
Adv. Appl. Prob. (SGSA) 40, 939–965 (2008)
Printed in Northern Ireland

© Applied Probability Trust 2008

SMALL-WORLD GRAPHS:
CHARACTERIZATION AND
ALTERNATIVE CONSTRUCTIONS

RAMA CONT,∗ Columbia University

EMILY TANIMURA,∗∗ Ecole des Hautes Etudes en Sciences Sociales

Abstract

Small-world graphs are examples of random graphs which mimic empirically observed
features of social networks. We propose an intrinsic definition of small-world graphs,
based on a probabilistic formulation of scaling properties of the graph, which does not
rely on any particular construction. Our definition is shown to encompass existing models
of small-world graphs, proposed by Watts (1999) and studied by Barbour and Reinert
(2001), which are based on random perturbations of a regular lattice. We also propose
alternative constructions of small-world graphs which are not based on lattices and study
their scaling properties.
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1. Introduction

1.1. Complex networks and small-world graphs

Empirical studies of a wide variety of social and biological networks [2], [20], [21] [23],
[24], [25] have revealed that many of them share several interesting properties:

• links among network nodes are globally sparse, i.e. the network is far from saturating the
total number of possible links;

• high local clustering of links, i.e. the link structure displays a high local density, as
measured for instance by the clustering coefficient (see below);

• although the network may contain a large number of nodes, a pair of nodes in the network
is typically linked by a path whose length is orders of magnitude smaller than the network
size and grows slowly with the number of nodes.

These properties distinguish real networks from simple models such as regular lattices or the
Erdős–Rényi random graph model [13], which possess one or two of these properties but not
all of them, and have inspired the development of a new class of random graph models, called
small-world networks [20], [25], [26], which have generated, in turn, a host of applications and
new mathematical problems [2], [10], [25].
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Intuitively, a small-world graph is a random graph which possesses the three properties above.
The prototype of the small-world graph, given by Watts [25], is a crossover between a regular
lattice and an Erdős–Rényi random graph. The properties of the lattice-based model in [25]
has been extensively studied using Monte Carlo simulation and via a mean-field approximation
[22].

In the economics literature, Jackson [18] studied graphs that result from link formation in a
game theoretic setting. The Nash equilibrium in this network formation game is a deterministic
graph which exhibits high clustering and short distances between nodes for a wide range of
parameters in the game. These properties are shown to hold at least in a high connectivity
range, where the average degree grows rapidly with network size.

These small-world graphs are complex graph models whose mathematical study can be
challenging. Barbour and Reinert [4] have proposed a rigorous analysis of a slightly modified
version of the original construction of Watts. Aldous [1] proposed a growth model in which new
nodes are added one at a time and form links to previous nodes according to given probabilistic
rules: local weak convergence methods are used to show that parameters in this model can be
chosen so that the resulting graph is sparse and exhibits high clustering. Bollobás et al. [8]
proposed a framework for studying a general class of large inhomogeneous random graphs.
For a recent review on the mathematical study of complex networks, see [10].

While these studies focus on properties of specific graph models, a common mathematical
framework encompassing all these models and enabling us to compare them seems to be
lacking in the literature: such a framework could emphasize the common features of different
constructions and shed light on the mechanisms leading to the emergence of the small-world
property in real networks. As noted by Watts [25], the small-world property should be stated in
terms of scaling of the graph properties with the size of the graph. A reasonable definition of the
small-world property should apply to the lattice-based construction [25], but could potentially
include qualitatively different constructions. In particular, applications in social sciences are
not naturally based on lattice models, so lattice-free constructions are desirable.

1.2. Outline

We propose here an intrinsic definition of small-world graphs which does not rely on an
underlying lattice nor on any particular construction. Our definition is based on a probabilistic
formulation of scaling properties of graph-theoretical quantities and encompasses existing
models of small-world graphs, proposed by Watts and studied by Barbour and Reinert [4],
which are based on random perturbations of a regular lattice.

Such lattice-based constructions are not natural for applications to social networks, where
regular lattices are nowhere to be found. In the second part of the paper we propose two
examples of small-world graphs which are based on a community structure to which random
links are then added. As in Watts’ model, the proposed models lead to large inhomogeneous
random graphs, which match various empirical properties of social networks.

The paper is structured as follows. In Section 2 we recall some basic notions on (random)
graphs and define a mathematical setting suitable for our purpose. In Section 3 we define the
notion of scaling behavior in a way which is meaningful for random graphs.

Based on these definitions, we propose in Section 4 a mathematical definition of small-
world graphs which is intrinsic in the sense that it does not rely on a particular construction. In
Section 5 we show that this definition applies to Watts’ randomly perturbed lattice model, in
the setting of [4].
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In Sections 6 and 7 we propose two examples of random graph models which satisfy the
definition of a small world but whose construction is not based on an underlying lattice.

2. Definitions and notation

Let us start by defining a mathematical framework, which will allow us to make precise
statements about networks, their statistical properties, and the scaling properties of various
graph-theoretical quantities with the size of the network. In particular, our framework should
allow for

• varying the number of nodes of the graph, in order to study large-size asymptotics and
scaling;

• randomness in the structure of the network: many network models, including Erdős–
Rényi graphs and the small-world construction of Watts [25], are instances of random
graphs. Allowing for randomness is especially relevant in applications since properties
of large networks can only be described in statistical terms.

2.1. Graphs and graph properties

A graph with nodes labeled i = 1, . . . , N is defined by the set of its links, which can be
viewed as a subset � of {1, . . . , N} × {1, . . . , N}. Since we have in mind models for social
networks, we exclude links between a node and itself: (i, i) /∈ �. Such a graph is conveniently
represented by an N × N adjacency matrix M defined by

M(i, j) =
{

1 if (i, j) ∈ �,

0 otherwise.
(1)

The set of nodes of a graph � will be denoted by [�] or, with an abuse of notation when the
context is clear, by �. In the sequel we consider undirected graphs, i.e. such that (i, j) ∈ � if
and only if (j, i) ∈ �, although the definitions in Section 3 also apply to directed graphs. The
set GN of undirected graphs with N nodes is in one-to-one correspondence with symmetric
adjacency matrices:

{M ∈ MN×N | M(i, j) = M(j, i) ∈ {0, 1}, M(i, i) = 0}. (2)

We will denote by
G∞ =

⋃
N≥1

GN

the set of all (undirected) graphs, endowed with the cylindrical Borel σ -field B: a function
Q : G∞ �→ R is B-measurable if, for all N ≥ 1, its restriction QN : GN �→ R is measurable.
Examples of interest are the degree of a node, the average degree, the (average) clustering
coefficient, the typical interpoint distance, and the diameter of a graph.

The degree of a node i is defined as the number of nodes it is linked to:

deg(i) =
N∑

n=1

1M(i,n)=1 .

The average degree of a graph � ∈ GN is defined as

deg(�) = 1

N

N∑
i=1

deg(i). (3)
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The neighborhood V (i) of a node i is defined as

V (i) = {j ∈ [1, N ] | M(i, j) = 1}
and the set V k(i) as

V k(i) = {j ∈ [1, N ] | Mk(i, j) > 0}.
Note that V 1(i) = V (i).

Empirical studies on social networks indicate that they are characterized by high local density,
as measured by the notion of the clustering coefficient. The local clustering coefficient for a
node i is defined as

γi = card{(j, k) ∈ � | j ∈ V (i) and k ∈ V (i)}
card(V (i))(card(V (i)) − 1)/2

.

Expressed as a function of the adjacency matrix M ,

γi =
∑

j �=k | M(i,j)=M(i,k)=1 M(j, k)∑N
l=1 M(i, l)(

∑N
l=1 M(i, l) − 1)/2

.

The average clustering coefficient γ is defined as

γ = 1

N

N∑
i=1

γi.

