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Abstract

It is proved that if x

/= E / /
A = 0 *

is a formal power series with algebraic p-adic coefficients which satisfies an algebraic differential
equation, then a constant y\ > 0 and a constant integer hi ^ 0 exist such that

either/A = 0 or |/» |p ^ exp-*«*(lo« *>2 forh^h.

In his Ph.D. thesis, Jan Popken (1935) proved the following important
result.

THEOREM: Let

be a formal power series with real or complex algebraic coefficients which
satisfies an algebraic differential equation. Then a positive constant c exists
such that, for all sufficiently large suffixes h,

either fh = 0 or \fh \ ^ e'cmosh)\

An analogous theorem for formal power series with p-adic coefficients will be
established in the present paper. Its proof is based on results from two recent
papers of mine, [1] and [2].

Popken's theorem can be proved quite similarly, and this proof would be
slightly shorter than the original one.
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2

Denote by Q an arbitrary field of characteristic 0. If the formal power series

with coefficients fh in Q satisfies an algebraic differential equation which has
likewise coefficients in Q, then it is known that j also satisfies such an algebraic
differential equation with rational integral coefficients (Ritt and Gourin 1927;
paper 2). Moreover, it evidently may be assumed that this differential equation
does not explicitly involve the indeterminate z and therefore is of the form

(1) F((w)) s F(w,w',-,w(m)) = 2 PiK)w
(Kl)-w(KN) = 0.

w
Here m and n are two fixed positive integers; N depends on (K) and assumes only
the values 0,1,2,•••,«; (K) = (/q,••-,KN) runs over finitely many systems of
ntegers where

(2) 0 ^ Kj :g m, " - , 0 ^ KN g m; /q ^ K2 ^ ••• ^ KN ;

and the coefficients p(lc) are rational integers distinct from 0. There is at most
one system (K) for which N = 0. This improper system will be denoted by (co),
and to it there corresponds the constant term p{(0) on the right-hand side of (1).

On differentiating the equation (1) h times and then putting w = / and
z = 0, we obtain by paper [1] the infinite system of equations

(3) Z, L p(K) — p : j - j / K I + A, •••/KN+iw = 0 (/i = 1,2,3, •••)

for the coefficients fk off. Here in the second sum [A] = [Alf ••% Ajy] runs over all
systems of JV integers satisfying

h ^ 0, ••-, Aw ^ 0, At + ... + XN = A,

N being the same number of terms as in the system (K).
As was proved in detail in paper [1], it can be deduced from (3) that there

exist
(a) a polynomial A(h) ^ 0 in h with rational integral coefficients;
(b) a polynomial #»(/0,/i, ••-,/»-1) in/o , / i , " - .A- i , likewise with rational

integral coefficients; and
(c) a positive integral constant h0,

such that
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(4) A(h) * 0 and A(h)fh = UfoJu - , /* - i ) for h = h0.

Here, by paper [1], the polynomial <j)h has the explicit form

(5) <t>h(fo>fl> •••Jh-l) = ^ Plv),hfvi - / v . y .
{vJeS,,

where now N assumes at most the values 1,2, •••,n; where Sh is a certain finite set

of systems {v} = {v1,---,vJV} of integers satisfying

(6) O g v ^ h - 1 , - , 0 = v * = fc- l , v 1 + - + v M g h + c l ,

cx being a positive constant independent of h and {v}; and where the coefficients
PM,h are rational integers which may depend on h and {v}.

It is obvious that the relations (4) remain valid if h0 is increased. Let
therefore, without loss of generality, h0 be so large that

(7) K = c, + 2.

From now on assume that the coefficients fh of / are algebraic over the
rational fie.d Q. Then, by the second relations (4), the infinite extension field

K=Q(fo,fi,fi,-)

of Q is identical with the finite algebraic extension

K=Q(f0,f1,-,fho-1)

of Q and so is an algebraic number field of finite degree, D say, over Q.

This number field K can then in D distinct ways be imbedded in the complex
field C, so generating the D conjugate real or complex algebraic number fields

K " 1 , - , ^ say.

