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Eigenvalues of partitioned
hermitian matrices

Robert C. Thompson and Linda J. Freede

Let C = 64 be & hermitian matrix in partitioned

ij)lsi,jft
form; here Aij is an n, x nj block. The purpose of this

paper is to obtain inequalities linking the eigenvalues of (

to those of the main diagonal blocks 471, ..., Att of C .

These inequalities include, as special cases, inequalities due

to N. Aronszajn and A. Hoffman.

1. Introduction

Let
A X
C =
X* B
be an #7-square hermitian matrix, with eigenvalues Y; = ... = Yn . Let

A be a-square with eigenvalues 0; = ... Z aa , and let B be b-square
with eigenvalues B8; = ... = Bb . The inequality (for positive
semidefinite ()

(1) Y <o.+ Bj , 1<i<ag, 1<4jsb

1+j-1 7
is due to N. Aronszajn [3]. This remarksble inequality is not as widely

known as it should be. By applying (1) to
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A=, I X
R

Xt By, Iy

the following extension of (1) to arbitrary hermitian ¢ 1is obtained:

(2) Y, ty, Sa + Bj , l€i<a, 1l=4=<b.

1+j-1
(The inequality (2) may be found in [4].)

It is the purpose of this paper to secure a substantial

generalization of (2).

Our investigation of Aronszajn's inequality was spurred by a
generalization of (2) proved by A. Hoffman. We are greatly indebted to
Dr Hoffman for showing us his result, a special case of our Theorem 2.
Our techniques combine an improvement of Aronszajn's method with an
extremal result of Amir-Mo&z [1] and an extremal result of Fan [2]. It
seems likely that sharpened versions of our inequalities will be obtained
if proofs of them free of extremal considerations can be found. It seems
likely also that many more results await discovery in which functions of
the eigenvalues of A and B are linked to like functions of the
eigenvalues of € . (One known result of this type is the Fischer

inequality.)

2. Notation

The following notation will remain in force throughout §3. Let (

be an 7-square hermitian matrix, presented in partitioned form as

(3) ¢= (Aij)lifll,jst ;
here Aij is an n, x nj block, for 1 =<, j =t . Let
(&) Y1z .02,

be the eigenvalues of ( , and let

(5) apl > qu z ... = apn

be the eigenvalues of the main disgonal block App s p=1,2, ..., t .
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Following Amir-Moéz, if we are given a sequence of positive integers

(6) iy =iy = ... s,

with 1 =1; , ik <m and
(1) i 28 for §=1, ..., k ,

we let
(1 =) ] < <1,]'< (=m)
be the largest strictly increasing sequence of positive integers bounded
above termwise by Z;, ..., ik ; this is defined recursively by
i =1, , and 7] = min(is, i;+l-1) , for 8 =k-1, ..., 1 . This

sequence exists because of (7). If, instead of (7), we have

(8) is <m-k+s for s=1, ..., k ,

we let

(L =) 2§ <..0 < i% (=m)
be the smallest strictly increasing sequence of positive integers bounded
below termwise by Zi, ..., ik ; it is defined recursively by <Y = 73
and ig = max(is, i;_l+l) for s =2, 3, ..., k. This sequence exists

because of (8).

A1l vectors in this paper are column vectors, and x* denotes the

conjugate transpose of x .

3. The main result

THEOREM 1. Let C be as described in 82. [Let integers

Lpl’ ey ka be given, p=1, ..., t , such that
(9) 1= oy S e Sy S
ips >g, 8=1, ..., k, p=1, ..., t.
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oi! + ... +0Ls7:,
sl sk

Proof. Our proof relies on the following lemma, due to Amir-Moéz

£71:

1s 2s+' * '+7'ts

(t-% )k rzt
.+ > a
) sl 8 ot [

If H is an m-square hermitian matrix with eigenvalues

hy 2 ... 2k, and if integers iy, ...,ik =%, ikSm) are

given satisfying (6) and (T), then

. # *
max min (wlfzy + .o + ) Hx, ) =h,, + ...+ h,, .
My C...cM, X KTk tl “x
1 ) k 2
dimM. =1 x orthonormal
L A 4
p
Here, for a fixed nested chain Mi ... c Mi of subspaces of
1 k
column m-space (each subspace having dimension equal to its subscript),
the min <8 taken over all sets of orthonormal vectors Xy, ..., g with
:cp € Mi for p=1, ..., k; and the max <is then taken over all such
p

nested chains of subspaces.

i A S R T > i i
Since ‘Lls 123 7’ts ts s , there exists a strictly

increasing sequence bounded above by the sequence ilp + .., + it‘p s
p=1, ..., k.
By the lemma, subspaces