Another quantity of interest is the ‘size’ of the graph as measured by the distance between the
nodes. The distance between two nodes i and j is defined as the length of the shortest path
linking them in the graph:

d�(i, j) = inf{k ≥ 1, Mk(i, j) > 0}.
When the context is clear, we will simply denote the distance by d(i, j). The average interpoint
distance is given by

d̄(�) = 1

N(N − 1)

∑
i �=j

d�(i, j).

Another measure of distance in the graph is the diameter defined as

D(�) = max
i �=j

d�(i, j).

If the graph is not connected, D(�) = ∞.

2.2. Random graphs

A random graph of size N is a random variable � defined on a probability space (�, F , P)

with values in GN . The graph-theoretical quantities defined above (diameter, clustering coeffi-
cient, average interpoint distance, etc.) are then measurable functions of � and define random
variables on (�, F , P).

Many common random graph models result in sample graphs which may have more than one
connected component with nonzero probability. In this context, measures of graph size such
as the diameter are not finite valued. Also, computation of the diameter requires exhaustive
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knowledge of all the links in the graph, so it is not an observable quantity for an observer
who has access to a ‘representative sample’ of the whole network, such as a social scientist
conducting a survey. The typical interpoint distance, defined as the distance between a pair of
nodes chosen at random, is a more flexible notion of ‘size’ in this case. The typical interpoint
distance of a graph � is the random variable defined as

T (�) = d�(U),

where U is uniformly drawn among the links {(i, j) | 1 ≤ i ≤ N, 1 ≤ j ≤ N, i �= j} and
independent from �. It is readily observed that the law of the typical interpoint distance depends
only on the graph � itself.

Note that the typical interpoint distance is a random variable, even if the underlying graph
is deterministic. In a graph that consists of several large connected components or a single one
with a few isolated nodes, the typical interpoint distance provides more relevant information
than other measures of distance.

Example 1. Consider a sequence Sn of graphs with diameters bounded by a constant C, and
consider the graph �N obtained by adding an isolated point to Sn. For any N ≥ 2, d̄(�N) = ∞,
while the typical interpoint distance verifies

P(T (�N) ≤ C) = 1 − 2

N
;

so, as N → ∞, we have

lim sup P(T (�N) ≥ C + ε) → 0 for all ε > 0,

i.e. T (�N) may converge in probability to a finite-valued random variable, whereas the average
distance verifies P(lim sup d̄(�N) = ∞) = 1.

3. Scaling behavior of graph properties

A property often discussed in the literature on social networks is the scaling of various
graph-theoretical quantities with the graph size [2], [23], [25]. Consider a sequence (�N)N≥1
of graphs with �N ∈ GN and Q, a graph-theoretical quantity, defined as a measurable function
on Q : G∞ �→ R. We can define in the following way the concept of scaling behavior for the
quantity Q(�N)N≥1.

Definition 1. (Upper-scaling bound.) Let (�N)N≥1 be a sequence of graphs with �N ∈ GN.

A deterministic sequence (g(N))N≥1 is called an upper-scaling bound for (Q(�N))N≥1 if

lim sup
N→∞

Q(�N)

g(N)
≤ 1.

The notion of the lower-scaling bound can be defined analogously.

Definition 2. (Lower-scaling bound.) Let (�N)N≥1 be a sequence of graphs with �N ∈ GN .
A deterministic sequence (g(N))N≥1 is called a lower-scaling bound for (Q(�N))N≥1 if

lim sup
N→∞

Q(�N)

g(N)
≥ 1.
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In some cases, upper and lower scaling bounds may coincide up to a multiplicative constant.
This is the case if there is an f (N) that belongs to the upper scaling bounds, a g(N) belonging
to the lower scaling bounds, and a C > 0 such that limN→∞ f (N)/g(N) = C. In this case we
will say that ‘Q(�N) scales like f (N)’.

Example 2. (Scaling behavior in nearest-neighbor lattices.) Consider the d-dimensional
lattice {−n, . . . , 0, . . . , n}d with nearest-neighbor links. The corresponding graph �N has
N = (2n + 1)d nodes and it is readily observed that, as n → ∞,

• the average degree converges to 2d;

• the diameter (which, in this case, is the length of the diagonal) scales as cN1/d ;

• the clustering coefficient is 0: γi = 0 for any node i.

In this case, these quantities give both the upper and lower scaling bounds, which coincide.

When (�N)N≥1 is a sequence of random graphs, the above definitions must be interpreted
probabilistically. There are several possibilities, depending on the mode of convergence
considered.

Definition 3. (Scaling.) Let (�N)N≥1 be a sequence of random graphs, defined on the proba-
bility space (�, F , P). Consider a measurable function Q : G∞ → (0, ∞). A deterministic
sequence (g(N))N≥1 is said to be

1. an upper-scaling bound in expectation of Q(�N) if

lim sup
N→∞

E[Q(�N)]
g(N)

≤ 1;

2. an upper-scaling bound in probability if

lim sup
N→∞

P

(
Q(�N)

g(N)
≤ 1

)
= 1;

3. an almost-sure upper-scaling bound if

P

(
lim sup
N→∞

Q(�N)

g(N)
≤ 1

)
= 1.

The above possibilities are not equally restrictive. It is thus possible, for example, that
the smallest almost-sure upper bound is orders of magnitude greater than the upper bound in
probability or in expectation.

Example 3. (Erdős–Rényi random graph.) The simplest random graph model studied by Erdős
and Rényi [13] is one where, in a graph with N nodes, each link is established independently
from the others, with probability p(N). A graph configuration G ∈ GN is thus drawn with
probability

P(�N = G) = p(N)l(G)(1 − p(N))N(N−1)/2−l(G),

where l(G) is the total number of links in G. We usually consider the case where p(N) → 0.
Erdős–Rényi graphs exhibit the following scaling properties [5], [13].

• The expected degree of a given node scales as Np(N) when N → ∞.
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• (From Theorem 7.3 of [5].) When the expected degree of a link Np(N) verifies

Np(N) = ln N + f (N) with lim
N→∞ f (N) = −∞,

then
P({there exists N0 ≥ 1, for all N ≥ N0, �

N is disconnected}) = 1.

If limN→∞ f (N) = +∞ then ln N/ ln(ln N) is an almost-sure upper-scaling bound of
the diameter. In an even higher connectivity range, p(N)N = N1/d , the constant d + 1
defines an almost-sure upper-scaling bound.

• The expected average clustering coefficient is p(N). Since the degree of any node
has expectation p(N)N , the expected average clustering coefficient cannot have a lower-
scaling bound greater than 0 unless the expected degree of a node tends to ∞ as N → ∞,
not a very realistic situation for social networks.

4. Small-world graphs: an intrinsic definition

Having defined scaling, we will now attempt to cast in our framework the characterization
of small-world graphs, as formulated by Watts [25].

Watts’ starting point is a set of empirical observations on the structure of social networks.
Social networks are complex networks which are characterized by a number of common
features:

• a large number of nodes;

• sparsity of links, i.e. the number of existing links is far from saturating the total number
of possible links;

• a high degree of clustering, as measured for instance by the clustering coefficient; and

• length scales, such as the typical interpoint distance, which are orders of magnitude
smaller than the number of nodes.

Comparing these properties with those of two well-known classes of graphs—regular lattices
and Erdős–Rényi random graphs—Watts noted that, while neither of these possessed all of
the desired properties, the Erdős–Rényi graph can exhibit realistic distance scaling properties,
while regular lattices can exhibit high local clustering as the network size grows. This led to
the following conjecture.

Conjecture 1. ([25].) There exists a class of graphs that are highly clustered yet whose
characteristic length and diameter scales are similar to Erdős–Rényi random graphs. These
graphs are called small-world graphs.

As we have seen from previous examples, the scaling of quantities in the graph depends on
the total number of links. Comparing different graphs in terms of the scaling of quantities,
such as clustering or distance, is only meaningful when the average degree is similar. It is thus
necessary to impose a condition on the scaling of the average degree. By doing so we also
exclude trivial examples; indeed, in the highest connectivity range, when the average degree
scales as cN , even a lattice would have a diameter bounded by a constant. Thus, the cases of
interest are those where the average degree is orders of magnitude smaller than N .

