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A NOTE ON A THEOREM OF H. L. ABBOTT

BY
ROBERT J. DOUGLAS()

Let I" be the graph of the unit n-dimensional cube. Its 2" vertices are all the
n-tuples of zeros and ones, two vertices being adjacent (joined by an edge) if and
only if they differ in exactly one coordinate. A path P in /™ is a sequence Xy, . . ., Xp,
of distinct vertices in I™ where x; is adjacent to x;,, for 1<i<m—1; P is a circuit
if it is also true that x,, and x, are adjacent. A path is Hamiltonian if it passes
through all the vertices of I™. Finally, for vertices x and y in I", we define d(x, y)
to be the graph theorectic distance between x and y, i.e., the number of coordinates
in which x and y differ.

A problem studied by H. L. Abbott [1] (also see E. N. Gilbert [2]) is to determine
the number A(n) of distinct Hamiltonian circuits in I™. Abbott proved for n>2 that

6)) h(n) > c(V6)*"

where c is a constant. Here, by modifying Abbott’s argument, we shall prove for
n>2 that

©) h(n) > c(V18)*"

for some constant c. We also will prove the following result about Hamiltonian
paths in /™, which will be useful in establishing (2).

THEOREM 1. Ifx, y € I*, then d(x, y) is odd if and only if there exists a Hamiltonian
path from x to y.

Proof. Assume there exists a Hamiltonian path P from x to y. Then the length
of Pis 2" —1 which is an odd number, and since d(x, y) must have the same parity as
the length of P we are done.

Now we will prove the converse. The proof will be by induction on #. Obviously
the theorem holds for n=2, 3. Assuming the theorem for dimension », consider
x,yeI"*! where d(x, y) is odd. Pick opposite n-dimensional faces I™ and I of
I"+1 so that x € I" and y € I}. Then pick any z#x where z€ I" and d(y, z)=2.
Hence d(x, z) is odd. Letting z* be the vertex in I} opposite z, we have d(z*, y)=1.
By the induction hypothesis, there is a Hamiltonian path

X = X1, Xgy e ey Xot = Z
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in I" joining x to z, and a Hamiltonian path

Z¥ =y, Y=Y
in I? joining z* to y. We then get that

RITRRRYINT LIS STRREPE 2

is a Hamiltonian path in /**? joining x to y, proving the theorem.
From Theorem 1, we immediately get the following well-known fact:

COROLLARY. I"™ admits a Hamiltonian circuit for all n.

Proof. Join any two adjacent vertices by a Hamiltonian path and then add the
edge joining them.

Define a proper path to be a path that is not a circuit. Let /(n), (/,(n)) be the num-
ber of (proper) Hamiltonian paths in 7", and let /°(n) (/3(n)) be the number of
(proper) Hamiltonian paths in I™ having the origin as the initial or terminal
vertex.

For vertices P and Q in I" such that d(P, Q) is odd, let o(P, Q) be the number of
distinct Hamiltonian paths from P to Q, and define M, =min{o(P, Q): P, Qel®
and d(P, Q) is odd}. Finally, if P I™ and Q € I", let P+ Q be the vertex in I™*"
whose first m coordinates are those of P and whose last n coordinates are those of Q.

LemMmA. For all positive integers m, n>2,

© hom-+n) 2 M) h(m.
Also
) 1%(n) = 2h(n) +15(n) = 2h(n)+ p(n).

Proof. Let #={P,,..., P;n} be a Hamiltonian circuit in I™, and fix Sielm
Pick any Hamiltonian path &r={S81, Si,..., S} in I" having S} as an end point
(s=2"). Then, for i=2,...,2"—1, p1ck any Hamiltonian path S*'={S! 1=
Si, 8%, ..., 8% in I™ having Si~* as an end point. Finally, pick any Hamiltonian
path #2"={S2"-187", = S%",..., S?"=S1}} in I" whose end points are S2"~* and
S1. The last choice can be made as d(S2" -1, S?) is an odd number (for d(S?" -1, S1)
has the same parxty as Y2071 d(St, SY) which is odd because d(St, SH)=2"—1 (mod

2)fori=1,...,2™—1). Thus the following is a Hamiltonian circuit in I™*":
Pl +S§a P, +S%, cens Py +Ss1 =P1 +S%
P2 +S%, P2 +S§, ...,P2 +S32 =P2 +S?

Pa +Sg, P3 +S§, ...,Pa +S§ =P3 +S§

Pg _1+S2m 1 P2 _1+S2m 1, ...,PQ’"-1+Ss2m—1 =P2’"_1+S%m
sz +S1 9 P2”' S s -..,sz +S32m =P2m 'I'S}.
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Now each &%, i=1,...,2™"—1, can be chosen in [°(n) ways, Z can be chosen in
h(m) ways, there are 2" possibilities for S%, and at least M, > 1 possibilities for 2",
Thus the total number of Hamiltonian circuits that can be chosen in the above
fashion is at least

2" My (I°(n))*"~*- h(m),

proving (3).

Clearly each Hamiltonian circuit in I" yields two Hamiltonian paths in /™ each
having the origin as an end point. (Simply omit one or the other of the edges in the
circuit that has the origin as end point.) Hence 1°(n) =2 h(n) + I3(n). But 2*I3(n)/2=
1,(n), which proves (4) and the lemma.

Direct computation shows that 4(3)=6, and that there are exactly six distinct
Hamiltonian paths in I® from (0, 0, 0) to (1, 1, 1). (See Abbott [1].) Setting n=3,
we get M;=6, I3(3)=6, and /°(3)=18. Hence

h(m+3) > % 182" h(m).
Pick ¢>0 so that h(n)>¢(V/18)" for n=2, 3, 4. Then for n>5,
h(n) = h(n—3+3) > §(18)2"'“~h(n—3) > %(18)2"‘3-4\’/%)2"'“ > o(V18)",

and we have proved (2).

We note in closing that the following theorem, the statement of which was
contained in a written communication from Abbott (and is an improvement on a
result of his in [1]), can be proved very similarly to the lemma.

THEOREM. [,(m+n)>2"2h(n)+1,(n)/2"~2)2"I,(m)) for all positive integers m,
n>2; hence 1,(n)>c(V18)" for all n>2.

Proof. Use the argument in the proof of the lemma, but replace the Hamiltonian
circuit # by a proper Hamiltonian path, and only require 2" to have SZ"~* as
an end point.
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