(11) M. S ...cM .
Pp1 Prpk
in column np-space (each space having dimension equal to its second

subscript) exist such that

. * *
min (A 2y + oo v+ 24 _x ) =0 ., * ... +Q oy .
x €M . pp kpp7k Plp1 Prpx
1 Py
z, orthonormal, 1=sq=<k
dimM . =1
Ptpg P4

In other words: given any orthonormal column np—tuples xq with
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xq € Mbi , for g =1, ..., k , we have
pq
(12) x4 x1+...+x7:A Ty Z Ot b0
pp pp ppl ppk
We now construct subspaces
(13) M. < ... 51\7 .
Pp1 Prpk

of column 7-space (each space having dimension equal to its second

subscript) by placing ny + ...+ np—l zeros at the top and

np+l + ...+ nt zeros at the bottom of the vectors in the spaces (11).
Let
(1k) 5,= <Mlilr’ My, s voes My, >

2r tr

be the subspace of column n-space generated by the subspaces enclosed in

the brackets ¢ ) . Notice that for fixed r , 1 =r = k , the subspaces

(15) M. M. ..., M.
1r 2z2r tltr

of column #n-space are pairwise orthogonal. This is because a vector in

Mot
p pr
has its nonzero components confined to those positions J with
ny+ ...+ np—l <jgsn + ...+ np ; and the vectors from the other

subspaces (15) have only zeros in these positioms. Consequently,

(16) dim§, = 2, + ...+ 2 ,'r'=l,...,7<.

Owing to (13) we also have

(1im 515 ¢ ...28, .

By the lemma, applied to ¢ and using the spaces (17), we see that

k
min {wpow, + .. v apor) s ]y
x €S r=1
9 q

xq orthonormal, 1lsq<k

Cilr+"’+itr)'
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Thus there exists a set of orthonormal column n-tuples y1, ..., yk such

that:
s ‘ ’z‘
(18) Yilyy + oo + Yy ly, < Y, TR
k7 el (zlr+...+ttp)
with
(19) Y, €8, , »=1, ..., k.
Because of (19) and (14), Y, may be expressed as
3
Y., = w_ o, r=1, ..., kK,
ro I, er
where
wm’e%n s 8=1, vouy ty, r=1, ..., k.
sr
3 .~ =' > . . » =
Since dlmMgi $Sl =21 , we may find a unit vector Esl in Msi
sl sl
such that
Vg1 € <Esl> '
. n~ =‘ > ) k3
Since dlmMsisz Top Z 2 , we may enlarge <€sl> to a two dimensional
subspace

<£sl’ g32> in &si

and w
8

82 .

containing both vy Here § are to be orthonormal.

2" sl’ E32

Proceeding by induction, we pick a v-dimensional subspace

1

(gsl’ vees Esv of MSisv containing w_, Esl’ vees Es,v-l , where

Esl’ ceey gs,v—l R Esv are orthonormal. This is possible because

dim[T!si =4,,2ZV. Dothis for V=1, ...,k . We thus obtain & set
AV

of vectors
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(20) glls LA ] Elk H ng: cey EQk i cee 3 gtl’ seey gtk .

Because of our construction and because

~

M o

- if p#q,

# i
pr 9 qs

the vectors in the list (20) are orthonormal.

Thus y,, may be expressed in terms of the vectors (20), say as
]
¥, = w
r o L er
t
(21)
- Z (Or,(s—l)k+l£sl e ¥ cr,skgsk)
s=1
Pg
= o] _ £ ., r=1, ..., k.
521 j=1 r,(s-1)k+j sg
Here or,l’ v Or,tk are scalars; r =1, ..., K . (Because of the way

the £&'s were chosen, many of the 0o's are zero; this fact will not be

needed.) Because Yj, ..., yk are orthonormal, and because the vectors

(20) are orthonormal, the column tk-tuples

(22) (o

T -
A TIEEEE Or,tk) , =1, ..., k ,

are orthonormal also.

Combining (18) and (21), we obtain

k
Z Y, +...4

r=1 1r tr)'
k *
= rgl yrcyr
I »n
= o . EX ]C E .o ,
=1 slzl j]=l r’(s]'l)k+¢71 81d1 32=l j2=l 82d2 PQ(SZ_l)k+J2
ko - 7
- rzl (or’l, e or,tk)D(or,l’ ey or,tk) ;

here
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b= [Egljlcgszjz]
1<s),s2=<t ,
1=fy.525k ,
is a tk-square hgrmitian matrix in which the rows (and columns) are
prescribed by postulating that the pairs (s, j) , 1 <s =t , 1sgj <k
be ordered lexicographically, and then letting

* . CE
S1d1 "82d2

be the entry of D in position ((ey, J;), (s, J2)} .