When this is the case, obtaining small distances between nodes is not trivial. As an example,
a one-dimensional kth-nearest-neighbor lattice with an average degree as high as 2k = N1/d
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would still have a large diameter scaling as N1−1/d . Thus, even in this high connectivity range,
efficient organization of links is required for the distances in the graph to be short. Bearing
in mind the relevance to social networks, we will limit ourselves to lower connectivity ranges,
although the existence of clustered graphs that have short diameter when the average degree
scales as N1/d is mathematically nontrivial. Most models in the literature, including Watts’
model, assume that the average degree is bounded by a constant. We think it is reasonable to
impose a slightly more lenient condition, allowing also for an average degree scaling as C ln N .
As we have seen, this is the case for the connected Erdős–Rényi graph. In practice, a degree
scaling as C ln N , although unbounded, remains small even for large N .

Based on this discussion, we propose the following definition, which allows us to capture
these features.

Definition 4. (Small worlds.) A network model (�N)N≥1 is said to be a small world if the
following three conditions are verified.

• There is a constant C1 ≥ 0 such that C1 ln N is an upper-scaling bound of the average
degree deg(�N).

• There is a constant C2 ≥ 0 such that C2 ln N is an upper-scaling bound for the typical
interpoint distance.

• The clustering coefficient is bounded away from 0.

Each of these properties may hold almost surely, in probability or in expectation.

Remark 1. A related class of complex networks which has received much attention is that of
scale-free networks [3], [7], in which the degree distributions have Pareto tails. The Barabasi–
Albert model [3], which is the prototypical example of a scale-free graph, has been shown by
Bollobás et al. [9] to exhibit small distances between nodes [6], but not to exhibit clustering:
the clustering coefficient decreases to 0 with the size of the graph [7]. Thus, scale-free graphs
need not be small worlds in the sense of Definition 4. It is also obvious that Watts’ small-world
graph is not a scale-free graph.

5. Lattice-based constructions of small worlds

Let us now recall the original small-world construction of Watts [25], [26] and show that it
verifies Definition 4.

TheWatts model starts from an initial graph L, chosen to be a regular lattice of low dimension.
In this graph, each of the existing links is randomly rewired with small probability, resulting
in a random perturbation of the original lattice. This model typically leads to a disconnected
graph with nonzero probability, but this problem can be avoided by adding additional links to
the initial graph instead of rewiring, as in [4].

We now describe the variation of the Watts model proposed by Barbour and Reinert [4].
Barbour and Reinert constructed a graph by superposing a ring lattice L with N nodes and an
Erdős–Rényi random graph E. In the ring lattice, each node is connected to the 2k neighbors
within distance k in the lattice. In the Erdős–Rényi graph, each link exists with probability
p/N . The resulting graph, �N , has links defined by (i, j) ∈ �N if and only if (i, j) ∈ L or
(i, j) ∈ E.
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Proposition 1. In the perturbed lattice model described above, with 1
3 ≤ p < 1 and k ≥ 2,

we have

• 2 ln N is an upper-scaling bound of the typical interpoint distance;

• the average degree is almost surely bounded by 2k + 1, where 2k is the degree of the
lattice; and

• the average clustering coefficient is almost surely bounded below by γ̄L(2k−1)/(2k+1),
where γ̄L is the average clustering coefficient in the lattice.

Let us recall some results shown in [4]. To approximate the typical interpoint distance
between two nodes, we consider independent branching processes originating from each other
and branching through nearest neighbors on the small-world graph, with branching rate 2k.
The typical interpoint distance is evaluated by estimating the probability that two independent
branching processes of this type do not intersect before a given time. While the actual process is
complicated due to the possible overlap of intervals, it can be approximated using a pure-growth
process whose behavior is easier to characterize.

This growth process must take into account two types of intervals with different branching
rates, those that have just been created and consist of only one point which can be an endpoint
for a random link, and those of more than one point where 2k new deterministic neighbors at
each time are potential endpoints of random links. Denote by M1(n) the number of one point
intervals at time n, and denote by M2(n) the number of intervals containing more than one
point at time n. Then the process

M(n) =
(

M1(n)

M2(n)

)

is defined recursively by

M1(n) = Bin

(
(M1(n − 1) + 2kM2(n − 1))N,

p

N

)
, M1(0) = 1,

M2(n) = M1(n − 1) + M2(n − 1), M2(0) = 0.

The expected evolution of the process verifies

E[M(n) | Fn−1] = AM(n − 1),

where Fn−1 = σ(M(0), . . . , M(n − 1)) and

M =
(

p 2kp

1 1

)
.

The matrix A has two eigenvalues, λ and λ′, where |λ| > |λ′| and λ > 1. Thus, the eigenvalue
λ = 1

2 (p + 1 + √
(p + 1)2 + 4p(2k − 1)) dominates in the long-run behavior of the process.

If we denote by f 1 the standardized eigenvector associated with the eigenvalue λ, we have

E[(f 1)
M(n) | Fn−1] = (f 1)
AM(n − 1) = λ(f 1)
M(n − 1).

Thus, (W(n))n≥0, where W(n) = λ−n(f 1)
M(n) defines a martingale whose limit Wk,p :=
limn→∞ W(n) appears in the characterization of the typical interpoint distance.
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If the processes started from i and j have not intersected at time n, the distance between
nodes i and j is at least 2m. In [4], the time of intersection is expressed in relation to the typical
time at which the first intersection is likely to occur. This time, nd , is defined by the relation
λnd ≤ √

Np < λnd+1, implying that λnd = φ
√

Np for 1/λ < φ ≤ 1.
The main result in [4] is stated as follows.

Proposition 2. ([4, Theorem 5.9, p. 1271].) There is a random variable V verifying, for any
x ∈ Z,

P(V ≥ 2nd + x) = E

[
exp

{
− λ2

λ − λ
′ (λ − p)φ2λxWk,pW̃k,p

}]
, (4)

where λ, nd , φ, and Wk,p have been defined above and W̃k,p is an independent copy of Wk,p.
The total variation distance between the distributions of T (�N), the typical interpoint

distance, and the random variable V verifies

DTV(L(T (�N)), L(V )) = O(ln(Np)(Np)γ/(4−γ )), (5)

where γ verifies 0 < γ ≤ 1
2 for any fixed kp. Hence, DTV(L(T (�N)), L(V )) → 0 if Np → ∞

and kp is fixed.

The right-hand side of (4) can be used to obtain a detailed characterization of the typical
interpoint distance. Here we are interested in results that bound its upper tail. For our purposes,
it was convenient to denote by f (p, k) any bounded strictly positive quantity (not always the
same one) that does not depend on N when recalling the following bound from [4].

Proposition 3. ([4, p. 1280].) The random variable V verifies

P

(
λ − 1

2
(V − 2nd) ≥ z

)

≤ f (k, p)e−f (k,p)z log(f (k, p) + f (k, p)ef (k,p)z) for z ∈ λ − 1

2
Z (6)

whenever pk < 1.

From the above we derive limN→∞ P(V ≥ 2 ln N) = 0. We have λ = 1
2 (p + 1 +√

(p + 1)2 + 4p(2k − 1)). If we choose p such that 2
3 ≤ pk < 1, we have λ > 7

4 , and,
thus,

2nd ≤ 2
ln(

√
Np)

ln λ
≤ ln(Np)

ln(7/4)
≤ α ln N,

where α < 2.
Define the sequence (xN)N≥N0 by

xN =
{

max
x∈((λ−1)/2)Z

∣∣∣∣ x ≤ λ − 1

2
(2 ln N − 2nd)

}
,

so that limN→∞ XN = ∞. Then

lim
N→∞ P(V ≥ 2 ln N)

≤ lim
N→∞ P

(
λ − 1

2
(V − 2nd) ≥ xN

)
≤ lim

N→∞ f (k, p) exp{−f (k, p)xN } log(f (k, p) + f (k, p) exp{f (k, p)xN })
= 0.
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Remark 2. Although (3) assumes that pk < 1, it is obvious that the upper bound we obtained
for the typical interpoint distance would be valid for pk > 1 also, since the probability of every
link in �N is increasing in p and k.

