−1τ )

(p).

(4.7.3)

Since τ, θ−1τ ∈ Sc, we have

ω̇A,τ
∼= Ker(ψ∗τ :Hτ →H ′

τ ) = Im(φ∗τ :H
′

τ →Hτ ).

Note that ω̇⊗p
A′,θ−1τ

is also the image of H ′

τ but under the map Ha′τ . To prove the
desired isomorphism, it suffices to show that

Ker(Ha′τ ) = Ker(φ∗τ ) = Im(ψ∗τ ). (4.7.4)

Since both sides are subbundle of H ′

τ of rank one, it suffices to show that Ha′τ ◦
ψ∗τ = 0, which is equivalent to show that ψ∗

θ−1τ
◦ Haτ = 0. But the image of Haτ
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is exactly ω̇⊗p
A,θ−1τ

which lies in the kernel of ψ∗
θ−1τ

by the assumption θ−1τ ∈ Sc.
So we conclude (4.7.4) and hence prove (1).

(2) The first equality follows from the equality

∧
2H′τai−λi

∼= Kerφ∗τai−λi
⊗ Imφ∗τai−λi

∼= ω̇A′,τai−λi
⊗ g∗Oτai−λi

(−1),

because the left hand side ∧2H′τai−λi
can be canonically trivialized over M(p) by

Section 4.1(3) and [RX17, Lemma 2.5] (through pulling back along π2).
For the second equality, we shall only prove it when ai − λi ≡ 1 mod e; the

other case is similar but without the additional Frobenius pullbacks. We take an
S-point of ẎS,Sc as above; we may look at (4.7.3) for τ = τai−λi . We note that
ω̇
⊗p
A′,τai−λi−1

is the image of H ′

τai−λi
under Ha′τai−λi

, and g∗Oτai−λi
(−1) is the image

of H ′

τai−λi
under φ∗τai−λi

. So it suffices to prove that

Ker(Ha′τai−λi
) ∼= Ker(φ∗τai−λi

) = Im(ψ∗τai−λi
).

Similar to the argument in (1), for rank reasons, it suffices to show that

Ha′τai−λi
◦ ψ∗τai−λi

:Hτai−λi
−→ (H ′

τai−λi−1
)(p)

is the zero map. But this follows from that ψ∗τai−λi−1
(ω̇

(p)
A,τai−λi−1

) = 0 because
τai−λi−1 ∈ Sc.

The following corollary of Grothendieck’s formal function theorem will reduce
Proposition 3.19 to a calculation at the component described in Corollary 4.6(2).

PROPOSITION 4.8. Let h : X → Y be a projective morphism between noetherian
schemes, and let t = max{dim X y|y ∈ Y }. Let F be a coherent sheaf on X.

(1) Then Ri h∗(F) = 0 for all i > t .

(2) Suppose that X is the union of two components X1 ∪ X2, such that
max{dim X2,y|y ∈ Y } < t . Then we have

Rt h∗(F) ∼= Rt h∗(F |X1).

Proof. (1) is a corollary of Grothendieck’s formal function theorem; see for
example, [Hart77, Corollary III.11.2].

(2) Write i : X1 → X for the natural inclusion. Let G denote the kernel of the
surjective morphism F → i∗F |X1 ; then G is supported on X2. By (1), Rr h∗(G) =
Rr+1h∗(G) = 0. So we proved (2).
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4.9. Proof of Proposition 3.19. We are now ready to prove Proposition 3.19.
By Corollary 4.6(1), for every point ẋ of M of codimension t , dimπ−1

1 (x) 6 t
and the equality holds only when ẋ is a generic point of Ẋ ◦T for some sparse set
T ⊆ Σp with t = #T. By Proposition 4.8(1), the stalk of R>tπ1,∗π

∗

2 ω̇
′κ
F is zero

at all other points (of codimension t). So to prove Proposition 3.19, it suffices to
show that, for each sparse set T ⊆ Σp with t = #T, Rtπ1,∗π

∗

2 ω̇
′κ
F vanishes on every

geometric generic point ηT of Ẋ ◦T. By Corollary 4.6(2), the t-dimension fibers of
ẊT are exactly those of ẎS,Sc for which θ(S)\S = T. Write ŻT for the union of
these ẎS,Sc (with the reduced scheme structure). Using Proposition 4.8(2), we see
that

(Rrπ1,∗π
∗

2 ω̇
′κ
F )ηT
∼= (Rrπ1,∗(π

∗

2 ω̇
′κ)|ŻT)ηT . (4.9.1)

The proof of Proposition 3.19 is then reduced to prove the vanishing of (4.9.1) for
each nonempty sparse set T ⊆ Σp. Here and after, we shall frequently write (−)ηT
to indicate the base change to the point ηT. We shall prove Proposition 3.19 in the
following two steps:

(1) Let (ẎS,Sc)red
ηT

denote the reduced subscheme of (ẎS,Sc)ηT . We shall show that
the natural map gred

ηT
: (ẎS,Sc)red

ηT
→ (Ẏ ′S,Sc)ηT

∼= (P1)tηT defined below in (4.9.2)
is the p-Frobenius in the factor labeled by τ for which τ = τa with a ≡
1 mod e; so in particular, (ẎS,Sc)red

ηT
itself is isomorphic to (P1)tηT .

(2) We shall prove that (π∗2 ω̇
′κ)(ŻT)ηT is a successive extension of line bundles LS

supported on each (ẎS,Sc)ηT , and LS|(ẎS,Sc )red
ηT

is the external tensor product of
line bundles on P1

ηT
of the form O(n) with n > −1 (assuming our conditions

on weights in Proposition 3.19).

We start with (1). Note that the map g : ẎS,Sc → Ẏ ′S,Sc is a Frobenius factor, so
the base change (ẎS,Sc)ηT to the geometric generic point may not be reduced; we
write (ẎS,Sc)red

ηT
for its reduced subscheme. Then the base change of g over to ηT,

denoted by gηT , gives a Frobenius factor (over the residue field κT at ηT):

gred
ηT
: (ẎS,Sc)red

ηT
→ (Ẏ ′S,Sc)ηT . (4.9.2)

We claim that this is in fact the p-Frobenius in the factor labeled by τ for which
τ = τa with a ≡ 1 mod e, and an isomorphism on other factors.

