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§1. Introduction

It is a well-known result due to Sjogren [9] that if G is a finitely
generated p-group then, for all n < p — 1, the (n + 2)-th dimension sub-
group D,,(G) of G coincides with 7,,,(G), the (n + 2)-th term of the lower
central series of G. This was earlier proved by Moran [5] for n < p — 2.
For p = 2, Sjogren’s result is the best possible as Rips [8] has exhibited
a finite 2-group G for which D/(G) # 7(GQ) (see also Tahara [10, 11]). In
this note we prove that if G is a finitely generated metabelian p-group
then, for all n < p, D?,,(G) = 7,..(G). It follows, in particular, that, for
p odd, D,,(G) =7,.{G) for all n < p and all metabelian p-groups G.

§2. Notation and preliminaries

While the central idea of the proof of our main result stems from
Gupta [1], with a slight repetition, it is equally convenient to give a
self-contained proof using a less cumbersome notation.

Let { = ZF(F — 1) denote the augmentation ideal of the integral

group ring ZF of a free group F freely generated by x,, x., - -+, X,,, m = 2.
For a fixed prime p, let (p®, p™, - -, p™), o, =2, = --- =, > 0 be an
m-tuple of p-powers, and let S = {(x?™, a2, ... x2™ F’> be the normal

subgroup of F so that F/S is abelian. Set 38 = ZF(S — 1), the ideal of
ZF generated by all elements s — 1, seS. For 1< n < p, we shall need
to investigate the structure of the subgroup D,,.(i3) = FN(@1 + {8 + i**)
of F which consists of all elements we F such that w — 1e{3 + {**~
It is clear that [F’, S]7,..{F) S D,.(i3).

Let weD,,(f8) be an arbitrary element. Then w — 1e¢i® and it
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follows that we F’. Thus, modulo F”, using the Jacobi identity, we may

write w as

(1) W= WW, -+ Wy_y,

where

(2) wo= ] [x, x]

and d;; = d;(x;, %y, -+, X)) €ZF. For i =1,2, --., m, define homomor-

phisms 6,: ZF — ZF by x,— 1 if k< i, x, — x, if £ > i. Since the ideals
f, 8 are invariant under 6,’s, it follows, using 8,, 8,, - - -, 6,,_, In succession,
that if w —1€efs+ {*** then w, —1efs + [*** for each i. For each
k=12 ..., m, define

(3) M) =1+ 2+ oo+ 2™

Then

| Hx) = 2 (pl%>(x,c — 1)t
4 a
( = (B e — D mod 6+ 9

We can now prove,

LemmA 2.1. Let w, be as in (2) with w, —1¢{3+ ["** and n < p..
Then, modulo 3 + ", d,; = t(x)a,; = t(x,)b,;, where t(x,), t(x,) are given by
(3), a;;€ Z and b;; € ZF. Moreover, if a, = «, then b, e Z.

Proof. Expansion of w, — 1 shows

(5) 2 (@ =Dl = 1) = (x, = D — Didyy e s + 7%
Since f is a free right ZF-module on x, — 1, x, — 1, ---, x,, — 1, it follows

from (5) that, for all j =i 4+ 1, ---, m,
(x; — D(x; — Dd;; €8 4 2,
which yields
(6) (x; — Ddyyes +
and, in turn,
(7) di e t(x)ZF + 3 + ",

where #(x,) is given by (8). Since n < p, (4) induces that, for % > 1,
tx)(x, — 1) = p"" " “p"(x, — 1) = O0mod (8 + {*). Thus (7) implies d;; =
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t(x)a;; mod (8 + ") with a;; € Z. Substituting in (5) gives

@ —1) 3 (x,— Dd,eis+ .
Jj=t+1

and, as before,

m

2o (% — 1)dij es+ f**t.

j=i+l
Using the homomorphisms 4,,,, - - -, 6,,_, in turn, gives
(8) (xj - 1)dije§ + T"H

forallj=i¢+1, ---, m, since d;; = t(x;)a,; mod (3 + {”) with a,, € Z. Thus
(9) d;; et(x,)ZF + 3 + i,

and if «; = «; then, as before, d,; = t(x,;)b,; mod (3 + ) with b,;€ Z. This
completes the proof of the lemma.