By (5) we conclude that

lim
N→∞ P(T (�N) ≥ 2 ln N) ≤ lim

N→∞[P(V ≥ 2 ln N) + O(ln(Np)(Np)γ/(4−γ ))] = 0.

5.1. Degree

Clearly, when the probability of random links is small, the degrees are close to that in the
lattice. Label the elements of {1, . . . , N} × {1, . . . , N} in an arbitrary way, i = 1, . . . , N(N −
1)/2, and define Yi = 1 if the link i exists in the Erdős–Rényi subgraph E and 0 otherwise:
the Yi are then independent and identically distributed (i.i.d.) Bernoulli variables and we can
apply the following lemma.

Lemma 1. (Bernstein’s inequality.) Let Sk = ∑m
i=1 Xi , where (Xi)

m
i=1 is a sequence of i.i.d.

variables such that E[Xi] = 0, E[X2
i ] = σ 2, and |Xi | ≤ L. Then

P(|Sm| ≥ tσ
√

m) ≤ 2 exp

{
− t2

1 + α/3

}
,

where α = Lt/σ
√

m.

Define Xi = Yi − E[Yi], and note that σ = p/N . With m = N(N − 1)/2 and summing
over N , we obtain, for any ε > 0,

∑
N

P

(
1

N

N(N−1)/2∑
i=1

Yi ≥ p + ε

)
< ∞; (7)

so, by the Borel–Cantelli theorem,

lim sup
N

1

N

N(N−1)/2∑
i=1

Yi < p + ε P -almost surely.

The average degree of a node is given by

2k + 1

N

N(N−1)/2∑
i=1

Yi,

where 2k is the degree in the underlying lattice. Since p < 1, we can choose ε > 0 so as to
ensure that, almost surely, the average degree is bounded by 2k + 1.

5.2. Clustering

When the number of random links added is almost surely bounded, we can infer a bound on
the average clustering coefficient. We define 	i = card{(j, l) ∈ � | j ∈ VL(i) and l ∈ VL(i)},
where VL(i) refers to i’s neighbors in the lattice. (In a regular lattice, 	i = 	 is the same for
all i.) The average clustering coefficient in the lattice γ̄L is then given by

γ̄L = 	

2k(2k − 1)/2
.
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If 2k is the degree of each node in the lattice and Xi the degree of i in the Erdős–Rényi graph,
then the total degree is 2k + Xi in the perturbed lattice, and the average clustering coefficient
in the small-world graph γ̄ verifies

γ̄ ≥ 1

N

N∑
i=1

	

(2k + Xi)(2k − 1 + Xi)/2
.

By (7), the average clustering coefficient is almost surely bounded below by the solution to

min
{∑N

i=1 Xi=N}
1

N

N∑
i=1

	

(2k + Xi)(2k − 1 + Xi)/2
. (8)

The problem above has a unique solution, X1 = X2 = · · · = XN = 1. Indeed, if we define

f (Xi) = 	

(2k + Xi)(2k − 1 + Xi)/2

then, for any S > 0, the unique solution to the problem

min
X1+X2=S

f (X1) + f (X2)

is X1 = X2 = S/2. Suppose that, for N > 2, (xi)
N
i=1 is a solution to (8). Then we cannot

have xl �= xm for some m and l, since terms in the sum we minimize could be made smaller by
putting Xl = Xm = (xl + xm)/2. Thus, we have

γ̄ ≥ 	

(2k + 1)(2k − 1 + 1)/2
,

which implies that

γ̄ ≥ 	

(2k + 1)(2k − 1 + 1)/2
= 2k − 1

2k + 1
γ̄L.

6. A lattice-free small-world model

The construction discussed in the previous section is based on random perturbations of a
regular lattice. Although this construction satisfies the required scaling properties of small
worlds, it is not a plausible model for the genesis of small-world phenomena in the context of
social or biological networks, since regular lattices are not natural underlying structures in such
contexts. We now propose a lattice-free small-world model, verifying Definition 4, which is
more natural for such applications. The idea, which can be seen as a variation on Granovetter’s
[16] notion of weak links between social communities, is to start from an initial set of disjoint
fully connected graphs, representing tightly-knit communities, and to introduce random links.

We partition the nodes 1, . . . , N into M disjoint sets of nodes G1, . . . ,GM : these clusters
can be seen as ‘communities of origin’ of the nodes. For ease of exposition, we will consider
the case where Gi contains δ nodes with N = Mδ, but this can be easily relaxed. We then
associate to every node i = 1, . . . , N a cluster Xi uniformly drawn among G1, . . . , GM , and
link i to all nodes in the cluster Xi . Here Xi can be viewed as the ‘secondary community’of the
node i. Finally, we link all pairs of nodes i and j which share a common secondary community,
i.e. Xi = Xj .
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Ak Al

Node i

Figure 1: Local view. Node i is the only common member of communities Ak and Al .

Figure 2: Solid lines link members of the same initial cluster. Dashed lines represent links created after
the realization of the random variables.

The construction can be summarized as follows: define, for m = 1, . . . , M , the set of nodes

Am = Gm ∪ {i ∈ {1, . . . , N} | Xi = Gm};
�N can then be characterized by

(i, j) ∈ �N ⇐⇒ i �= j and (i, j) ∈
M⋃

m=1

(Am × Am).

The resulting graph contains fully connected subgraphs Am × Am, linked together in a random
manner. Typically, each node belongs to exactly two clusters. Figures 1 and 2 illustrate the
structure of the resulting graph. In modeling terms we may think of the graph as a social
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network where each individual belongs to two communities, such as, for example, a group of
colleagues and a group of family members; thus, connecting two otherwise disjoint groups.
We will see that these multiple community affiliations give rise to the small-world property.
Communities are also natural in other contexts. In the context of the World Wide Web, these
clusters would correspond to web domains or closely interlinked online communities. The
presence of community structures in social networks is well documented in empirical studies
[12] and algorithms have been proposed for detecting underlying community structures in
networks [15], [17], [19], but such structures have rarely been integrated into network models.

We will now study the scaling properties of the model defined above.

Proposition 4. The above construction with δ ≥ 6 and d = 1 satisfies Definition 4. More
precisely,

• 6 ln N is an almost-sure upper-scaling bound for the diameter of the graph;

• the expected average degree is bounded from above by 4δ − 1;

• the local clustering coefficient at each node is almost surely bounded from below by 1
4 .

Remark 3. The choice δ ≥ 6 is for analytical convenience and the bound is not tight. It is
likely that δ could be chosen smaller and/or that one could obtain a smaller scaling bound for
the chosen value of δ. However, the cluster size δ must be greater than or equal to three to
ensure almost surely that no cluster is isolated.

6.1. Scaling behavior of the average degree

Defining Sm := card{i | Xi = Gm}, we have card(Am) ≤ δ + Sm and the total number of
links in the graph is then bounded by

M∑
m=1

card(Am)(card(Am) − 1)

2
≤

M∑
j=1

(Sj + δ)(Sj + δ − 1)

2
.

Since the N variables (Xi)
N
i=1 are independently and uniformly drawn among G1, . . . ,GM , the

variables (Sj )j=1,...,M follow a multinomial law

P(S1 = s1, . . . , SM = sM) =

⎧⎪⎨
⎪⎩

N !
s1 · · · sM

(
1

M

)N

if
∑M

i=1 si = N,

0 otherwise.

Thus, E[Sj ] = N/M = δ and var(Sj ) = (N/M)(1 − 1/M) = δ(1 − 1/M), so that

E[S2
j ] = var(Sj ) + (E[Sj ])2 = δ

(
1 − 1

M

)
+ δ2.