To easy the presentation, we may extend both M and M(p) from over O
to over the completion of maximal unramified extension of O. This way, all
closed points of M and M(p) are defined over Fp. We follow the proof of
Proposition 3.3 to take a small enough Zariski open neighborhood U ⊂ M of
ηT (in the integral model) and then take a small enough Zariski open subset
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V ⊂ π−1
1 (U) ⊂M(p) intersecting the fiber ẎS,Sc , such that the tuple

(Hτ |V ,H′τ |V , φ∗τ , ψ∗τ )τ∈Σp is isomorphic to

×

(
O⊕2

V ,O⊕2
V ,

(
1 0
0 τ($)

)
,

(
τ($) 0

0 1

))
τ∈Σp

.

Let F denote the moduli problem of rank-one OV -subbundle Mτ ⊆ O⊕2
V for

each τ ∈ Σp\T corresponding to the subbundle ω̇A,τ |V ⊂ Hτ |V . Let G denote
the moduli problem of rank-one OV -subbundles Mτ ⊂ O⊕2

V for each τ ∈ S
corresponding to the subbundles ω̇A,τ |V ⊂ Hτ |V and rank-one subbundle M ′τ ⊂
O⊕2

V for each τ ∈ Sc corresponding to the subbundle ω̇A′,τ |V ⊆ H′τ |V . The theory
of local model says that ẊT (respectively ẎS,Sc ) is étale locally isomorphic to FFp

(respectively GFp
). The local parameters of FFp

(at a point) are uτ for τ ∈ Σp\T

which measures the position ω̇A,τ |V ⊂ Hτ |V . In particular, the completion of ẊT

at a closed Fp-point x is isomorphic to FpJ(uτ )τ∈Σp\TK. The local parameters of
GFp

(at a point) are uτ for τ ∈ S which measures the position of ω̇A,τ |V ⊂ Hτ |V ,
and vτ for τ ∈ Sc which measures the position of ω̇A′,τ |V ⊂ H′τ |V . In particular,
the completion of ẎS,Sc at a closed Fp-point y ∈ π−1

1 (x) ∩ ẎS,Sc is isomorphic
to FpJ(uτ )τ∈S, (vτ )τ∈ScK. Note that we can use the same notation uτ for local
parameters on FFp

and on GFp
because in the homomorphism

O∧U ,x ∼= FpJ(uτ )τ∈Σp\TK −→ O∧V,y ∼= FpJ(uτ )τ∈S, (vτ )τ∈ScK (4.9.3)

on the completions induced by π1, one may choose the local parameters in a
compatible way so that uτ for τ ∈ S is taken to uτ .

To understand the image of uτ for τ ∈ (Σp\T)\S = Sc
∩ σ(Sc), we consider a

variant of the argument of Proposition 4.7(1). If τ, θ−1τ ∈ Sc and if τ = τa with
a ≡ 1 mod e, the proof of Proposition 4.7(1) implies that Ker(Ha′τ ) = Ker(φ∗

τ,Fp
).

So we may choose an isomorphism ζτ : Hτ,Fp
∼= H′(p)

θ−1τ,Fp
such that Ha′τ is the

same as ζτ ◦ φ∗τ,Fp
. Under this identification, we have

ζτ (ω̇A,τ,Fp
) = ζτ (Im(φ∗τ,Fp

)) = Im(Ha′τ ) = ω̇
⊗p
A′,θ−1τ,Fp

.

So we see that we can rearrange the choices of local parameters so that the local
parameter uτ (for τ ∈ Sc

∩ θ(Sc) and τ = τa with a ≡ 1 mod e) is sent to v p
θ−1τ

under the map (4.9.3). The same argument shows that, when τ ∈ Sc
∩ θ(Sc) and

τ = τa with a 6≡ 1 mod e, we can rearrange the choices of local parameters so
that uτ is sent to vθ−1τ .

Using this, we see that the completion at a closed point yηT of (ẎS,Sc)ηT is
isomorphic to

Fp((uτ )τ∈Σp\T)
alg
⊗Fp[(uτ )τ∈Σp\T]

Fp[(uτ )τ∈S, (vθ−1τ )τ∈Sc∩θ(Sc)]J(vτ )τ∈θ−1(S)∩ScK.
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Using the identification of uτ with v p
θ−1τ

(respectively vθ−1τ ) for τ ∈ Sc
∩θ(Sc)with

τ = τa for a ≡ 1 mod e (respectively a 6≡ 1 mod e), we see that the completion
of (ẎS,Sc)red

ηT
at a closed point yηT is isomorphic to

κTJ(vτ )τ∈θ−1(S)∩ScK.

Here we recall that κT is the residue field of ηT and vτ is the coordinate for the
subbundle ω̇A′,τ ⊆ H ′τ .

On the other hand, the completion of (Ẏ ′S,Sc)ηT at fηT(yηT) is isomorphic to
κTJ(v′τ )τ∈S\θ(S)K, where v′τ is the coordinate of the chosen subbundle of Hτ in
the definition of Ẏ ′S,Sc . We need to show that, up to adjusting the local parameter
v′τ ,

for every τ ∈ S\θ(S), f ∗ηT(v
′

τ ) =

{
v

p
θ−1τ

if τ = τa with a ≡ 1 mod e;
vθ−1τ if τ = τa with a 6≡ 1 mod e.

(4.9.4)
For this, we fix one such τ ∈ S\θ(S). We assume that τ = τa with a ≡ 1 mod e
(and the other case can be proved in the same way by removing all the Frobenius
twists). Following exactly the same argument as above, we start by noticing that
Ker(Ha′τ ) = Ker(φ∗

τ,Fp
). So we may choose an isomorphism ζτ :Hτ,Fp

∼=H′(p)
θ−1τ,Fp

such that Ha′τ is the same as ζτ ◦ φ∗τ,Fp
. Under this identification, we have

ζτ (Im(φ∗τ,Fp
)) = Im(Ha′τ ) = ω̇

⊗p
A′,θ−1τ,Fp

.

So it follows that, up to adjusting the local parameter, (4.9.4) holds. Since gred
ηT

is
already a Frobenius factor, it must take the form as described in (1).

Now we may identify (ẎS,Sc)red
ηT

with (P1
ηT
)t . Write Oi(1) for the canonical

quotient bundle from the i th factor. In particular, g∗ηTOτai−λi
(1) is equal to Oi(p)

if ai − λi ≡ 1 mod e and to Oi(1) otherwise. As a corollary of this and
Proposition 4.7, we have

ω̇A′,τ |(ẎS,Sc )red
ηT

∼=


Oi(p) if τ = τai−λi and ai − λi ≡ 1 mod e,
Oi(1) if τ = τai−λi and ai − λi 6≡ 1 mod e,
Oi(−1) if τ = τai−λi−1,

O(ẎS,Sc )red
ηT

otherwise.

