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A NOTE ON A THEOREM OF H. L. ABBOTT 
BY 

ROBERT J. DOUGLASO 

Let In be the graph of the unit «-dimensional cube. Its 2n vertices are all the 
«-tuples of zeros and ones, two vertices being adjacent (joined by an edge) if and 
only if they differ in exactly one coordinate. A path P in In is a sequence xl9...,xm 

of distinct vertices in In where x{ is adjacent to xi + 1 for 1 < i<m— 1 ; P is a circuit 
if it is also true that xm and xx are adjacent. A path is Hamiltonian if it passes 
through all the vertices of I\ Finally, for vertices x and y in In

9 we define d(x9 y) 
to be the graph theorectic distance between x and y, i.e., the number of coordinates 
in which x and y differ. 

A problem studied by H. L. Abbott [1] (also see E. N. Gilbert [2]) is to determine 
the number h{n) of distinct Hamiltonian circuits in In. Abbott proved for n> 2 that 

(1) h(n) > c(V6)2n 

where c is a constant. Here, by modifying Abbott's argument, we shall prove for 
«>2tha t 

(2) h(n) > c(^Ï8)2 n 

for some constant c. We also will prove the following result about Hamiltonian 
paths in In, which will be useful in establishing (2). 

THEOREM 1. Ifx, y e In
9 then d(x, y) is odd if and only if there exists a Hamiltonian 

path from x toy. 

Proof. Assume there exists a Hamiltonian path P from x to y. Then the length 
of P is 2n — 1 which is an odd number, and since d(x9 y) must have the same parity as 
the length of P we are done. 

Now we will prove the converse. The proof will be by induction on n. Obviously 
the theorem holds for n = 2, 3. Assuming the theorem for dimension n9 consider 
x,yeln + 1 where d(x9y) is odd. Pick opposite «-dimensional faces In and l£ of 
In+1 so that xeln and y e 1%. Then pick any z^x where zeln and d(y9 z)=2. 
Hence d(x9 z) is odd. Letting z* be the vertex in II opposite z, we have d(z*9 y) = l. 
By the induction hypothesis, there is a Hamiltonian path 

X = X±9 X21 • • • 5 -^2n = = % 
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in In joining x to z, and a Hamiltonian path 

z * = yi,>->,y2n = y 

in 1} joining z* to y. We then get that 

xi,..;X2»,yi,...,y2
n 

is a Hamiltonian path in In+1 joining x to j , proving the theorem. 
From Theorem 1, we immediately get the following well-known fact: 

COROLLARY. In admits a Hamiltonian circuit for all n. 

Proof. Join any two adjacent vertices by a Hamiltonian path and then add the 
edge joining them. 

Define a proper path to be a path that is not a circuit. Let l(ri), (lp(n)) be the num­
ber of (proper) Hamiltonian paths in In, and let l°(n) (/?(«)) be the number of 
(proper) Hamiltonian paths in In having the origin as the initial or terminal 
vertex. 

For vertices P and Q in In such that d(P, Q) is odd, let a(P, Q) be the number of 
distinct Hamiltonian paths from P to Q, and define Mn = min{cr(P, Q):P,QeIn 

and d(P, Q) is odd}. Finally, if P e Im and Q e /», let P+ Q be the vertex in 7m + n 

whose first m coordinates are those of P and whose last n coordinates are those of Q. 

LEMMA. For all positive integers m, n>2, 

(3) h(m + n)> 2nMn{l\n)fm " ^(m). 

Also 

(4) l\n) = 2h(n) + l°p(n) = 2h(n)+^ . 

Proof. Let &={Pl9..., P2
m} be a Hamiltonian circuit in Im

9 and fix S{eln. 
Pick any Hamiltonian path ^x={Sl, SI,..., Sj} in In having SI as an end point 
(s=2n). Then, for i=2,..., 2 m - l , pick any Hamiltonian path &H={St

8-
1 = 

S[, S2,..., Si} in In having Si"1 as an end point. Finally, pick any Hamiltonian 
path S^m={Sfm'1sr9 = S T , . . . , SF = Sl] in In whose end points are Sf1 - 1 and 
SI The last choice can be made as d(Sr~\ Si) is an odd number (for d(Sfm-\ Si) 
has the same parity as 2f=rx d(S{, Si) which is odd because d(S[, S!) = 2 n - 1 (mod 
2) for i= 1 , . . . , 2m— 1). Thus the following is a Hamiltonian circuit in Im + n: 

Px 
Pz 
p3 

+ 51, 
+ 5?, 
+ «?, 

P i 

Pa 

i>3 

+si 
+sz, 
+si 

...,Px 

...,P2 

...,P3 

+ Si 
+ Sf 
+ 5? 

= Pi 
= P* 
= Ps 

+ SÎ 
+Sf 
+SÎ 

Pa-.x + S r - S P a - . i + ST-1 , . . . ,Pa-- i + 5 r _ 1 =Pa- - i + 5 r 
Pa- +5f , P2™ + Sf\ . . . , i V +5.a" = P2™ +SÎ. 
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Now each £f\ / = 1 , . . . , 2 m - l , can be chosen in l°(n) ways, 0> can be chosen in 
h(m) ways, there are 2n possibilities for Si, and at least Mn> 1 possibilities for £f2m. 
Thus the total number of Hamiltonian circuits that can be chosen in the above 
fashion is at least 

2n.Mn.(/°(«))2m-1./2(w), 

proving (3). 
Clearly each Hamiltonian circuit in In yields two Hamiltonian paths in In each 

having the origin as an end point. (Simply omit one or the other of the edges in the 
circuit that has the origin as end point.) Hence l°(n) = 2 • h{n) + l%ri). But 2nl%(ri)/2 = 
lp(ri), which proves (4) and the lemma. 

Direct computation shows that /z(3) = 6, and that there are exactly six distinct 
Hamiltonian paths in P from (0, 0, 0) to (1, 1, 1). (See Abbott [1].) Setting w = 3, 
we get M3 = 6, /°(3) = 6, and /°(3) = 18. Hence 

/*(m + 3)>|l82m./*(m). 

Pick c>0 so that h(n)>c(^Ï8)2n for n = 2, 3,4. Then for n>5, 

h(n) = h(n-3 + 3) > |(18)2n"3.A(«-3) > |(18)2n-3-c(^l8)2n-3 > c(^Ï8)2\ 

and we have proved (2). 
We note in closing that the following theorem, the statement of which was 

contained in a written communication from Abbott (and is an improvement on a 
result of his in [1]), can be proved very similarly to the lemma. 

THEOREM. lp(m+n)>2\2h(n) + lp(n)/2n-1)2mlp(m)) for all positive integers m, 
n>2; hence /p(«)> c(^Î8)2n for all n>2. 

Proof. Use the argument in the proof of the lemma, but replace the Hamiltonian 
circuit & by a proper Hamiltonian path, and only require ^2m to have Sf"1 as 
an end point. 
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