We have

E

[ M∑
j=1

(Sj + δ)(Sj + δ − 1)

2

]
= 1

2

M∑
j=1

(E[S2
j ] + (2δ − 1) E[Sj ]) + δ(δ − 1)

≤ M(4δ2 − δ)

2
.

The average degree in a graph of N nodes equals the total number of links divided by N/2.
Thus, (4δ − 1) is an upper-scaling bound for the expected average degree.
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6.2. Clustering behavior

We need to prove that the scaling of the clustering coefficient is bounded below by a constant.
We first prove a lemma on local clustering in graphs that we then apply to our construction.

Lemma 2. Consider a graph � and the subgraph �(i) = � ∩ [V (i) × V (i)] formed by the
neighbors V (i) of i and the links between them. If �(i) can be partitioned into K disjoint
complete subgraphs then the local clustering coefficient γi verifies γi ≥ 1/K − 1/h, where h

is the number of nodes of the smallest subgraph.

Proof. Consider such a partition of �(i), and let C1, C2, . . . , Cl be the number of nodes in
each complete subgraph. Then there are at least

∑l
j=1 Cj (Cj − 1)/2 links between i’s neigh-

bors. The maximal number of possible links between i’s neighbors is
∑l

j=1 Cj (
∑l

j=1Cj−1)/2.
Thus, we have

γi ≥
∑l

j=1 Cj (Cj − 1)

(
∑l

j=1 Cj )2
=

∑l
j=1 C2

j

(
∑l

j=1 Cj )2
−

∑l
j=1 Cj

(
∑l

j=1 Cj )2
.

Using 2CiCj ≤ C2
i + C2

j , we obtain

( l∑
j=1

Cj

)2

=
l∑

j=1

C2
j +

∑
j �=k

CjCk ≤
l∑

j=1

C2
j + (l − 1)

l∑
j=1

C2
j = l

l∑
j=1

C2
j .

Noting that ∑l
j=1 Cj

(
∑l

j=1 Cj )2
≤ max

j

1

Cj

,

the result follows.

Now we apply the Lemma 2 to our model. Since all nodes in the same Am, m = 1, . . . , M ,
are connected, any subset of Am is a complete subgraph. Each i belongs to at most two such
sets, Aj and Ak . These sets may have common elements, but we can always obtain a disjoint
union V (i) = (Aj − {i} − [Gk]) ∪ (Ak − {i} − [Gj ]). The sets in the union contain at least
card([Gj ]) − 1 and card([Gk]) − 1 elements, respectively. Thus, h ≥ δ − 1 ≥ 5. Applying the
Lemma 2, we obtain as the lower bound for the clustering coefficient 1

2 − 1/(δ − 1) ≥ 1
4 , as

stated in Proposition 4.

6.3. Scaling behavior of the diameter

In this section we will show that

P

(
lim sup

N

D(GN)

6 ln N + 5
≤ 1

)
= 0.

Our proof consists in showing that, for all K ≥ K0,

P

(
D(GK)

6 ln K + 5
≥ 1

)
≤ 1

K1+α
, α > 0.
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Using this bound, we have, from the Borel–Cantelli theorem,

P

(
lim sup

N

D(GN)

6 ln N
≥ 1

)
= P

(
lim sup

N

D(GN)

6 ln N + 5
≥ 1

)

≤ lim
N→∞

∑
K≥N

P

(
D(Gk)

6 ln K + 5
≥ 1

)

≤ lim
N→∞

∑
K≥N

1

K1+α

= 0.

In order to show that

P

(
D(GN)

6 ln N + 5
≥ 1

)
≤ 1

N1+α

for sufficiently large N , we will proceed in several steps. We start from an arbitrary subgraph G.
First we will estimate the probability that there is a setS within distance ln N fromG that contains
at least M/2 clusters or, equivalently, N/2 nodes. Then we estimate the probability that all
nodes in Sc are close to S.

We construct the set S by considering the clusters that we can reach from a cluster G1 in a
given number of steps. In what follows, we will assume that the number δ of nodes in each
cluster verifies δ ≥ 6. We start from the set E0 = {G1} and then define Ek and Fk recursively
in the following way:

Fk = {i ∈ [1, . . . , N] | there exists G ∈ Ek, i ∈ G},

Ek =
{
G /∈

k−1⋃
l=1

El

∣∣∣∣ there exists j ∈ Fk−1, Xj = G

}
.

We then let

F̄k = card{Fk} = card{i ∈ [1, . . . , N] | there exists G ∈ Ek, i ∈ G}.
Thus, Ek is the set of clusters that can be reached after exactly k steps from G1, and F̄k is the
number of nodes that belongs to the clusters in Ek . Define the events

Ak = {card(Ek) ≥ e card(Ek−1)}.
We note that Ak occurs if

∑
j∈Fk−1

1Aj
≥ e card(Ek−1). Here Aj denotes the event [Xj /∈⋃

m<k−1 Em and Xj �= Xa for a ∈ Fk−1 such that a ≤ j ]. The event Ak implies that not too
many of the successors of the nodes in Fk−1 belong to the sets that have been found previously.

Define, for u ≥ 0, the stopping times

τu = min

{
l ≥ 1, card

( l⋃
j=0

Ej

)
≥ u

}
.

For a given T , we want to estimate the probability of the event

P

( T⋂
j=1

Aj

)
=

T∏
j=1

P

(
Aj

∣∣∣∣
j−1⋂
m=1

Am

)
.
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We will now establish the lower bound P(Aj | ⋂j−1
m=1 Am) ≥ 1−c/M3. We obtain this bound

in a different manner depending on whether j = 1, 2 ≤ j ≤ τ√
M

, or τ√
M

≤ j < τM/2.

Consider j = 1. We are on A1 if E1 contains at least 3 > e different elements that are not
in E0. The probability of drawing an element among the previous sets is bounded by C/M;
thus, whenever at least three of the δ ≥ 6 elements in N0 have new successors, A1 is verified.
The probability that at least three nodes have successors found previously is smaller than C/M3.

Now we consider 2 ≤ j ≤ τ√
M

. In fact, the probability of the event Aj only depends on
F̄j−1 and

∑j−1
m=0 card(Em). While j ≤ τ√

M
, the latter set necessarily contains less than

√
M

elements. Thus, the probability of drawing a set that is found previously is smaller than 1/
√

M .
Conditionally on the events

⋂
m<j Am, we also know that F̄j−1 ≥ 3j−1F̄0. Thus, for every

2 ≤ j ≤ τ√
M

, we have 18 ≤ F̄1 ≤ F̄j−1 ≤ √
M . Since F̄j = δ card(Ej ) with δ ≥ 6, we see

that we are on Aj if at most 1
2 F̄j−1 of the variables (Xl)l∈Fj−1 are among the previously found

sets. Since the probability of intersecting previous sets is bounded by 1/
√

M , we have

P

(
Ak

∣∣∣∣
k−1⋂
j=1

Aj

)
≥ 1 −

F̄k−1∑
m=F̄k−1/2

(
F̄k1

m

) (
1√
M

)m

.

The binomial coefficient

(
F̄k1

m

)
= (F̄k−1 − m + 1) · · · (F̄k−1)

m! .

The numerator contains m terms, each smaller than F̄k−1. Since k − 1 ≤ τ√
M

, F̄k−1 ≤ √
M .

We distinguish between two cases.

Case 1: 2 ln M < F̄k−1 ≤ √
M . Then we have

F̄k−1∑
m=F̄k−1/2

(
F̄k1

m

) (
1√
M

)m

≤
F̄k−1∑

m=F̄k−1/2

(F̄k−1)
m

m!
(

1√
M

)m

≤
F̄k−1∑

m=F̄k−1/2

(
√

M)m

m!
(

1√
M

)m

≤
F̄k−1∑

m=F̄k−1/2

1

(ln M)!