(4.9.5)

We now turn to (2). Corollary 4.6(3) and (4) explained the intersection relation
among ẎSλ,S

c
λ
’s. Put si = ai − ai−1 − 1 for i > 2 and s1 = a1 + e f − at − 1.

For example when t = 2, the following diagram shows the intersection relation,
where two irreducible components of ŻT intersect in codimension 1 if they are
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linked by a line, and they intersect in codimension 2 if they are at the opposite
vertexes of a square:

ẎS1,1,S
c
1,1

ẎS1,2,S
c
1,2

· · · ẎS1,s2 ,S
c
1,s2

ẎS2,1,S
c
2,1

ẎS2,2,S
c
2,2

· · · ẎS2,s2 ,S
c
2,s2

...
...

. . .
...

ẎSs1,1,S
c
s1,1

ẎSs1,2,S
c
s1,2

· · · ẎSs1,s2 ,S
c
s1,s2
.

Moreover, these ẎSλ,S
c
λ
’s have proper intersections by the proof of

Proposition 3.3. So by Corollary 4.6(4), ω̇κ |ŻT is the successive extension of

ω̇κ |ẎSλ,Sc
λ

⊗

t⊗
i=1:λi 6=si

(
ωA′,τai−λi−1 ⊗ ω

−1
A,τai−λi−1

)
for all λi ∈ {1, . . . , si}, (4.9.6)

in which the term with λ = 1 is the subobject and the term with λ = (si)i=1,...,t is
the quotient object. Restricting this to the (P1

ηT
)t -bundle (Ẏ ′Sλ,Sc

λ
)red
ηT

, this is equal to

t⊗
i=1


Oi(pkai−λi − kai−λi−1) if λi = si and ai − λi ≡ 1 mod e,
Oi(kai−λi − kai−λi−1) if λi = si and ai − λi 6≡ 1 mod e,
Oi(pkai−λi − kai−λi−1 − 1) if λi 6= si and ai − λi ≡ 1 mod e,
Oi(kai−λi − kai−λi−1 − 1) if λi 6= si and ai − λi 6≡ 1 mod e.

By the assumption of Proposition 3.19, the numbers in the parentheses of the
right hand side are always > 1. Since H 1(P1,O(n)) = 0 for n > −1, we see that

R>0π1,∗((4.9.6)|(Ẏ ′
Sλ,S

c
λ
)red
ηT
) = 0.

It then follows that
Rtπ1,∗

(
(π∗2 ω̇

′κ)|(ŻT)red
ηT

)
= 0. (4.9.7)

To prove the needed vanishing of (4.9.1) and hence Proposition 3.19, we
observe that, due to the cohomological dimension, by Proposition 4.8(1),
Rtπ1,∗(−) is a right exact functor on sheaves set-theoretically supported on
(ŻT)

red
ηT

, and it is trivial on any coherent sheaf set-theoretically supported in
dimension < t subspace of (ŻT)

red
ηT

. We show below that, by (a variant of)
Nakayama lemma, this implies that

Rtπ1,∗
(
(π∗2 ω̇

′κ)|(ŻT)ηT

)
= 0.
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Indeed, write F for (π∗2 ω̇
′κ)|(ŻT)ηT . If I is the ideal sheaf of (ŻT)

red
ηT

in (ŻT)ηT , it is
enough to show that

Rtπ1,∗(I iF/I i+1F) = 0 for every i > 0.

But I i/I i+1
⊗F � I iF/I i+1F . By the right exactness of Rtπ1,∗(−), it suffices

to show the vanishing of Rtπ1,∗(I i/I i+1
⊗ F). But I i/I i+1

⊗ F is (scheme-
theoretically) supported on (ŻT)

red
ηT

and it receives generic surjective maps from
finite direct sums of F |(ŻT)red

ηT
(for example, induced by local generators of I i ). By

the properties of Rtπ1,∗(−) recalled above and the vanishing result (4.9.7), we
deduce that Rtπ1,∗(I i/I i+1

⊗F) = 0. This concludes Proposition 3.19.

5. Unramifiedness of modular representations in weight 1

Recall that O denotes the ring of integers in a large enough finite extension E
of Qp, with uniformizer $ and residue field F. For simplicity, we assume for the
entirety of this section that the prime p is inert in F , so that the Hecke operator
Tp will be denoted by Tp. We denote by ε : G F → O× the p-adic cyclotomic
character of G F , and by εm its reduction modulo $m .

Recall that Sh denotes the Hilbert modular Shimura scheme, smooth over
SpecO, of tame level K p satisfying Hypothesis 2.3. For any positive integer m,
denote by Shm the base change of Sh → SpecO to Spec(O/($m)), and write
similarly Shtor

m , ω
κ
m , and so on.

We assume throughout this section that p is odd.

5.1. Shimura varieties with auxiliary level structures. We follow [CG12+]
for most of the notation and constructions of this section. Recall that S denotes
the finite set of places including the archimedean places, p-adic places, and all
the places q where Kq 6= GL2(OFq) (cf. Section 2.8). Let Q denote a finite set
of finite places of F disjoint from S . (We will fix later suitable sets Q consisting
of Taylor–Wiles primes; for now, Q = ∅ is allowed.) With abuse of notation, we
will often use the letters S and Q also to denote the ideals of OF determined by
the ‘product’ of the finite places in S and Q, respectively.

Denote by Sh(Q) (respectively Sh(Q)1) the Shimura scheme over SpecO of
tame level

K p(Q) :=
{(

a b
c d

)
∈ K p

; c ≡ 0 mod Q
}

and

K p(Q)1 :=
{(

a b
c d

)
∈ K p(Q); d ≡ a mod Q

}
, (5.1.1)
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respectively. For each c ∈ C, there is a natural étale morphism Mc(Q)1 →
Mc(Q) → Mc, where the first map has Galois group (OF/QOF)

× ∼=∏
q∈Q(OF/q)

×. Note that we have equalities

K p K p ∩O×F = K p(Q)K p ∩O×F = K p(Q)1 K p ∩O×F . (5.1.2)

So when passing to the quotient by this group (as in the beginning of Section 2.4)
and summing over all c ∈ C, we obtain a natural étale cover

Sh(Q)1 → Sh(Q)→ Sh, (5.1.3)

where the first map has Galois group (OF/QOF)
×. (In an earlier version of this

paper, we used another tame level structure that causes further complication. We
thank the anonymous referee for pointing out this.) Let (OF/QOF)

× � ∆ be a
quotient map and denote by Mc(Q)∆ (respectively Sh(Q)∆) the corresponding
subcover over Mc(Q) (respectively Sh(Q)) with Galois group ∆.

