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Abstract

This paper presents a sharp boundary growth estimate for all positive superharmonic functions u in a
smooth domain � in R2 satisfying the nonlinear inequality

−1u(x)≤ cδ�(x)
−αu(x)p for all x ∈�,

where c > 0, α ∈ R and p > 0, and δ�(x) stands for the distance from a point x to the boundary of �.
A result is applied to show the existence of nontangential limits of such superharmonic functions.
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1. Introduction

Many elliptic equations involving nonlinear terms have been studied widely from the
viewpoints of not only differential equations but also (probabilistic) potential theory.
See [2, 4, 10–12] and references therein. In this paper, we present a sharp boundary
growth estimate for positive superharmonic functions satisfying a certain nonlinear
inequality in a planar smooth domain. Furthermore, we apply the result to show the
existence of nontangential limits of such superharmonic functions. Let us start with the
definition of superharmonic functions. By D(x, r), we denote the open disk of center
x and radius r in R2. Let � be a domain in R2. A lower semicontinuous function
u :�→ (−∞,+∞], where u 6≡ +∞, is called superharmonic on � if it satisfies the
mean value inequality

u(x)≥
1

πr2

∫
D(x,r)

u(y) dy,
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whenever the closure of D(x, r) is contained in �. Let 1 be the Laplacian on R2.
It is well known that if u is superharmonic on �, then there exists a unique (Radon)
measure µu on � such that∫

�

φ(x) dµu(x)=−
∫
�

u(x)1φ(x) dx for all φ ∈ C∞0 (�),

where C∞0 (�) is the collection of all infinitely differentiable functions vanishing
outside a compact set in �. The measure µu is called the Riesz measure associated
with u. Ifµu is absolutely continuous with respect to Lebesgue measure and dµu(x)=
fu(x) dx where fu is a nonnegative locally integrable function on �, then we call fu
the Riesz function associated with u. If u ∈ C2(�), then fu =−1u.

Throughout the paper, we suppose that � is a bounded C1,1-domain in R2. By
δ�(x) we denote the distance from a point x to the boundary ∂� of �. The symbol A
stands for an absolute positive constant whose value is unimportant and may change
from line to line. We discuss positive superharmonic functions u on � having an
associated Riesz function fu and satisfying the nonlinear inequality

fu(x)≤ cδ�(x)
−αu(x)p for almost every x ∈�, (1.1)

where c > 0, α ∈ R and p > 0. Our results are as follows.

THEOREM 1.1. Let c > 0 and p > 0. Suppose that

α ≤ 3− p.

Let u be a positive superharmonic function on � having an associated Riesz function
fu which satisfies (1.1). Then there exists a constant A depending only on u, c, α, p
and � such that

δ�(x)

A
≤ u(x)≤

A

δ�(x)
for all x ∈�. (1.2)

Actually, the lower bound estimate in (1.2) is valid for all positive superharmonic
functions (see Lemma 3.2). Thus, the interesting object is the relation between the
boundary growth estimate and the ranges of p and α. The following theorem shows
that the bound α ≤ 3− p is sharp for the upper bound estimate in (1.2). For ξ ∈ ∂�
and θ > 0, let

0θ (ξ)= {x ∈� : |x − ξ |< (1+ θ)δ�(x)}.

THEOREM 1.2. Let c > 0 and p > 0. Suppose that

α > 3− p.

Let ξ ∈ ∂�. Then there exists a positive C2-function u on � satisfying

0≤−1u(x)≤ cδ�(x)
−αu(x)p for all x ∈� (1.3)

such that
lim sup
0θ (ξ)3x→ξ

δ�(x)u(x)=+∞

for any θ > 0. In particular, u does not satisfy the upper bound estimate in (1.2).
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Higher dimensional results analogous with Theorems 1.1 and 1.2 are presented
in another paper [5]. The above results are proved using similar ideas given there.
However, the proof of Theorem 1.1 is much simpler than the higher dimensional case,
because of the higher-order integrability of the logarithmic kernel. In contrast, the
proof of Theorem 1.2 requires a careful choice of sequences of balls and numbers.
Furthermore, combining Theorem 1.1 and the earlier result due to Arsove and Huber,
we will obtain a result concerning the existence of nontangential limits in the next
section.