≤ F̄k−1
1

(ln M)!
≤

√
M

(ln M)!
≤ 1

M3 . (9)
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Case 2: conditionally on A1, 18 ≤ F̄1 ≤ F̄k−1 ≤ 2 ln M . We have the bound

F̄k−1∑
m=F̄k−1/2

(
F̄k1

m

) (
1√
M

)m

≤
F̄k−1∑

m=F̄k−1/2

(F̄k−1)
m

m!
(

1√
M

)m

≤
F̄k−1∑

m=F̄k−1/2

(2 ln M)m
(

1√
M

)m

(10)

≤
F̄k−1∑

m=F̄k−1/2

(
2 ln M√

M

)9

≤ F̄k−1

(
2 ln M√

M

)9

≤ (2 ln M)10 1

M4

≤ 1

M3 . (11)

We used the fact that there is an M0 such that, for M ≥ M0, the term (2 ln M/
√

M)m is
decreasing in m.

Now we establish a lower bound for P(Aj | ⋂j−1
m=1 Am), when τ√

M
< j ≤ τM/2. For

such a j , conditionally on
⋂j−1

m=1 Am, there is a 0 ≤ β < 1 such that F̄j ≥ Mβ . Indeed,
conditionally on

⋂j
m=1 Am, we have F̄j ≥ ej F̄0 ≥ exp{τ√

M
}F̄0. Since, for every T ≥ 0,∑

l≤T card(El) ≤ ∑l=T
l=0 δl ≤ δT +1, we have

τ√
M

= min

{
T ≥ 1

∣∣∣∣
T∑

j=0

card(Ej ) ≥ √
M

}
≥ min{T ≥ 1 | δT +1 ≥ √

M}. (12)

It follows that there must be a β > 0 such that τ√
M

≥ ln(Mβ), which implies that F̄j ≥
exp{τ√

M
}F̄0 ≥ MβF̄0 ≥ Mβ .

For τ√
M

< k ≤ τM/2, we obtain a lower bound for the probability of (Ak | ⋂
j<k Aj ) using

Bernstein’s inequality, (1). Conditionally on
⋂k−1

j=1 Aj , Ak occurs if at least e card(Ek−1) out
of the F̄k−1 = δ card(Ek−1) ≥ 6 card(Ek−1) independent variables reach new successors. By
the definition of τM/2, for k ≤ τM/2, the probability that the uniformly distributed variables
(Xi)i∈Fk−1 reach one of the previously attained elements is smaller than 1

2 , and, thus, the
probability of finding a new successor is greater than P(Yi = 1), where Yi follows a Ber( 1

2 ).
We fix an ε ≥ 0 such that 3 − ε ≥ e. If we let (Yi) denote such a sequence of i.i.d. Ber( 1

2 ), we
have

P

(
Ak

∣∣∣∣ ⋂
j<k

Aj

)
≥ 1 − P

(∣∣∣∣
F̄k−1∑
i=1

(
Yi − 1

2

)∣∣∣∣ ≥ εF̄k−1

)
.

We will bound the right-hand side by again using the Bernstein inequality, (1).
For a sequence of i.i.d. Ber( 1

2 ), we apply (1) to (Xi − 1
2 )Ni=1 with σ = 1

2 , L = 1, and
t = √

ε
√

N/σ , which gives

α =
√

ε

σ
≤ 3 and

t2

1 + (α)/3
≥ εN

2σ 2 ≥ εN.
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We have

P

(∣∣∣∣
F̄k−1∑
i=1

(
Xi − 1

2

)∣∣∣∣ ≥ εF̄k−1

)
≤ 2 exp{−εF̄k−1}.

As we saw before, conditionally on
⋂

j≤k−1 Aj , we have F̄ k−1 ≥ Mβ , with β > 0.
Thus, by the Bernstein inequality, we obtain, for τ√

M
≤ k ≤ τM/2,

P

(
Ak

∣∣∣∣ ⋂
j<k

Aj

)
≥ 1 − 2 exp{−εMβ} ≥ 1 − 1

M3 ,

where the last inequality holds for M ≥ M0.
Let L := min[l | el ≥ M/2] < ln M . If we are on Aj until L, card(EL) ≥ eL card(E0) ≥

M/2. Thus, if the events Aj hold until τM/2, necessarily τM/2 ≤ L. We define the bounded
stopping time T := min(L, τM/2). We note that we have

( T⋂
l=1

Al

)
⊂ (τM/2 ≤ L).

Since we have shown that, for 1 ≤ j ≤ τM/2, P(Aj | ⋂j−1
m=1 Am) ≥ 1 − 1/M3, and since

the stopping time T is bounded by ln M , we have

P(τM/2 ≤ L) ≥ P

( T⋂
l=1

Al

)

=
T∏

j=1

P

(
Aj

∣∣∣∣
j−1⋂
l=1

Al

)

≤
(

1 − 1

M3

)T

≤
(

1 − 1

M3

)ln M

.

To conclude, we use the following limit results.

Lemma 3. Let f (N) be a function verifying limN→∞ f (N) = ∞ and let g(N) be a function
verifying limN→∞ g(N) = ∞ such that h(N) := g(N)/f (N) verifies limN→∞ h(N) = 0.
Then there is an N0 such that we have, for all N ≥ N0,(

1 − 1

f (N)

)g(N)

≥ 1 − g(N)

f (N)
.

Proof. The assumptions imply that we have

lim
N→∞

(
1 − 1

f (N)

)f (N)

= e−1

and, for any 
(n) with limn→∞ 
(n) = 0, we have

lim
N→∞

e
(N) − 1


(N)
= 1. (13)
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Fix ε ≥ 0. There is an N0 such that, for N ≥ N0, we have (1 − 1/f (N))f (N) ≥ e−(1+ε), and
e
(N) − 1 ≥ (1 − ε)
(N) is equivalent to e
(N) ≥ 1 + (1 − ε)
(N). Applying (13) with

 = −(1 + ε)h(N) we obtain

(
1 − 1

f (N)

)g(N)

≥ e−(1+ε)h(N) ≥ 1 − (1 − ε)(1 + ε)h(N) ≥ 1 − g(N)

f (N)
.

This completes the proof.

Applying Lemma 3 to f (M) = M3 and g(M) = ln M , we have

P(τM/2 ≥ ln M) ≤ 1 −
(

1 − 1

M3

)ln M

≤ ln M

M3 . (14)

We define the set S := ⋃τM/2
j=0 Ej .

We note that, when τM/2 ≤ ln M , for all G, G′ ∈ S,

d�(G, G′) ≤ d�(G, S) + d�(G′, S) ≤ 2 ln M.

Thus,

P(d�(G, G′) ≤ 2 ln M) ≥ P(τM/2 ≤ ln M) ≥ 1 − ln M

M3 .

Also, card(S) ≥ M/2, by definition of τM/2.
At this point, it is very easy to show that, almost surely, the typical interpoint distance scales

logarithmically. With some additional work, we show the same to be true for the diameter.
We use a construction that divides the clusters in Sc into disjoint connected sets containing

at most ln M elements and satisfying one of the following properties.

(H1) [I ⊂ Sc | there exists G ∈ I such that d(Gm, S) = 1 or ln M − 1 ≤ card(I )].
(H2) [I ⊂ Sc | there exist G ∈ I and I ′ satisfying property (H1) such that d(G, I ′) = 1].
These properties will be used later to show that the constructed sets are likely to be close to S.

We construct disjoint sets (Ij )
kmax
j=1 in the following way. We define I 0 = ∅. For k ≥ 1,

we then take an arbitrary element G ∈ Sc − ⋃
l≤k I l and define G =: Ek

0 . Then we define the
following sets recursively

Fk
l = {i ∈ [1, . . . , N] | there exists G ∈ Ek

l , i ∈ G},

and then denote by F̃ k
l the card(F k

l )/2 nodes of smallest index in Fk
l and define

Ek
l =

{
G /∈

l−1⋃
j=1

Ek
j

∣∣∣∣ there exists a ∈ F̃ k
l−1, Xa = G

}
.