If a is any element of the abstract algebraic field K, denote by au\ where
7 = 1,2, •••,.£>, the image of a in K<J>. As is usual, we put

By hypothesis, / satisfies the algebraic differential equation (1), and this
equation has rational coefficients. It follows then that the D power series

7I=0

conjugate to / over K also satisfy the same differential equation (1).

https://doi.org/10.1017/S1446788700014191 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014191


[4] A />-adic analogue to a theorem by Popken 179

Hence, by the main theorem of my paper [1 ] , there exist for each j a pair of

positive constants y[J) and y^J) such that

Therefore, on putting

yt = max / / and y2 = max y'2
J\

7 = 1 , 2 ...,D i = l 2 — D

our hypothesis implies the infinite sequence of inequalities

(8) |A |^7i (A0 7 2 (A =0,1,2,...).

In addition to this inequality for \jh\, we require an upper estimate for the
denominators, dh say, octhe coefficients/h. Here dh is a positive rational integer,
by preference as small as possible, such that the product

(9) 9H = dJh (h = 0 , 1 , 2 , - )

is an algebraic integer in K.
An upper bound for such denominators dh can be obtained by the following

considerations which go back to Popken's thesis.
By (4), (5), and (9), gh can be written in the explicit form

(10) ff*= S PM

Here, for the first h0 denominators

do,d1,—,dh<)_l,

choose the smallest positive rational integers for which the products

90'9l> '"'dho-l

as defined in (9) are algebraic integers in k, and then, for each larger suffix

define dh recursively as the smallest positive rational integer such that

(11) A(h)dVl • • • dVrl is a divisor of dh for all systems {v} e Sh.

By complete induction on h it is then immediately obvious from (10) that also all
the products gh with h ^ h0 become algebraic integers in K.
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7

It is now convenient to split every system {v} in Sh into two subsystems

where the £'s are those v's which are :S h0 — 1, while the £'s are the v's which are
2; h0. For reasons which will soon become clear, we further put

ni = Ci - (h0 - 1), r\i = C2 - C»o - !). —>»7y = Cy ~ (^0 ~ 1),

so that rji, •••,ny are positive integers. With the £'s and rfs so defined, the system
{v} will from now on be written as

M = tf|if} = tfi,-,&r|ih,-,if*}.

Here the numbers X and Y are such that

O ^ X ^ N ^ n , O ^ Y ^ N ^ n , l ^ X + Y = N ^ n .

We further put

d(k) = dk+h0.1 (fc = 1,2,3,.-)

and define S(k) as the set of all subsystems {tj} to which there exists at least one
system

{v} in S,+,o_! such that {v} = {t\r,}.

8

If {v} = {£|>/} lies in Sk+ho-1, both the factors d$ and the number X of
these factors in the product

are bounded. Hence there exists a positive integral constant d* such that

(12) d4t •••dix is a divisor of d* whenever {£\rj} eSk+ho^1 and k ^ 1.

Let us then replace A(h) by the new polynomial

(13) a(k) = A(k +h0- l )d*

in k. Also a(k) has rational integral coefficients, and the first formula (4) implies
that

(14) a(k) # 0 for k = 1 , 2 , 3 , - .

In the new notation, the conditions (11) for dh are equivalent to the con-
ditions for d(k), as follows,
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A(k + h0- l)dit-dixd(ni)-d(tir) divides d(k)for all {t\ti}eSk+ho_l

and all k ^ 1.

Further these new conditions are certainly satisfied if

(15) a(k)d(rij) — d(t]y) is a divisor ofd(k) for all {n}eS{k) and all k ^ 1,

as will from now be assumed.
We had seen that

(6) 0 ^ vt ^ h-l,--,0 g v ^ l i - 1 , vt + ••• + vN g h + ct if {v}eSh.

By the decomposition of {v}, this implies in particular that

0 g Ci ^ k + h0 - 2, ••• , 0 ^ CY ^ fc + K ~ 2, Ci + •" + Cy ^ fe + K + Ci - 1

if {vJe

and hence that

If y ;> 2, it follows then, by (7), that

(16) 1 g tfy g k - 1, •••, 1 g fix £ k ~ 1, rii + ••• + r/r ^ ^ ~ 1 i f {i} e s(fc)-

These inequalities evidently remain valid also if Y = 1; and they are without
content if Y = 0, a case which may be excluded.