2. Application to nontangential limits

It is well known that every positive superharmonic function in the unit disk has
radial limits almost everywhere on the boundary (see Littlewood [7]). However,
nontangential limits do not necessarily exist. The existence of nontangential limits
was proved by Arsove and Huber [1] (see also references therein).

THEOREM A. Let u be a positive superharmonic function on the unit disk D having
an associated Riesz function fu . Suppose that there exists a constant A such that

fu(x)≤
A

(1− |x |)2
for almost every x ∈ D.

Then u has nontangential limits almost everywhere on ∂D.

Now, we suppose that p > 0 and α ≤ 2− p. Let u be a positive superharmonic
function on the unit disk D having an associated Riesz function fu which satisfies

fu(x)≤ c(1− |x |)−αu(x)p for almost every x ∈ D. (2.1)

Then it follows from Theorem 1.1 that

fu(x)≤ A
u(x)p

(1− |x |)α
≤

A

(1− |x |)α+p ≤
A

(1− |x |)2
for almost every x ∈ D.

Therefore Theorem A implies that u has nontangential limits almost everywhere
on ∂D. Thus we obtain the following result.

COROLLARY 2.1. Let c > 0 and p > 0. Suppose that α ≤ 2− p. Let u be a positive
superharmonic function on the unit disk D having an associated Riesz function fu
which satisfies (2.1). Then u has nontangential limits almost everywhere on ∂D.

3. Proof of Theorem 1.1

For two positive functions f and g, we write f ≈ g if there exists a constant A > 1
such that A−1 f ≤ g ≤ A f . The constant A will be called the constant of comparison.
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Let G and K denote the Green’s function for � and the Martin kernel of � with pole
at ξ ∈ ∂�, respectively. It is known that

G(x, y)≈ log
(

1+
δ�(x)δ�(y)

|x − y|2

)
for all x, y ∈�, (3.1)

where the constant of comparison depends only on � (see [3]). Let x0 ∈� be fixed
and let {y j } be a sequence in � converging to ξ ∈ ∂�. Since the Martin boundary
of � coincides with the Euclidean boundary (see [6]), the ratio G(x, y j )/G(x0, y j )

converges to K (x, ξ). Therefore we obtain

K (x, ξ)≈
δ�(x)

|x − ξ |2
for all x ∈�, (3.2)

where the constant of comparison depends only on �.

LEMMA 3.1. If h is a positive harmonic function on �, then there exists a constant A
depending only on h and � such that

δ�(x)

A
≤ h(x)≤

A

δ�(x)
for all x ∈�.

PROOF. By the Martin representation theorem,

h(x)=
∫
∂�

K (x, ξ) dν(ξ),

where ν is a measure on ∂� such that ν(∂�)= h(x0) > 0. Hence (3.2) yields

δ�(x)

A
h(x0)≤ h(x)≤

A

δ�(x)
h(x0),

and so the lemma follows. 2

LEMMA 3.2. If u is a positive superharmonic function on �, then there exists a
constant A depending only on u and � such that

u(x)≥
1
A
δ�(x) for all x ∈�. (3.3)

PROOF. Let µu be the Riesz measure associated with u. By the Riesz decomposition
theorem,

u(x)= h(x)+
∫
�

G(x, y) dµu(y) for all x ∈�,

where h is a nonnegative harmonic function on �. If µu(�)= 0, then u = h.
Therefore we obtain (3.3) from Lemma 3.1 in this case. If µu(�) > 0, then we find
r > 0 such that µu(E) > 0, where E = {x ∈� | δ�(x)≥ r}. It follows from (3.1) that

u(x)≥
∫

E
G(x, y) dµu(y)≥

δ�(x)

A
µu(E) whenever δ�(x) <

r

2
.