This is essentially similar to what was done previously, except that now we only use the
successors of half of the nodes that we find at each step. For the process (Ek

j )j ,we define the
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following stopping times:

τ k
ln M = inf

{
t

∣∣∣∣
t∑

j=0

card(Ek
j ) ≥ ln M

}
,

τ k
S = inf{t | Ek

t ∩ S �= ∅},
τ k
H1

= inf{t | Ek
t ∩ Is �= ∅, s ≤ t, Is verifies property (H1)},

τ k
H2

= min{t | Et ∩ Is �= ∅, s ≤ t, Is verifies property (H2)},
τ k = min{τ k

ln M, τk
S , τ k

H1
, τ k

H2
}.

We will show that τ k is almost surely bounded. We construct (Ek
j ) and (F k

j ) for j ≤ τ k . Then
we define I k in the following way: if τ k = τ k

S , we define I k := ⋃τ k

j=0 Ek
j ; if τ k = τ k

ln M , we
define I k := ⋃τ k

j=0 Ek
j − A, where A ⊂ Eτln M is chosen so that

ln M − 1 ≤ card

( τ k⋃
j=0

Ek
j − A

)
≤ ln M.

The I k defined this way verifies property (H1).
If τ k = τ k

H1
, we also define I k := ⋃τ k

j=0 Ek
j and I k verifies property (H2). If τ k = τ k

H2
,

there is an s < k such that I s ∩ Eτk �= ∅. In this case we consider the set

I s ∪
( ⋃

j≤τ k

Ek
j

)
.

If it has less than ln M elements, we call it I k and it satisfies property (H2). If it has more than
ln M elements, we split it into a set satisfying property (H1) and one or several sets satisfying
property (H2) in the following way. The set I s ∪ (

⋃
j≤τ k Ek

j ) is connected by construction.
Take an arbitrary cluster G in the set. Consider the nodes at a maximal distance d from G and
remove them one by one as long as more than ln M nodes remain. Then do the same at distance
d − 1, and so on. Nodes are removed one by one until the remaining connected set contains no
more than ln M clusters and, thus, verifies property (H1). We call this set I k

1 . We partition the
removed nodes into connected components, (I k

l )l=2,...,L. (Some components may consist of
one element.) Since the division into connected components is a partition of the set of removed
nodes, each element is in exactly one component. Each of these connected components contains
an element linked to I k

1 and, thus, verifies property (H2). Indeed, a removed node at distance
d from G is linked to a node at distance d − 1 from G. Either this node is in I k

1 or it is linked
to a node at distance d − 2 from G. Since there is a C such that all elements at a distance less
than or equal to C from G belong to I k

1 , each removed node belongs to a chain and, thus, to a
connected component including an element at distance 1 from I k

1 . When I k is constructed, we
repeat the procedure for k + 1. We continue this way until a kmax such that

Sc −
⋃

l≤kmax

Il = ∅.

Necessarily, kmax ≤ card(Sc) ≤ M . We have constructed disjoint sets (I k)
kmax
k=1 such that every

element in Sc belongs to exactly one set I k .
Now we will show that τ k is almost surely bounded by ln M for k = 1, 2, . . . , kmax. In this

section we say that the event Ak occurs if card(Ek) ≥ 1. This guarantees that at least one new

https://doi.org/10.1239/aap/1231340159 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1231340159


960 • SGSA R. CONT AND E. TANIMURA

cluster is reached at each step. We define the bounded stopping times T k := min{ln M, τk}.
Then (

⋂T k

j=1 Qj) ⊂ (τ k ≤ ln M). The event Aj occurs when at least one new cluster is found
at step j . Before T k , fewer than ln M groups have already been reached. Since we use half of
the successors of the nodes in a cluster, that is, δ/2 ≥ 3 successors,

P

(
Aj

∣∣∣∣
j−1⋂
l=1

Al

)
≥

(
1 −

(
ln M

M

)3)
.

We have

P(τ k ≤ ln M) ≥ P

( T k⋂
l=1

Al

)

=
T k∏
j=1

P

(
Aj

∣∣∣∣
j−1⋂
l=1

Al

)

≥
(

1 −
(

ln M

M

)3)T k

≥
(

1 −
(

(ln M)

M

)3)ln M

. (15)

Moreover, the constructions at steps k = 1, 2, . . . , kmax are independent. They involve
different nodes since constructions stop when intersecting previous constructions. Thus, we
have

P

(kmax⋂
k=1

τ k ≤ ln M

)
=

kmax∏
k=1

P(τ k ≤ ln M) ≥
(

1 −
(

ln M

M

)3)M ln M

.

We can then apply (3) to obtain

P

(kmax⋂
k=1

τ k ≤ ln M

)
≥

(
1 −

(
ln M

M

)3)M ln M

> 1 − M ln M
(ln M)3

M3

> 1 − 1

M1+ε
for ε > 0. (16)

Now we will give a lower bound for the probability that d(I j , S) = 1 when I j is a set verifying
property (H1). If I j verifies property (H1), it either contains an element linked to S or contains
ln M subgraphs. In the second case, since we only used half of the successors of the nodes in I j

to construct the set, there are still (δ/2) ln M ≥ 3 ln M nodes whose successors are unexplored.
We condition on the event {τM/2 ≤ ln M}, so that the set S contains at least M/2 subgraphs
and on {⋂kmax

k=1 τ k ≤ ln M}, which guarantees that each set (I k)
kmax
k=1 verifies property (H1) or

property (H2). The probability that a successor is in S is at least 1
2 . Since there are at most

kmax ≤ M sets verifying property (H1), and these are disjoint, the conditional probability that
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they are all at distance 1 from S is bounded by

P

( ⋂
{j | I j verifies property (H1)}

(d(I j , S) = 1)

∣∣∣∣
kmax⋂
k=1

τ k ≤ ln M, τM/2 ≤ ln M

)

=
∏

{j | I j verifies property (H1)}
P

(
d(I j , S) = 1

∣∣∣∣
kmax⋂
k=1

τ k ≤ ln M, τM/2 ≤ ln M

)

≥ (
1 − ( 1

2

)3 ln M)M

≥
(

1 − 1

M2+α

)M

≥ 1 − 1

M1+α
, (17)

where α > 0. The last inequality follows by applying (3). If all sets verifying property (H1)
contain an element at distance 1 from S then no element in a set verifying property (H1) is
further than ln M + 1 from S, since sets verifying property (H1) are connected and contain at
most ln M elements. It follows that all sets verifying property (H2) must be at a distance of at
most 2 ln M+2 from S, since they contain an element at distance 1 from a set verifying property
(H1), are connected, and have no more than ln M elements. Thus, the previous estimate implies
that

P

(
max{d�(x, S), x ∈ Sc} ≤ ln M + 2

∣∣∣∣
kmax⋂
k=1

τ k ≤ ln M, τM/2 ≤ ln M

)

≥ 1 − 1

M1+α
. (18)

To conclude, we consider any two clusters G and G′. When max{d�(x, S), x ∈ Sc} ≤
ln M +2, there are G̃ ∈ S and Ĝ ∈ S such that d(G, Ĝ) ≤ 2 ln M +2 and d(G′, G̃) ≤ 2 ln M +2.
Also, we saw previously that if G̃ and Ĝ are in S, and τM/2 ≤ ln M , then d(G̃, Ĝ) ≤ 2 ln M .
Thus, the probability that

d(G, G′) ≤ d(G, Ĝ) + d(G′, C̃) + d(G̃, Ĝ) ≤ 6 ln M + 4

is bounded by the product of the estimations (14), (16), and (18) is

P(d�(G, G′) ≤ 6 ln M + 4)

≥ P

(
max{d�(x, S), x ∈ Sc} ≤ ln M + 2

∣∣∣∣
kmax⋂
k=1

τ k ≤ ln M, τM/2 ≤ ln M

)

× P

(kmax⋂
k=1

τ k ≤ ln M

)
P(τM/2 ≤ ln M)

≥
(

1 − 1

M1+ε

)(
1 − 1

M1+ε̃

)(
1 − ln M

M3

)

≥ 1 − C

N1+ε′ .
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Now, for any two nodes x and y, if x ∈ G and y ∈ G′, we have d�(x, y) ≤ d(G, G′) + 1, since
all the clusters are complete subgraphs. Thus, we have shown that

P

(
D(GN)

6 ln N + 5
≥ 1

)
≤ 1

N1+ε′ .