We now explain the extension of (5.1.3) to the toroidal compactification. Using
what we have recalled on the toroidal compactifications in Section 2.5, we see that
over each cusp of Mc labeled by C = (a, b, L , i, j, λ, α), the cusps of Mc(Q)
are labeled by subsets R ⊆ Q:

CR = (a, b, L , i, j, λ, αR)

where αR is a K p(Q)/K (NQ)p-orbit of isomorphisms

α ⊕
⊕
q∈Q

αR,q : (OF/NOF)
⊕2
⊕

⊕
q∈Q

(OF/qOF)
⊕2 ∼
−→ N−1 L/L ⊕

⊕
q∈Q

q−1 L/L ,

where αR,q is given by the matrix
(

1 0
0 1

)
if q ∈ R, and is given by the matrix

(
0 1
1 0

)
if q /∈ R. Rigorously speaking, to literally apply Section 2.5, we need to use
principal level structure with integer levels. But we can easily modify the above
definition by introducing a positive prime-to-pN integer Q that is divisible by Q,
and then take K (NQ)p/K (N Q)p invariants.

We say that this cusp CR of Mc(Q) is unramified at R ⊆ Q. In terms of the
recipe in Section 2.5, we have X [γCR ]

= (R/Q)X [γC ] (in particular, if R = Q,
the map Mc(Q) →Mc is an isomorphism at that cusp if we use the pullback
cone decomposition). In general, we give an O×,+F -stable smooth admissible cone
decomposition of X ∗+

[γCR ]
at each cusp CR that refines the restriction of the cone

decomposition of X ∗+
[γC ]

. This way we obtain a morphism Mc(Q)tor
→Mtor

c and
then a morphism Sh(Q)tor

→ Shtor that extends the second map in (5.1.3).
For the map Mc(Q)∆ → Mc(Q), over each such cusp CR of Mc(Q), the

cusps of Mc(Q)∆ are parametrized by ∆. Precisely speaking, for each δ ∈ ∆,
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there is a cusp with label

CR = (a, b, L , i, j, λ, αR,δ),

where αR,δ = α ⊕
⊕

q∈Q
(
αR,q ·

(
δ̃ 0
0 1

))
, where δ̃ is a lift of δ for the quotient

map (OF/QOF)
× � ∆. We note that X [γCR,δ

]
∼= X [γCR ]

. So we may pullback the
cone decomposition on X ∗+

[γCR ]
to a (smooth admissible) cone decomposition on

X ∗+
[γCR,δ

]
. For the rest of this paper, we shall always take the cone decomposition

on Mc(Q)∆ this way. Therefore, we have natural étale covering maps

Mc(Q)tor
∆ �Mc(Q)tor and Sh(Q)tor

∆ � Sh(Q)tor

with Galois group ∆.

5.2. Hecke algebras with Taylor–Wiles primes. For a finite set of places Q
as above (allowing Q = ∅) and a choice of quotient (OF/QOF)

×�∆, we define
the abstract tame Hecke algebra to be

Tuniv
Q := O[∆][tq; q /∈ S ∪Q][sn

q; q finite].

Let T{0}Q denote the image of the abstract tame Hecke algebra Tuniv
Q acting on⊕

m>1 H 0(Sh(Q)tor
∆,m, ω

(1,−1)
m ), by sending tq 7→ Tq (q /∈ S ∪ Q), sn

q 7→ Sn
q,

and [a] 7→ the Diamond operator 〈ã〉 for ã ∈ (OF/QOF)
× lifting a ∈ ∆. We

remind the reader again that, due to our normalization of tame Hecke operators in
Section 2.9, weight (n, n − 2)) is the parallel weight n in many other literatures.

Let ρ̄ : G F → GL2(F) be an absolute irreducible representation (which we do
not assume to be unramified at p at this moment). Let m′

∅
denote the maximal

ideal of T{0}
∅

, generated by

$, tq − tr(ρ̄(Frobq)) (q /∈ S), and sn
q − det(ρ̄(Frobq)) (for all finite q),

(5.2.1)
where det(ρ̄(Frobq)) is independent of the choice of the Frobenius elements at q.
We assume that Q satisfies the following additional conditions:

• for each q ∈ Q we have N(q) ≡ 1 mod p,

• for each q ∈ Q the polynomial X 2
− TqX + Sn

q ∈ T{0}
∅
[X ] has distinct roots

modulo m∅; we choose for each q ∈ Q one such root αq ∈ F (and enlarging the
field F if necessary), and

• The group ∆ is a p-group.
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Let m′Q denote the maximal ideal of T{0}Q containing the generators (5.2.1) and
the elements Uq − αq for q ∈ Q. It follows from the main theorem of [ERX17]
that there is a Galois representation ρQ : G F → GL2(T{0}Q,m′Q) lifting ρ̄, unramified
outside S ∪ Q, and such that tr(ρQ(Frobq)) = Tq and det(ρQ(Frobq)) = Sn

q for
all q /∈ S ∪Q.

PROPOSITION 5.3. Assume that for any lift Frobp ∈ G F of the arithmetic
Frobenius at p, the eigenvalues of ρ̄(Frobp) in F are distinct. Then there exists
a unique deformation

ρQ : G F → GL2(T{0}Q,m′Q)

of ρ̄ unramified outside S ∪Q and such that for all primes q /∈ S ∪Q we have
tr(ρQ(Frobq)) = Tq and det(ρQ(Frobq)) = Sn

q. In particular, ρQ is unramified
at p.

Proof. Recall that we did not insist that ρ̄ to be unramified at p. If ρ̄ is ramified at
p, the representation ρQ we obtain is the zero representation, that is, T{0}Q,m′Q = 0.

Thanks to the existence and properties of the operator T n
p acting on weight

one forms (cf. Section 3.10), we can prove this Proposition exactly as in [CG12+,
Theorem 3.11], where the case F = Q is treated (see also [DS74] and [Ed92,
Proposition 2.7]). For completeness, we sketch the argument below, but the reader
is referred to [CG12+, Theorem 3.11] for further details.

Let M be an arbitrary positive integer divisible by pm−1 and denote by h̃M ∈

H 0(Sh(Q)tor
∆,m, ω

(M(p−1),M(p−1))
m ) a lift to O/($m) of the M th power of the total

Hasse invariant h ∈ H 0(Sh(Q)tor
∆,F, ω

(p−1,p−1)
F ) (cf. [ERX17, Section 3.3.1]). Let

U n
p denote the action of the Hecke operator T n

p on modular forms of paritious
weight (n, n − 2) := (1 + M(p − 1),M(p − 1) − 1) over O/($m). Moreover,
we assume that n is sufficiently large so that H>0(Sh(Q)tor

∆,F, ω
(n,n−2)
F ) = 0. We

remark that, because of our choice of w = n−2 (for parallel weight n forms), the
normalization factor as explained in Remark 3.14 is just 1. So we can temporarily
ease ourselves from the scrutiny of normalizations.