Also, u has a positive minimum on {x ∈� | δ�(x)≥ 2−1r} by the lower
semicontinuity of u. Hence (3.3) follows. 2
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In the rest of this section, we suppose that u is a positive superharmonic function
on � having an associated Riesz function fu which satisfies (1.1). Then, by the Riesz
decomposition theorem,

u(x)= h(x)+
∫
�

G(x, y) fu(y) dy for all x ∈�, (3.4)

where h is the greatest harmonic minorant of u on �. Note that h is nonnegative.

LEMMA 3.3. There exists a constant A depending only on u and � such that∫
�

δ�(y) fu(y) dy ≤ A.

PROOF. Since u is finite almost everywhere on �, we can find a point x1 ∈� with
u(x1) <∞. Observe from (3.1) that G(x1, y)≥ A−1δ�(y) for all y ∈�. Since
fu ≥ 0, the conclusion follows from (3.4). 2

LEMMA 3.4. Let x ∈� and let 4−1δ�(x)≤ ρ ≤ 2−1δ�(x). Then, for all z ∈
D(x, 2−1ρ),

u(z)≤
A1

δ�(x)
+ A1

∫
D(x,ρ)

fu(y) log
3δ�(x)
|z − y|

dy,

where A1 is a positive constant depending only on u and �. 2

PROOF. Let x ∈� and z ∈ D(x, 2−1ρ). By (3.1),

G(z, y)≤ A
δ�(y)

δ�(x)
for all y ∈�\D(x, ρ).

Therefore, the superharmonicity fu ≥ 0 and Lemma 3.3 give∫
�\D(x,ρ)

G(z, y) fu(y) dy ≤
A

δ�(x)
.

Also, by (3.1),

G(z, y)≤ A log
3δ�(x)
|z − y|

for all y ∈ D(x, ρ).

Hence the conclusion follows from (3.4) and Lemma 3.1. 2

PROOF OF THEOREM 1.1. The lower bound estimate in (1.2) has been already proved
in Lemma 3.2. We show the upper bound estimate. Let x ∈�. By Lemma 3.3,

δ�(x)
∫

D(x,2−1δ�(x))
fu(y) dy ≤ A.
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Let r = δ�(x) and let ψx (ζ )= r3 fu(x + rζ ). For simplicity, we write D(r)=
D(0, r). By the change of variables z = x + rη and y = x + rζ ,∫

D(2−1)

ψx (ζ ) dζ ≤ A, (3.5)

and from Lemma 3.4

ru(x)≤ A1 + A1

∫
D(4−1)

ψx (ζ ) log
3
|ζ |

dζ, (3.6)

ru(x + rη)≤9x (η) for all η ∈ D(4−1), (3.7)

where

9x (η)= A1 + A1

∫
D(2−1)

ψx (ζ ) log
3

|η − ζ |
dζ.

Suppose that p > 0 and α ≤ 3− p. Let q >max{1, p} and s = q/p > 1. By (3.6) and
the Hölder inequality,

ru(x)≤ A1 + A

(∫
D(4−1)

ψx (ζ )
s dζ

)1/s

.

Therefore, in order to show the upper bound estimate in (1.2), it suffices to prove that
there exists a constant A independent of x such that∫

D(4−1)

ψx (ζ )
s dζ ≤ A. (3.8)

Using the inequality (a + b)t ≤ 2t (at
+ bt ) for a, b, t ≥ 0,(∫

D(2−1)

9x (η)
q dη

)1/q

≤ A + A

(∫
D(2−1)

(∫
D(2−1)

ψx (ζ ) log
3

|η − ζ |
dζ

)q

dη

)1/q

.

By the Minkowski inequality, the right hand side is bounded from above by

A + A
∫

D(2−1)

(∫
D(2−1)

(
log

3
|η − ζ |

)q

dη

)1/q

ψx (ζ ) dζ.