Because the vectors (22) are orthonormal tk-tuples, a result of Fan
[2] asserts that the sum (23) is bounded below by the sum of the k
lowest eigenvalues D . However, the sum of the k 1lowest eigenvalues of
D equals trace D - (the sum of the k(#-1) highest eigenvalues of D)
Let the eigenvalues of D be &, 2 ... = stk . Thus we have

k t k
(2h) ) Y( .+ Y1 2 Yy Y & - (8, + .
r=1

. .+ 8 ).
AR RPL TN A o1 k(z-1)

*
Sjcgsj
Now let

E11s vovs Eqgs vons Enny vnes Eups o
S > ke Tt Gtk

be an n-square unitary matrix with &;;, ..., Et# as the first tk

columns. Such a unitary U exists because the vectors (20) are
orthonormal. Then D is the principal tk-square submatrix standing in
the upper left corner of U*CU . Since the eigenvalues of U*CU are

Yis +-e>» Yn , the Cauchy inequalities tell us that

Y1 = 6ls Y2 = 62» L] Y(t—l)k z é(t_l)k .
Thus

(25) 61*"'+6(t-1)k5Y1+°"+Y(t-1)k‘

Inserting (25) into (2k4), we obtain
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; P i ()
(26) Y( N v = ( £x.cE ]
pir gttty r=1 ¥ g=1 V=1 SJ "8
But gsj € Ms’isj and hence has n; + ... + n,_j zeros at the top

and ns+l + ...+ nt zeros at the bottom. In fact,

0
(27) gsj = €sj where gsj € Mé,i A

87
0

Because the gsj s =121, ..., k , are orthonormal, the gsj .

J=1, ..., k , are also orthonormal. From (27) we see that

(28) . E2CE, 5 = Exa E

sj sssj °

Because of the property (12) possessed by spaces (11), we have

(29) Z Esg ss sj ~ 'El ¢ .;j
Putting (28) and (29) into (26), we obtain
{(t-1)k t
L Yl ) rzl §1 521 Yol

which is Jjust what we had to prove.
We next derive another version of the inequality of Theorem 1.

THEOREM 2. Let C be as described in 82. Let integers

jpl’ .y jpk be given, 1 =p <t , such that
1= jpl =< < jpk = np ,
(30)
jps < np -k+8, 8=1, s ky p=1, , t.
Then
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]i (t-%)k
(31) Y( . n * Y
p=1 [le+...+gtp-(t—l)) pe1 ntl-p
]
= a_.p, t S )
p=1 [ Pip1 b ka]
Proof. Define integers ips by
zps = np + 1 - Jp,k+l-s , 8=1, ..., k, p=1, ..., t .

An easy calculation shows that ips > 8 , We claim that

. _ll
(32) n, * 1- the =I5 k41-s
and that

(33) n+1- (ils + ...+ 1 - (&))" .

| » .
b)) = (Jl,k+l—s oo ¥ Iy kei1-s

The verifications of (32) and (33) are a descending induction on s
beginning with s = k , and are left to the reader. Then we obtain (31)
by applying Theorem 1 to
-C= (‘AijJ
As a special case of Theorem 1, let r;, ..., r be nonnegative

t
integers with rp + k= np for p=1, ..., t . By setting
ipl =.,. = ipk = rp + k , we obtain the following inequality involving
sums of consecutive eigenvalues.

COROLLARY 1.

(¢-1)%

k
)} v + 1y
ss1 r1+...+rt+(t-l)k+s ec1 S
t
= o + o + ... + 0 B
sgl { 5,0 +1 s,rs+2 s,rs+k]
As a special case of Theorem 2, let Py, -«.» pt be nonnegative

integers with Py = n, - k for s=1, ..., t . By setting

jsl .= jsk =Py +1 for 8=1, ..., t , we obtain
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COROLLARY 2.

(e-1)k

k
(35) ) v + )y
s=1 p1+...+pt+s s=1 ntl-g

o~

o + ...+ 0 .
s=1 [ s,ps+1 s,ps+k]

Hoffman's theorem is the special case k = 1 of (35).

The inequalities (34) and (35) have the special feature that two
Y's with the same subscript do not appear on the left-hand side. This is

not always so in (10) and (31).