Define the operator
V n

M := h̃M ◦ T n
p −U n

p ◦ h̃M

sending H 0(Sh(Q)tor
∆,m, ω

1
m) into H 0(Sh(Q)tor

∆,m, ω
(n,n)
m ). (If m = 1 we can choose

M = 1 and then V n
M coincides with the classical operator Vp (up to a twist)

induced by Frobenius base change on the abelian schemes parametrized by
Sh ⊗ F.) Notice that V n

M is well defined, since the hypothesis on our weights
guarantees that T n

p and U n
p are defined.

Now, we study the effect of these operators on the q-expansions. First, the
q-expansion of h̃M is one at each cusp of Shtor

m . By Remark 3.14 and the setup
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of Section 2.9, at a cusp C = (a, b, L , i, j, λ, α) of Mc, if we put C ′ := (a,
b, L ′, i, pj, pλ,

(1 0
0 p−1

)
α) and C ′′ := (a, b, L ′′, p−1i, j, pλ,

(
p−1 0
0 1

)
α), where L ′

(respectively L ′′) is the natural pullback (respectively pushout) of L via the
inclusion b ⊆ p−1b (respectively a∗ ⊆ p−1a∗), we can write down explicitly the
action of U n

p and T n
p on the level of q-expansions (modulo $m):

aξ (U n
p( f ), C,Tatea,b) = apξ ( f, C ′,Tatea,b) and

aξ (T n
p ( f ), C,Tatea,b) = apξ ( f, C ′,Tatea,b)+ ap−1ξ ( f, C ′′,Tatea,b).

So it follows that

aξ (V n
M( f ), C,Tatea,b) = ap−1ξ ( f, C ′′,Tatea,b).

We claim that the following natural map

ψm = (h̃M , V n
M) : H 0(Sh(Q)tor

∆,m, ω
(1,−1)
m )⊕2

−→ H 0(Sh(Q)tor
∆,m, ω

(n,n−2)
m ) (5.3.1)

is injective. It is enough to prove the injectivity when m = 1; indeed, if
ah̃M f = bV n

M g for a, b ∈ O/$m and ( f, g) ∈ H 0(Sh(Q)tor
∆,m, ω

(1,−1)
m )⊕2, then

writing a = $ r ā and b = $ r b̄ with (ā, b̄) ∈ (O/$m−r )⊕2
\{(0, 0)}, we must

have āh̃M f = b̄V n
M g in H 0(Sh(Q)tor

∆,1, ω
(n,n−2)
1 ). So injectivity of ψ1 implies the

injectivity of ψm . We quickly remark that both V n
M and multiplication by hM are

clearly (individually) injective as can be seen from the map on the q-expansions.
Now, suppose that we have

hM f̄ = a · V n
M ḡ for ( f̄ , ḡ) ∈ H 0(Sh(Q)tor

∆,1, ω
(1,−1)
1 ) and a ∈ F×p . (5.3.2)

We now pullback all forms to M(Q)tor
∆,1 instead. Recall that there is a differential

operator θ acting on Hilbert modular forms over F and increasing weight by
(p + 1, . . . , p + 1), whose action on q-expansion mod p (at any cusps) is given
by:

∑
α aαqα 7→

∑
α NmF/Q(α) · aαqα (cf. [AG05, Section 16.2]). Applying θ

to both sides of (5.3.2), we obtain that θ(hM f̄ ) = 0. Since θ and h commute
(we can check this on q-expansion), the injectivity of h implies that f̄ ∈ ker θ .
We conclude that f̄ = 0, since θ has trivial kernel in weight (1,−1). (This last
fact follows from the arguments of [Ka76, IV], suitably extended to the settings of
Hilbert modular forms.) By (5.3.2) again, we see that V n

M(ḡ)= 0, by the injectivity
of V n

M we conclude ḡ = 0. Therefore, we have proved the claim above, namely
the injectivity of ψ1 and hence of (5.3.1).

We point out that (5.3.1) is also equivariant under the action of T{0}Q (as can be
seen on the q-expansions). The action of U n

p on the domain of ψm is then given,
via ψ−1

m , by the matrix (
T n

p Sn
p

−1 0

)
,
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which can be seen by the explicit q-expansions. Here Sn
p is as defined in

Section 2.9. Therefore, U n
p satisfies X 2

− T n
p X + Sn

p = 0. Denote by α and
β the distinct eigenvalues of ρ̄(Frobp) in F×, and choose lifts α̃ and β̃ of α
and β respectively to O× (for this we might need to enlarge E). We have
αβ ≡ Sn

p mod mQ, and the Hecke operator (U n
p − α̃)(U

n
p − β̃) acts nilpotently

on Im(ψm)m′Q . In particular, this implies that U n
p is invertible on Im(ψm)m′Q and

T n
p = Sn

p(U
n
p)
−1
+U n

p .
We denote by T{0}Q,n the Hecke algebra acting on

⊕
m>1 H 0(Sh(Q)tor

∆,m, ω
(n,n−2)
m )

generated by the operators Tq for q /∈ S ∪Q, Uq for q ∈ Q, Sn
q, and the diamond

operators. We set T̃{0}Q,n := T{0}Q,n[Up]. Denote by m′Q,n the maximal ideal of T{0}Q,n
generated by (5.2.1) and Uq − αq for all q ∈ Q. Let moreover m̃α (respectively
m̃β) denote the maximal ideal of T̃{0}Q,n containing m′Q,n and U n

p − α (respectively
U n

p − β).
Let Im denote the annihilator in T{0}Q,m′Q of H 0(Sh(Q)tor

∆,m, ω
(1,−1)
m )m′Q . As in

[CG12+, Section 3.5], we see that T{0}Q,mQ
/Im[U n

p] ⊂ EndO(Imψ)m̃α
contains T n

p

and is naturally a quotient of T̃{0}Q,n,m̃α
. Denote by ρ̃Q,n,α : G F → GL2(T̃{0}Q,n,m̃α

)

the Galois representation attached to the ordinary Hecke algebra acting in weight
(n, n − 2) and cohomological degree zero. Composing this representation with
the quotient map considered above, we obtain representations ρ̃Q,m : G F →

GL2(T{0}Q,m′Q/Im[U n
p]). Since all traces and determinants lie in the smaller ring

T{0}Q,m′Q/Im , we obtain a representation ρQ,m : G F → GL2(T{0}Q,m′Q/Im). The
representation ρQ := lim

←−m
ρQ,m satisfies the desired properties, except possibly

the condition of being unramified at p. We observe that

ρ̃Q,m |G Fp
'

(
εM(p−1)

m λβ̃ ∗

0 λα̃

)
where λx : G Fp → (O/($m))× denotes the unramified character of G Fp sending a
geometric Frobenius element to x . Notice that εM(p−1)

m is trivial since pm−1 divides
M .