Therefore (∫
D(2−1)

9x (η)
q dη

)1/q

≤ A + A
∫

D(2−1)

ψx (ζ ) dζ. (3.9)

Since 2−1r ≤ δ�(x + rη)≤ 2r for all η ∈ D(2−1) and r ≤ diam�, it follows
from (1.1), (3.7) and α ≤ 3− p that

0≤ ψx (η)= r3 fu(x + rη)≤ cr3δ�(x + rη)−αu(x + rη)p
≤ A9x (η)

p,
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for almost every η ∈ D(4−1). This and (3.9) give(∫
D(4−1)

ψx (ζ )
s dζ

)1/q

≤ A + A
∫

D(2−1)

ψx (ζ ) dζ,

because s = q/p. Hence (3.5) yields (3.8). This completes the proof. 2

4. Proof of Theorem 1.2

PROOF OF THEOREM 1.2. Suppose that p > 0 and α > 3− p. Let

λ= p + α and γ =
λ− 1

2
.

Then γ > 1 and

λ− 2γ = 1. (4.1)

Let ξ ∈ ∂�. Since � is a C1,1-domain, there is a disk D(z, r) contained in �

such that ξ ∈ ∂D(z, r). Without loss of generality, we may assume that ξ = (0, 0),
z = (10, 0) and r = 10. For each j ∈ N, let x j = (e− j3

+3, 0) and r j = e−γ j3
. Then

D(x j , 8r j )⊂� and D(x j , 2r j ) ∩ D(xk, 2rk)= ∅ if j 6= k. Let A2 be a constant to be
determined below and let f j be a nonnegative smooth function on � such that

f j ≤ A2
eλ j3

j2 on � and f j =

A2
eλ j3

j2 on D(x j , r j ),

0 on �\D(x j , 2r j ).

Let A3 be the constant of comparison in (3.1) and let j0 be a natural number such that

c

e3α

(
2π A2(γ − 1)

A3

)p j p+2
0

A2
≥ 1. (4.2)

Define f =
∑
∞

j= j0 f j . Then, by (4.1),

∫
�

δ�(y) f (y) dy =
∞∑

j= j0

∫
D(x j ,2r j )

δ�(y) f j (y) dy

≤

∞∑
j= j0

2δ�(x j )A2
eλ j3

j2 π(2r j )
2

= 8e3π A2

∞∑
j= j0

e(−1+λ−2γ ) j3

j2 <∞.
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Hence u :=
∫
�

G(·, y) f (y) dy is well defined on �. Since f is locally Hölder
continuous on �, it follows from [9, Theorem 6.6] that u ∈ C2(�) and u satisfies
−1u = f in �. For the moment, let x ∈ ∂D(x j , 2r j ). By (3.1),

G(x, x j ) ≥
1
A3

log
δ�(x)δ�(x j )

|x − x j |
2 ≥

1
A3

log
2−1δ�(x j )

2

(2r j )2

=
1
A3

log
e6

8
e2(γ−1) j3

≥
2(γ − 1)

A3
j3.

Therefore the mean value equality and (4.1) give

u(x) ≥
∫

D(x j ,r j )

G(x, y) f j (y) dy = A2
eλ j3

j2

∫
D(x j ,r j )

G(x, y) dy

= A2
eλ j3

j2 πr2
j G(x, x j )≥

2π A2(γ − 1)
A3

je j3
.

By the minimum principle,

u(x)≥
2π A2(γ − 1)

A3
je j3

for all x ∈ D(x j , 2r j ). (4.3)

Hence

u(x j )≥
2e3π A2(γ − 1)

A3
jδ�(x j )

−1,

and so
lim

j→+∞
δ�(x j )u(x j )=+∞.

Finally, we show that −1u ≤ cδ�(x)−αu p in �. If x 6∈
⋃

j≥ j0 D(x j , 2r j ), then

cδ�(x)
−αu(x)p

≥ 0= f (x)=−1u(x).

Let x ∈ D(x j , 2r j ), where j ≥ j0. Then, by (4.2) and (4.3),

cδ�(x)
−αu(x)p

≥
c

e3α

(
2π A2(γ − 1)

A3

)p

j pe(p+α) j3

≥ f j (x)= f (x)=−1u(x).

This completes the proof. 2
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