0
0x;,
to x,. Then we prove,

Now, let d be a free partial derivative of d e ZF with respect

LEMma 2.2. aidij epZF + 3+ "', i <k, and

X

9 4,e PUZF + s+ 17 if a=a
(%
0x; PUZF + p*i(x, — )P ZF + 3+ 7 if a, > «.

Proof. We have
G

X

@S5+ p2F; -2 (S

Thus since d;; = t(x;)a;; mod (3 + i) with a,; € Z, it follows that
d
Xy

By (4) and d,; = t(x,)a,; mod (3 + {*), we have

d;; = Omod (p™*ZF + 3 4+ {*7").

%dn = a“(I;i)(p — D(x; — 1)*~* mod (p“ZF + & + 7).

Since p™~ divides (p"i), %‘Ldu = 0 mod (p*(x, — 1)*~2ZF + p“ZF +
D X
3+ i""). If a; = a; then b, € Z, and we may differentiate d,; = t(x,)b;; with
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respect to x; to obtain the desired result.

Next, we need to expand [x,, x;]° — 1 modulo (*3 + {**%). We first

observe,
[, 00Xl -0 — 1
= x,fm - xp i b([xy, 2] — Dafiefiyt - xde
= (bx, ] — Dafecdiit - xde — 35 Bl — D(l, x,] — Dafeafiss - xfy
k=1
= (I, 1] — Db 2ty — 30 (xy — ([ a,roromEist) 1)
k=i
Thus,
[xs, 2,197 — 1 = ([x;, 2] — Ddyy — i; (. — D ([, x]7e00m0% — 1)
k=1
Now, modulo (f*3 + {**?)
([x;, xj] —1d,; = xflel{(xi - 1)(xj -1 - (xj - D(x, — 1)}dij
= {(x; — D(x; — 1) — (x; — D(x; — D}d,;
— (x; — D{(x; — D(x; — 1) — (x; — D(x; — 1}d,,
— (x; — D{(x; — D(x; — 1) — (x; — D(x; — D}d;
= (x; — D(x; — Ddy; — (x; — D(x; — DA,
by (6) and (8)
= (% — D(x; — Dit(x)b;; — (xj — D(x; — l)t(xi)aij s
by Lemma 2.1
= (r — D™ — 1) — (= D" — 1.
Thus we have,
Lemma 2.3. Modulo (3 + {**),
[t 21 — 1 = (r — D™ — 1) — (3 — Do — 1)

_ i (x, — D)([x;, x,]7x0r0m0d0 1).
=i

Finally, using (6) and (8), we have, for any x,, mod [F’, S]7,.(F),

[[xi, x].]di;, xk] = [xi> x;, xk]dij
[z, %, 1150 5, 2]
= [xi, xk](—nzj)du[xk, xj](-nxi)dij

=1.

Thus we have,
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LEmmaA 2.4 (Gupta [2]). [D,..(§9), F1 < [F'JS11,.(F) for all n = 0.

This completes our preliminary discussions.

§3. The main theorem

Let G be a finitely generated metabelian p-group. Then G admits a
presentation of the form

G = F/R - <x17 Koy * =y Xy x{aICu xga‘sz Tty x%amCm, Cm+1’ Tty F//> ’

where a, > a, = -+ = «, > 0 (see for instance [4], page 149). Let S be
the normal subgroup of F generated by x?*, xI®, - .., x&™ and F”, then it
follows that 'S R< S. In terms of the free group rings, the dimension
subgroup D,.(G) = D, ,(v)/[R, where t = ZF(R —1) and D,,,(x) = FN
1+ c+4+*). Then Rr,.(F)E D,,(v). If ze D, (), thenz — 1ex 4 {***
implies that zr — lefr 4 {"** for some re¢ R. It follows that D,,(G) =
Tnso(@) if and only if D,.(ft) = FN(Q + fr + {**%) € R7,..(F). We now
prove our main result.

TaEOREM 3.1. D2, ,(fv) € RY,.(F) for all n < p.