The Galois representation ρ̃Q,m can be equivalently (by the Chebotarev density
theorem) defined using the eigenvalue β, so that:

ρ̃Q,m |G Fp
'

(
λα̃ ∗

0 λβ̃

)
'

(
λβ̃ ∗

0 λα̃

)
.

Since α̃ 6= β̃ we deduce that the extension classes denoted by ∗ are trivial. Thus
ρ̃Q,m and hence ρQ,m is unramified at p.
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REMARK 5.4. It seems that the methods of [CG12+, Section 3.6–7] would allow
us to prove the above result also when α = β. See for example, [DW15+].

5.5. Unramifiedness in the case of surfaces. We assume in this section that
g = 2. Recall that we are moreover requiring for simplicity that p is inert in F .
We will prove, under the assumption of Frobenius distinguishedness introduced in
Proposition 5.3, that Galois representations arising from Hilbert modular classes
of paritious weights κ = (1,−1) are unramified at p. We keep the notation as in
Section 5.2 and Proposition 5.3.

Let χ denote the Teichmüller lift of det ρ̄ and denote by RQ the complete
local Noetherian O-algebra representing the functor of framed O-deformations
of ρ̄|G F,S∪Q with determinant χ .

Denote by TQ the image of the abstract tame Hecke algebra acting on⊕
m>1,k>0

H k(Sh(Q)tor
∆,m, ω

(1,−1)
m ),

by sending tq 7→ Tq (q /∈ S ∪Q), sn
q 7→ Sn

q, and [a] 7→ the Diamond operator 〈ã〉
for ã ∈ (OF/QOF)

× lifting a ∈ ∆. There is a natural surjective map TQ � T{0}Q
(where the latter is the Hecke action on H 0 only). Let mQ denote the preimage of
the maximal ideal m′Q. The main result of [ERX17] implies that there is a natural
continuous homomorphism of O-algebras RQ → TQ,mQ . In particular, we can
view H k(Sh(Q)tor

∆,m, ω
(1,−1)
m )mQ as a module over RQ.

We shall frequently use the following. The exact sequence

0→ ω(1,−1) ·$
m

−→ ω(1,−1)
−→ ω(1,−1)

m → 0

of coherent sheaves on Sh(Q)tor
∆ induces a long exact sequence in cohomology

which, after localization at mQ, is given by

· · · → H i(Sh(Q)tor
∆ , ω

(1,−1))mQ

$m

−→ H i(Sh(Q)tor
∆ , ω

(1,−1))mQ

→ H i(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ → H i+1(Sh(Q)tor

∆ , ω
(1,−1))mQ → · · · (5.5.1)

Denote by IQ the ideal of RQ characterized by the following property: a lifting
ρ : G F,S∪Q→ GL2(A) of ρ̄ with values in a complete local noetherian O-algebra
A is unramified at the unique prime of F above p if and only if the corresponding
map RQ→ A factors through RQ/IQ.

LEMMA 5.6. If i ∈ {0, 2}, the RQ-module H i(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ is supported

on Spec(RQ/IQ).
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Proof. When i = 0 this follows from the Frobenius distinguishedness assumption
and Proposition 5.3. Assume i = 2. By Lemma 2.10, the Serre duality gives a
natural isomorphism

H 2(Sh(Q)tor
∆,m, ω

κ
m)
∼= H 0(Sh(Q)tor

∆,m, ω
κ
m(−D))

∨

intertwining the action of Tq with T ∨q for q /∈ S∪Q. But the Galois representation
appearing in H 0(Sh(Q)tor

∆,m, ω
κ
m(−D))mQ ⊆ (Sh(Q)tor

∆,m, ω
κ
m)mQ is unramified by

Proposition 5.3. This implies our lemma when i = 2.

Note that we did not require the residual representation ρ̄ to be unramified at p.
(But of course if ρ̄ is ramified at p, the localizations H i(Sh(Q)tor

∆,m, ω
(1,−1)
m )mQ for

i = 0, 2 are zero.) The following lemma shows this for i = 1.

LEMMA 5.7. Suppose that ρ̄ is modular, that is, mQ is not the entire TQ. The
representation ρ̄ is unramified at p.

Proof. Suppose by contradiction that ρ̄ is ramified at p. By Lemma 5.6 we see
that H i(Sh(Q)tor

∆,m, ω
(1,−1)
m )mQ = 0 for i ∈ {0, 2} and for any m. We need to prove

this for i = 1.
The exact sequence (5.5.1) gives:

0→ H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ
$m

−→ H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ → H 1(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ

→ H 2(Sh(Q)tor
∆ , ω

(1,−1))mQ
$m

−→ H 2(Sh(Q)tor
∆ , ω

(1,−1))mQ → 0.

The injectivity of the second map implies that H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ is
$ -torsion free. But by Fact 5.8 below, H 1(Sh(Q)tor

∆,E , ω
(1,−1)
E )mQ sees only

representations that are unramified at p. From this, we deduce that H 1(Sh(Q)tor
∆ ,

ω(1,−1))mQ = 0. Moreover, the surjectivity of the multiplication by $m map
between the degree-two cohomology groups implies that those localized modules
are zero. We conclude that H 1(Sh(Q)tor

∆,m, ω
(1,−1)
m )mQ = 0, and hence the ideal mQ

is not in the support of any cohomology, contradicting the modularity of ρ̄.

FACT 5.8. All Galois representations appeared in H i(Sh(Q)tor
∆,C, ω

(1,−1)
C ) are

unramified at p.

Proof. It follows from [Harr88, Theorem 2.4.4] that

H i(Sh(Q)tor
∆,C, ω

(1,−1)
C ) ∼= H i(q, K∞;Csi ⊗ C(1)).

After localizing at a non-Eisenstein ideal, an easy computation of (q, K∞)-
cohomology gives an isomorphism of Hecke modules

H i(Sh(Q)tor
∆,C, ω

(1,−1)
C )mQ ' H 0(Sh(Q)tor

∆,E , ω
(1,−1)
C )mQ ⊗∧

i(C2).

https://doi.org/10.1017/fms.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.26


Unramifiedness of Galois representations 63

Our Fact follows from the unramifiedness of Galois representation arising from
H 0 by [DS74].