By the arguments in the beginning of this section, it follows that

P

(
lim sup

N

D(GN)

6 ln N
≥ 1

)
= 0,

or, equivalently, that 6 ln N is almost surely an upper-scaling bound of D(GN).

7. A randomized community-based small world

In this section we propose another random graph model with small-world properties, which
can be seen as a randomized version of the preceding construction. We start from a collection
of complete graphs representing communities, but allow each node to link to a random number
of secondary communities. Allowing the number of communities to be random is both natural
from a modeling perspective [11] and simplifies the study of scaling properties, as detailed
below.

We will show that this construction verifies Definition 4, with a logarithmic scaling of the
expected average degree, whereas the expected average degree was bounded independently of
N in the previous construction.

We consider a set of N nodes partitioned into M ‘communities’ (clusters) G1, . . . , GM of
approximate size ln N . To simplify the exposition, we will assume that

ln N − 1 ≤ card(Gm) ≤ ln N + 1 for m = 1, . . . , M.

The graph �N is constructed as follows. First, we link all nodes in each of the clusters
G1, . . . ,GM . We then introduce links among communities by representing these clusters as
nodes of an auxiliary Erdős–Rényi (hyper)graph E with M nodes and link probability p =
r ln M/M , with r > 1. If two clusters Gm and Gn are linked in E, we randomly pick a node
in either Gm or Gn and link it to all points in the other cluster. Finally, we link all nodes i, j

which belong to a common cluster. The graph �N thus obtained differs from the one described
in Section 6 in that the number of clusters to which a node is connected is now random.

Proposition 5. The above construction is a small world in the sense of Definition 4:

• 2 ln N is an almost sure upper-scaling bound for the diameter;

• 5 ln N is an upper-scaling bound of the expected average degree;

• the expected clustering coefficient is bounded below by 1
3 .

7.1. Behavior of the diameter

Since p = r ln M/M , with r = 1 + δ, Theorem 7.3 of [5] guarantees that ln M/ ln(ln M) is
an almost sure upper-scaling bound of the diameter of E. Since the nodes in (Gm)m=1,...,M are
completely connected, it follows that 2 ln M/ ln(ln M) + 1 is an upper-scaling bound for the
diameter of �N .
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7.2. Behavior of the average degree

To determine the expected average degree, we bound the expected number of links in the
graph. Recall that Gm = {(i, j) ∈ Gm ×Gm, i �= j} is a complete subgraph of �N . Define Cm

as the maximal complete subgraph containing Gm. From the above construction we observe
that

�N =
M⋃

m=1

Cm.

The number of links in �N is therefore bounded by

M∑
m=1

card([Cm])(card[Cm] − 1)

2
.

The set [Cm] contains the elements in the cluster Gm (at most ln N + 1) plus a number of nodes
that is bounded by the degree of m in the auxiliary Erdős–Rényi graph, degE(m). Thus, the
expected number of total links is bounded by

E

[ M∑
m=1

(degE(m) + ln N + 1)(degE(m) + ln N)

2

]

=
M∑

m=1

(E[(degE(m))2] + (2 ln N + 1) E[degE(m)] + (ln N + 1) ln N)

2
.

Since the degree of every node m in the Erdős–Rényi graph follows a binomial law,

Bin

(
r ln M

M
, M − 1

)
,

we obtain E[degE(m)] ≤ r ln M and E[(degE(m))2] = var[degE(m)] + (E[degE(m)])2 ≤
r ln M + (r ln M)2. Thus, the expected total number of links in the system is less than

M

2
(r ln M + (r ln M)2 + (2 ln N + 1)r ln M + (ln N + 1) ln N)

≤ M

2
((r2 + 2r + 1)(ln N)2 + (2r + 1) ln N).

Dividing by N/2 ≥ (M ln N)/2, the expected average degree is bounded by (2r+r2+1) ln N+
2r + 1 ≤ 5 ln N .

7.3. Behavior of the clustering coefficient

We will now show that the total number of links in the auxiliary Erdős–Rényi graph converges
in probability to a bounded random variable. We will use this fact together with Proposition 2
to determine a lower bound for the clustering coefficient.

We apply Theorem 1 to the possible links in the Erdős–Rényi graph. There are K =
M(M − 1)/2 such links. Since each link exists with probability r ln M/M , we can apply the
theorem to (Xi − r ln M/M)Ki=1, where (Xi)

K
i=1 is an i.i.d. sequence of Ber(r ln M/M). We

have
r ln M

2M
≥ σ 2 = r ln M

M
−

(
r ln M

M

)2

≤ r ln M

M
and t =

√
ε

σ
,
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which gives

α = Lt

σ
√

K
= 2

√
ε

σ 2
√

K
≤ 4M

√
ε

r ln M
√

M(M − 1)/2
≤ 1 and 1 + α

3
≤ 2

for sufficiently large M and small ε. Since

t2

1 + α/3
≥ ε

2σ 2 ≥ εM

2r ln M
≥ √

M,

we obtain

P

(∣∣∣∣
K∑

i=1

(
Xi − r ln M

M

)∣∣∣∣ ≥ √
εK

)
≤ 2 exp

{
−

(
t2

1 + α/3

)}
≤ 2 exp{−√

M}.

This estimates the probability that the total number of links in the Erdős–Rényi graph is smaller
than

M(M − 1)

2

r ln M

M
+ √

ε

√
M(M − 1)

2
≤ (M − 1)r ln M

2
+

√
εM√
2

≤ N

for ε chosen sufficiently small and r close to 1. When this is the case,

P

(
lim sup

∑
k,l

1(k,l)∈E ≤ N

)
= 1.

Now, we would like to divide the neighbors of each node i into a disjoint, fully connected sets,
in order to apply Proposition 2. Let Si := card{m | i ∈ [Cm]}. Each subgraph Cm is fully
connected. Thus, we have V (i) = ⋃

{m | i∈[Cm]}[Cm] − {i}. This is a union of Si fully connected
sets. By removing elements that belong to more than one set in the union from all but one of
the [Cm], we obtain a partition (Ak)k=1,...,Si

of V (i) such that Gk − {i} ⊂ Ak ⊂ [Ck] − {i}.
Thus, card(Ak) ≥ card(Gk − {i}) ≥ ln N − 2 and, by Proposition 2, i’s clustering coefficient
verifies γi ≥ 1/Si − 1/(ln N − 2). We have the following bound on

∑N
i=1 Si :

N∑
i=1

Si =
Si∑

i=1

M∑
m=1

1{i∈Am}

≤
M∑

m=1

N∑
i=1

1{i∈Gm} +
∑
l,k

1{(k,l)∈E}

≤ N +
∑
l,k

1{(k,l)∈E} .

Then

P

( N∑
i=1

Si > 2N

)
≤ P

(∑
l,k

1{(k,l)∈E} > N

)
≤ 2e−√

M. (19)

We consider the solution to the problem

min
{∑N

i=1 Si=2N}
1

N

N∑
i=1

1

Si

.

The same type of argument as the one used for (8) shows that the unique solution is S1 = S2 =
· · · = SN = 2. Thus, with a probability bounded in (19), the average clustering coefficient is
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bounded below by 1
2 − 1/(ln N − 2) ≥ 1

3 . Consequentially, by Borel Cantelli,

P

(
lim sup

N

1

N

N∑
i=1

γi ≤ 1

3

)

≥ P

(
lim sup

N

1

N

N∑
i=1

γi ≤ 1

3

∣∣∣∣
N∑

i=1

Si ≤ 2N

)
P

(
lim sup

N∑
i=1

Si ≤ 2N

)

= 1.
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