Proof. Let weD,,(jr). Then w—1lefr 4 ** < 84 i**%, and by
Lemma 2.1,

w

i

T [x; %)% mod F”,

1gij=m

where d;; = t(x,)a;; = t(x;)b,; mod (3 + {"). Now, w — lefr + {*** implies
w—lefr + i?8 + {**% Then it follows by Lemma 2.3, that

(10) w—1= kﬁ":;l(xk — D(yu; — 1) = 0mod (jr + %8 + **7),
where

—n%ia. ajh — 8/8 d
Y, = n x; p¥iay n xé’ 7 s, U, = n [xi’ xj]zk( e
i<k k<] i<s

15

From (10) it follows that for each k= 1,2, --., m,
yeuit — let + f8 4 f+,
which yields, in turn, using it S {3,
yuup're — lefs + i+

with some r,e R, and by Lemma 2.4, for all k=1,2, ---, m,
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(%, yiwi'rid € BT, ((F)
which reduces to
[x, yeui'] € BT, o(F)
and hence
(11) (2, ug "] [%, yid € BT, o F)

Next, [x;, u;'] = [x4, w,] * mod R7,,\F), and [x,, u,] is a product of com-
mutators of the form

[xlc’ [xi’ xj]tk(a/axk)dij]’ ]- g i é k’ 1 é i <j é m.
By Lemma 2.2, for either i <k or i = % and «; = «,

[z, Ly 2]720070%] = [x,, [x, 2,175 for some ve ZF,
=[x [x, x,]7]
= 1mod [F, S]7,.(F) .
If i =k and «; > «;, then by Lemma 2.2, for some v, w e ZF,
B A e e
= [, 217777 )

= [x77, %, -+, 27" mod [F, SI7,.F)
p

= [Cj’ Xiy =00y xi]p“i“““fw mOd an+2(F)
p
= 1mod R7,.,(F).
Thus (11) is reduced to [x, y.] € R7,..(F). However,

(e, ¥l = T [0, 2] T] [, x577%4]
i<k k<j
= H [, 2, ]% n [x;, xj]dkj mod [F”, S]Tmz(F) .

i<k k<j
Thus

w? = ﬁ [%4 ¥] = 1 mod RY,.(F).

k=1

This completes the proof of our main theorem.

As a corollary we obtain,

TaEOREM 3.2. Let G be a finitely generated metabelian p-group. Then
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(a) DyiG) = 7,,G) for all n < p — 1,
(b) if p =2, DXG)  1.(6),
(¢) if p is odd, D,,{G) = 1,..G).

For p = 3, part (a) of Theorem 3.2 was first proved by Passi [6]; part
(b) is due to Losey [3]. We refer the reader to Passi [7] for a general
background on the dimension subgroup problem.

REFERENCES

[1] N. Gupta, On the dimension subgroups of metabelian groups, J. Pure Appl
Algebra, 24 (1982), 1-6.

[2] , Sjogren’s Theorem for dimension subgroups—The metabelian case, Annals
of Math. Study (1985), to appear.

[ 3] G. Losey, N-series and filtration of the augmentation ideal, Canad. J. Math., 26
(1974), 962-977.

[4] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience,
New York, 1966.

[51 S. Moran, Dimension subgroups mod %, Proe. Camb. Phil. Soc., 68 (1970), 579—
582,

[ 6] I.B.S. Passi, Dimension subgroups, J. Algebra, 9 (1968), 152-182.

[7] ——, Group Rings and Their Augmentation Ideals, Springer Lecture Notes in
Math., 715 (1979), Springer-Verlag, Berlin-Heidelberg-New York.

[ 8] E. Rips, On the fourth integer dimension subgroup, Israel J. Math., 12 (1972),
342-346.

[97 J. A. Sjogren, Dimension and lower central subgroups, J. Pure Appl. Algebra,
14 (1979), 175-194.

[10] K. Tahara, On the structure of @Q:(G) and the fourth dimension subgroup, Japan.
J. Math. (New Ser.), 3 (1977), 381-394.

[11] ——, The fourth dimension subgroups and polynomial maps, II, Nagoya Math. J.,
69 (1978), 1-17.

Narain Gupta

Department of Mathematics
University of Manitoba
Winnipeg, R3T 2N2
Canada

Ken-Ichi Tahara

Department of Mathematics
Aichi University of Education
Kariya, L48

Japan

https://doi.org/10.1017/50027763000000258 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000258