From now on, we assume that ρ̄ is modular.

PROPOSITION 5.9. There exists a positive integer n such that the RQ-modules
H i(Sh(Q)tor

∆ , ω
(1,−1))mQ and H i(Sh(Q)tor

∆,m, ω
(1,−1)
m )mQ are annihilated by I n

Q for
all i,m. Moreover, the value n = 3 suffices (when g = 2).

Proof. We argue using the long exact sequence (5.5.1) of RQ-modules, which we
spell out here.

0→ H 0(Sh(Q)tor
∆ , ω

(1,−1))mQ
$m

−→ H 0(Sh(Q)tor
∆ , ω

(1,−1))mQ → H 0(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ

→ H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ
$m

−→ H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ → H 1(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ

→ H 2(Sh(Q)tor
∆ , ω

(1,−1))mQ
$m

−→ H 2(Sh(Q)tor
∆ , ω

(1,−1))mQ → H 2(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ

→ 0. (5.9.1)

First, H 0(Sh(Q)tor
∆ , ω

(1,−1))mQ is$ -torsion free, hence it is a Hecke-equivariant

subspace of H 0(Sh(Q)tor
∆,E , ω

(1,−1)
E )mQ , which is annihilated by IQ thanks

to [DS74]. By Lemma 5.6, we know that H 0(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ and

H 2(Sh(Q)tor
∆,m, ω

(1,−1)
m )mQ are annihilated by IQ. Moreover, by Serre duality

and its compatibility with Hecke operators (cf. Lemma 2.10), we have an
isomorphism of RQ-modules

H 2(Sh(Q)tor
∆ , ω

(1,−1))mQ
∼= H 0(Sh(Q)tor

∆ , ω
(1,−1)
⊗ E/O)∨mQ

.

We know that IQ annihilate the right hand side, so it also kills the left hand side.
We now look at the following exact sequence of RQ-modules (to separate the

torsion part and torsion-free part)

0→ H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ[$
∞
] → H 1(Sh(Q)tor

∆ , ω
(1,−1))mQ

→ E ⊗O H 1(Sh(Q)tor
∆ , ω

(1,−1))mQ .

(5.9.2)

The torsion part in the above sequence is a quotient of H 0(Sh(Q)tor
∆,m′, ω

(1,−1)
m′ )mQ

for some large enough m ′ > 0 by (5.9.1); in particular as an RQ-module it
is annihilated by IQ. The last term of (5.9.2) coincides with H 1(Sh(Q)tor

∆,E ,

ω
(1,−1)
E )mQ and is therefore annihilated by IQ according to Fact 5.8. We conclude

that I 2
Q · H

1(Shtor, ω(1,−1))mQ = 0.
Finally, by exact sequence (5.9.1), the term H 1(Shtor

m , ω
(1,−1)
m )mQ is an extension

of a submodule of H 2(Shtor, ω(1,−1))mQ and a quotient of H 1(Shtor, ω(1,−1))mQ . So
it is annihilated by I 3

Q. This concludes the proof of the Proposition.
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5.10. The patching argument. We make use here the techniques of patching
complexes of [CG12+, Section 6]. All the ring dimensions computed below are
absolute Krull dimensions, unless otherwise stated. Recall that p is assumed to
be inert in the totally real field F , and that we assume g = 2 (but most of the
arguments below continue to hold for arbitrary g).

Let R�p denote the universal framed O-deformation ring of ρ̄|G Fp
corresponding

to lifts of determinant χ |G Fp
. Let Ip denote the ideal defining the locus where the

universal (framed) deformation of ρ̄ is unramified. For each positive integer n
we set R(n)

p := R�p /I
n
p . Since unramified lifts are determined by the matrix of a

Frobenius element, we deduce by simple calculations that:

dim R(n)
p = 4.

Recall the finite set S of places of F defined in Section 2.9. For each finite
place q ∈ S\{p} we similarly denote by R�q the universal framed O-deformation
ring of ρ̄|G Fq

corresponding to lifts of determinant χ |G Fq
. Since q - p we have (cf.

[Boe13, Theorem 3.3.1]):

dim R�q = 4, q ∈ S\{p}.

Put
R(n)

loc := R(n)
p ⊗̂O

⊗̂
q∈S\{p}

R�q .

We put R(n)
Q := RQ/I n

Q, and let R(n),�S
Q denote the deformation ring with

frames at finite places in S . In particular, R(n),�S
Q is a free power series ring in

j := 4|S| − 1 variables over R(n)
Q . Moreover, restriction to decomposition groups

at the finite places in S induces a natural morphism R(n)
loc → R(n),�S

Q .
Assume that ρ̄(G F) contains SL2(Fp) and that p > 3. Recall that ρ̄ is totally

odd, since it is modular. By [Ge14, Proposition 5.9] there exists an integer q > 1
with the following property: for any N > 1 there is a set QN consisting of finite
primes of F such that:

• QN has cardinality q and is disjoint from the set S;

• for each q ∈ QN , ρ̄(Frobq) has two distinct eigenvalues αq, βq ∈ F;

• Nm(q) ≡ 1 (mod pN ) for all q ∈ QN ;

• R(n),�S
QN

is topologically generated over R(n)
loc by h := q + |S| − 1− [F : Q] =

q + |S| − 3 elements.

For each N we now fix a choice of Taylor–Wiles primes QN , and for each such
set a choice of distinguished eigenvalue αq of ρ̄(Frobq) for q | QN .
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Set n = 3 and define

R∞ := R(n)
loc [[x1, . . . , xh]],

so that
dim R∞ = 3|S| + 1+ h = 1+ q + j − [F : Q]. (5.10.1)

We choose for each N > 1 a surjection

R∞ � R(3),�S
QN

. (5.10.2)

We let SN = O[∆N ], where ∆N = (Z/pNZ)q , and we set S∞ = lim
←−N

SN '

O[[(Zp)
q
]]. If M > N > 0 and if I is an ideal of O, we regard SN/I as a quotient

of SM via the natural surjective maps O→ O/I and ∆M → ∆N .
We denote the operation of complete tensor product over O with O� :=O[[z1,

. . . , z j ]] by the superscript �. For example, S�
∞
:= S∞⊗̂OO[[z1, . . . , z j ]].