9

As usual, denote by [x] the integral part of the positive number x. Further
put

(17) d[fc] = p |«O")| t"£ri>'+l] (fc = 1,2,3, •••),

so that

We assert that the denominator d(k) - dk+ho-1 of fk+ho-i may for all k ^
be chosen as the integer

(18) d{k) = d{k\ {k= 1,2,3,-),

but we do not assert that this is always the smallest possible choice of d(k).
The assertion (18) is by (15) and (16) certainly true for k = 1 because S(l) is

the empty set and we may therefore take d{\) - | a ( l ) | . Assume next that (18)
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has already been established for all values of k less than some integer k*. We
shall now show that then (18) is valid also for k = k* and so is always true.

To carry out this proof, it suffices by (17) to prove that

for all integers; ^ 1, for all integers k = 1,2,•••, fc*, and for all systems {n} in
). But for such values of the parameters,

{(n - 1)1/, + 1} + - + {(n - l>jr + 1} 7 =

= (n - 1)0/! + .» + ijr) + Y ^ (n - l)(fc - 1) + 7 g (n - l)fc + 1

because
Y ^ n = (n - 1) + 1,

and so the assertion (19) follows at once."

10

This proof has established that we may choose

(20) d _t =
k r(n-1)t+1-l

= n I « O ) | L ( " - I J J + I J

as an admissible denominator of the coefficients fk+ho-i if /c ̂  1. We next de-
termine an upper estimate for this product.

There evidently exist positive constants c2, c3, c4, and c5 independent of j
and k such that

|«0)| ^ c2f
3 0"= 1,2,3,-);

(n ~ l ) k + l ^ f c . . . , . . , . , - 1
7 A r ^ — if 1 ̂  ; ^ fe and k ^ 1;
(n - 1); + 1 - j ~ ~

£ 4 ^ c4 + logfc; 2
;=i 7 j=i

It thus follows from (20) that

On replacing here k + h0 - 1 again by ft, we arrive then at the result that

There exists to the series f a positive constant y3 and a positive in-
teger /I, such that the denominator dk of fh satisfies the inequality
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(21) 1 ̂  dh g e
ymo8k>2 for all suffixes h^ht.

This result certainly holds if all the coefficients fh of / lie in the formal
algebraic number field K of degree D over Q. It still remains valid if we imbed K
in any one of the D possible ways in the complex number field C, or if we imbed K
for any prime p in some finite algebraic extension of the p-adic field Qp.

11

We apply the last remark to the case when all the coefficients fh are algebraic
p-adic numbers.

Denote by
uh(x) = xA + t^x*"1 + - + uhA (h = 0,1,2, •••)

the irreducible polynomial with rational coefficients for which

«»(/*) = o (ft = 0,1,2,...);

here A may depend on h. The further polynomial defined by

Uh(x) = [ I (* -ft") = *D + Uhlx
D~l + ... + UhD {h = 0,1,2, •••)

is then a positive integral power of uh(x), and therefore also

W * ) = 0 (ft = 0,1,2,-) .

Denote again by dh the denominator of /fc and then put

Vh(x) = dD
h • Uh{xldh) (h = 0,1,2,..-).

Then FA(x) has the explicit form

with rational integral coefficients. All the zeros of Vh(x) are therefore algebraic
integers, and hence the algebraic integer dhfk is a divisor of VhD.

Here

whence, by (8) and (21),

| VhD | ^ ^ ' r f ( l 0 « * ) 1 • yi(fc I)"2) for fc =

This estimate implies that there exists a positive constant y4 independent of
such that

(22) \VhD\ ^ ey*h(losh)2 forft^fti.
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12

Assume finally that both h ^ hi and

Then also
ffP #0forJ = l,2,...,D,

hence
VhD # 0,

whence, by (22),

(23) ' \VhD\p^e-"hiio*h>2 for fc^ft,.

The algebraic integer dhfh is also a p-adic integer, and it is a divisor of
VhD # 0. This implies that

(24) \dhfH\p^\VhD\p.

Further dh is a positive rational integer and therefore satisfies

(25) K | , ^ l .

On combining these three inequalities (23), (24), and (25), we arrive then finally
at the following analogue of Popken's theorem.

THEOREM. Let p be a fixed prime, and let

CO

/ = 2 fhz
h

* = 0

be a formal power series with p-adic algebraic coefficients which satisfies an
algebraic differential equation. Then a positive constant yA and a positive
integer h^ exist such that

either /„ = 0 or \fh \p ^ e -><*<">s»2 for h £ ht.

It would have great interest to decide whether this estimate is best possible; but
I rather doubt it.
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