4. Applications to singular values

An application of the inequalities (10) to singular values follows
quite naturally with the aid of the following well-known fact: if H is
an m x m matrix (not necessarily hermitian) with singular values

hy =z ...z hm , then the eigenvalues of the 2mn-square hermitian matrix

c H
H* 0
are hy 2 ...2h =2-h = .,, =2 -
m m

Now let C , given by (3), be an n-square, not necessarily

hermitian, matrix presented in partitioned form, where Aij is an

n, x nj block; 1 =<, j =t . Let now (4) be the singular values of

pp ’
p=1, ..., t . We are going to prove (10). Thus we shall link the

C , and let (5) be the singular values of the main diagonal block 4

singular values of ( to the singular values of the main diagonal blocks

of € . To do this we consider the 2n-square hermitian matrix
o C
M=
c* 0
whose eigenvalues are Yy; = ... 2 Y, = Y, Z ... 2 -Y;y . We make s

unitary similarity of M by a permutation matrix so as to produce
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A
pp
(36) s P=1ly veuy t,
A* 0
pp
as main diagonal blocks. We do this by regarding M as a matrix of
2t-block rows and 2t-block columns, and then shuffling these block rows
and block columns by taking them in the order

1, t+1, 2, t+2, 3, t+3, ..., t, 2t .
This shuffling has the effect of moving the blocks

0 A4,.
1T

A*. 0
11

in block positions (2, 2) , (2, t+2) , (t+i, 1) , (t+i, t+i)
respectively, into block positions (27-1, 2¢-1) , (2¢-1, 27) ,
(22, 2¢-1) , (27, 27) respectively.

Let M; be the matrix obtained from M this way; it is hermitian
and has the same eigenvalues as M Dbecause it is unitarily similar to
M ; and its main diagonal blocks are given by (36). We are now ready

for the main result concerning singular values.

THEOREM 3. Let C , given by (3), be an n~square partitioned
matrix, not necessarily hermitian. Let (L) be the singular values of C ,

and let (5) be the singular values of App , p=1l, ..., t. Let

integers < . ipk satisfy (9). Then formula (10) is valid.

pl’
Proof. We apply Theorem 1 to the 2n-square hermitian matrix M, in
which the p-th main disgonal block is the 2np-squa.re matrix (36).
x < 7 < — <
Because 'ka < zpk < np , (t-1)k<n , and

+ ... +itk)' <ny +n,+ ... +n,_=n , none of the negative

(Eax * ok t

eigenvalues of M; or of the matrices (36) are involved in this

application of Theorem 1, and hence (10) is established.
COROLLARY 3. 4ssume that C = (Aij) is as presented in Theorem 3.

Let ry, ..., v, be nomnegative integers with Pp + k= np for

https://doi.org/10.1017/5S0004972700045615 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045615

Partitioned hermitian matrices 35

p=la I Then (3’4) holds.

Now let

wvhere A is my X mp and B is m3 xm, . Let the singular values of

A" (the sSquare roots of the eigenvalues of A4*) be "oy = ... Z'am T
1

those of X be x; 2 ... 2 s those of Y be y; 2 ... 2 Yo s and
1 3

finally those of B be B = ... = %ﬂ . Let the singular values of (
3

be Y1 = ... = Yﬁlﬁwa . It is possible, by combining the results of §3

with known inequalities for the eigenvalues of a sum of hermitian matrices
to obtain inequalities linking the squares of the singular values of 4 ,
X, Y, B to those of (C .

For simplicity, we do not give the most general form of these
inequalities.

THEOREM 4. Let r;, r,, r3, r, be nonnegative integers with
ry+tk=m , rp,+tk=<m, I’3+k57ﬂ3, ry + k = m3, and with

rytry+tk-mzZ0, ry+r,+k-my=0. Then

k k K
2 + 2 + 2 + z
pzl i pzl “ravp pzl e le e
k 5 X 2
< * ’
le Y 41 40340 +3k-my -y +p le k2

Proof. Let A;(M) = Ay(M) = ... indicate the eigenvalues of a

hermitian matrix M . Then
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2 2
! O‘:t’1+p * Z Ty +p Z yr3+p * Z 8

p=1 p=1 p=1 p=1 rutp
k k
i} le XP1+P2+P+k~m1(AA*+XX*) * pzl AP3+PH+P+k4W3(BB*+YY*)
k
= pgl Y;1+P2+P3+Pu+3k-m1*W3+P * le YP ’

Here we first used known inequalities linking the eigenvalues of
AA* + XX* and BB* + YY* to those of A4A* , XX* , BB* , YY* ; then
we agpplied Corollary 1 to CC* , which has AA* + XX* , BB* + YY* as the
block diagonal.

THEOREM 5. Let pjy, pos 03, Py be nomnegative integers with
p1+025m1—k,and p3+pq5m3-k. Then

k k ) k
a2 + x + 2 B
pzl P1#P pzl P2#D pzl Yogep 21 Pu+p
¢ 2
z Y01+92+D3+94+P pz Y n+l-p °
Proof.
k ) k
o + x2 + +
pzl p1p pél Po+p Z Yoy Z B ot
A (A4*+XX*) + A BB*+YY*
gl pP1+P2 +P x*) Zl P3 +Du+P( )
k

2
+ .
Zl Ypl+p2+p3+pq+p pzl Yn+l—p

Here we use Corollary 2 and a different set of inequalities involving the

eigenvalues of sums of hermitian matrices.
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