Denote by mQN the maximal ideal of the Hecke algebra TQN contracting to
m∅ ⊂ T∅ and containing Uq − αq for each q | QN , where the eigenvalues αq are
fixed as above. Applying to our settings the construction of [CG12+, Section 7.2]
(noting that Sh(Q)∆ → Sh(Q) is étale with Galois group (OF/QOF)

× by
Section 5.1), we deduce the existence of a perfect complex

0→ CN ,2 → CN ,1 → CN ,0 → 0

of SN/($
N )-modules with an action of TQN ,mQN

whose i th homology is
TQN ,mQN

-equivariantly isomorphic to:

Hi(Sh(QN )
tor
∆N ,N , ω

(1,−1)
N (−D))mQN

:= H i(Sh(QN )
tor
∆N ,N , ω

(1,−1)
N )∨mQN

.

Here the superscript ∨ denotes taking O/($ N )-dual.

REMARK 5.11. The complex that we have denoted here by CN ,∗ is denoted in the
end of [CG12+, Section 7.2] by lim

−→m
T mCn , where T is a suitable Hecke operator

constructed therein. Taking the limit is what allows to obtain the cohomology
localized at mQN as in [CG12+, Section 7.2].

Let D∗N denote the chain complex obtained from CN ,∗ by taking O/($ N )-duals,
that is, Di

N := C∨N ,i . Observe that

H i(D∗N ) ' H i(Sh(QN )
tor
∆N ,N , ω

(1,−1)
N )mQN

(5.11.1)

is the cohomology in which we are interested. The main result of [ERX17]
together with Proposition 5.9 imply the existence of a canonical map R(4),�S

QN
→
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T�QN ,mQN
, so that the global deformation ring R(4),�S

QN
acts on the cohomology of

D�,∗N := D∗N ⊗̂OO�. In particular, for each M > N > 0 with M > 1 and for
each m > 1, the cohomology H i(D�,∗M ⊗SM SN/($

m)) is also an R∞-module via
(5.10.2), and the actions of R∞ and S�M on this space commute.

We let H := H 2(Shtor, ω(1,−1)
⊗O E/O)m∅ and we defined a chain complex

T with trivial differentials d = 0 by setting T i
:= H i(Shtor

F , ω
(1,−1)
F )m∅ , so that

H 2(T ) ' H/($). We also set R = R(4),�S
∅

to be the global deformation ring
defined earlier attached to the empty set of Taylor–Wiles primes. Notice that H is
an R-module.

By (5.10.1) we have the numerical equality:

dim R∞ = dim S�
∞
− [F : Q].

We then see that the hypotheses of [CG12+, Theorem 6.3] are satisfied (the
notation we introduced for SN , S∞, R, R∞, H, T, and DN matches the notation
of the statement of the theorem in [CG12+], with l0 there being equal to g = 2).
In particular, we can patch the complexes D∗N to produce a perfect chain complex

0→ P�,0
∞
→ P�,1

∞
→ P�,2

∞
→ 0

of finitely generated S�
∞

-modules which is a projective resolution of H 2(P�,∗
∞
).

Moreover, the cohomology of P�,∗
∞

carries an action of R∞⊗̂OS�
∞

. We have
therefore an isomorphism of R∞ ⊗O O/($m)-modules:

TorS�
∞

1 (H 2(P�,∗
∞
),O/($m)) ' H 1(P�,∗

∞
⊗S�

∞
O/($m)).

Observe that the action of R∞ on H 2(P�,∗
∞
) factors through the quotient by

Ip R∞ since the top-degree cohomology H 2(P∗
∞
) is constructed by patching the

duals of a suitable system of H 0(D∗Mi
⊗SMi

SNi /($
Ni )) for various Mi > Ni > 1

(cf. proof of [CG12+, Theorem 6.3]), and these H 0 are all supported on the
unramified locus by (5.11.1) and Proposition 5.3. So H 1(P�,∗

∞
⊗S�

∞
O/($m)) '

H 1(Shtor
m , ω

(1,−1)
m )�m∅ is annihilated by Ip ⊂ R�p . Similarly, running the same

argument for TorS�
∞

1 (H 2(P�,∗
∞
),O), we deduce that H 1(Shtor, ω(1,−1))�m∅ is

annihilated by Ip.
We conclude:

THEOREM 5.12. Assume that p > 3, that ρ̄ is Frobenius-distinguished at p, and
that ρ̄(G F) contains SL2(Fp). Then the cohomology groups H 1(Shtor

m , ω
(1,−1)
m )m∅

and H 1(Shtor, ω1)m∅ are supported on Spec(R∅/I∅), that is, they give rise to
Galois representations unramified at p.
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REMARK 5.13. It seems that if we assume minimality condition analogous to
[CG12+, Theorem 1.3], we might be able to prove certain R = T theorem for
minimal deformations.

5.14. A conjecture. The conjecture below follows from the expected
properties of modular Galois representations arising from forms of weight
(1, . . . , 1):

CONJECTURE 5.15. Let F be a totally real number field of degree g over Q and
let p be an arbitrary prime number. Fix a prime p of F lying above p, and let
κp = ((kτ )τ∈Σ , w) be a paritious weight such that kτ = 1 for all τ ∈ Σp, and that
w = −1. Let T denote the image of the universal tame Hecke algebra acting on
H •(Shtor, E/O ⊗O ω

κp) and let m denote a non-Eisenstein maximal ideal of T,
with associated Galois representation ρ̄. Then:

(1) ρ̄ is unramified at p;

(2) Let R denote the universal ring for O-deformations of ρ̄ with fixed central
character, and let I denote the proper ideal of R cutting out the locus of
lifts that are unramified at p. Then there exists a positive integer n depending
on g such that I n annihilates the R-module H •(Shtor, E/O ⊗O ω

κp)m.

Assuming the above conjecture and applying the arguments of the previous
section one can prove that:

TorS�
∞

i (H g(P�,∗
∞
),O/($m)) ' H i(P�,∗

∞
⊗S�

∞
O/($m)) ' H i(Shtor

m , ω
κp
m )
�
m

for all i and all m. (Here the notation is as before.) Using a suitable generalization
of Proposition 5.3 to the case of non-Frobenius-distinguished representations,
together with Grothendieck–Serre–Verdier duality, we see that the action of R
on H g(P�,∗

∞
) factors through I . We then obtain:

PROPOSITION 5.16. Fix a prime p of F above p > 3 and a paritious weight
κp with kτ = 1 for all τ ∈ Σp and w = −1. Let T denote the image
of the universal tame Hecke algebra acting on H •(Shtor, E/O ⊗O ωκp) and
let m denote a non-Eisenstein maximal ideal of T. Assume the validity of
Conjecture 5.15, and suppose Proposition 5.3 holds without the assumption of
Frobenius distinguishness at p. Then H •(Shtor, E/O ⊗O ω

κp)m is supported on
the unramified locus of Spec R.
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