
Probability in the Engineering and Informational Sciences, 32, 2018, 1–36.

doi:10.1017/S0269964816000474

MYOPIC POLICIES FOR NON-PREEMPTIVE
SCHEDULING OF JOBS WITH DECAYING VALUE

NEAL MASTER

Department of Electrical Engineering,
Stanford University,
Stanford, California,

USA
E-mail: nmaster@stanford.edu

CARRI W. CHAN

Decision, Risk, and Operations,
Columbia Business School,

New York, New York,
USA

E-mail: cwchan@columbia.edu

NICHOLAS BAMBOS

Department of Management Sciences & Engineering
and

Department of Electrical Engineering
Stanford University,
Stanford, California,

USA
E-mail: bambos@stanford.edu

In many scheduling applications, minimizing delays is of high importance. One adverse
effect of such delays is that the reward for completion of a job may decay over time.
Indeed in healthcare settings, delays in access to care can result in worse outcomes, such
as an increase in mortality risk. Motivated by managing hospital operations in disaster
scenarios, as well as other applications in perishable inventory control and information
services, we consider non-preemptive scheduling of jobs whose internal value decays over
time. Because solving for the optimal scheduling policy is computationally intractable, we
focus our attention on the performance of three intuitive heuristics: (1) a policy which
maximizes the expected immediate reward, (2) a policy which maximizes the expected
immediate reward rate, and (3) a policy which prioritizes jobs with imminent deadlines.
We provide performance guarantees for all three policies and show that many of these
performance bounds are tight. In addition, we provide numerical experiments and simu-
lations to compare how the policies perform in a variety of scenarios. Our theoretical and
numerical results allow us to establish rules-of-thumb for applying these heuristics in a
variety of situations, including patient scheduling scenarios.

Keywords: operations research, stochastic dynamic programming, stochastic modelling

c© Cambridge University Press 2016 0269-9648/16 $25.00 1

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

file:nmaster@stanford.edu
file:cwchan@columbia.edu
file:bambos@stanford.edu
https://doi.org/10.1017/S0269964816000474

2 N. Master, C.W. Chan, and N. Bambos

1. INTRODUCTION

Managing delays in queueing networks has been the focus of a large body of work (e.g.,
Mandelbaum and Stolyar [27], Dewan and Mendelson [13], and Van Mieghem [43] among
many others). Typically, the undesirability of and dissatisfaction due to incurred delays serve
as the primary motivation for minimizing delays. However, there are other adverse effects
of delays, which often are not accounted for. For instance, in healthcare settings, delays in
access to care can result in deterioration of a patient’s health state, thereby reducing the
efficacy of the resulting care. In this work, we consider how to prioritize jobs (e.g., patients)
when the reward for completing any particular job decreases over time.

Delays in healthcare are rampant. A study by Poon et al. [36] indicates that over 60% of
physicians reported dissatisfaction in the timeliness of test results, which can create treat-
ment delays and, ultimately, lead to increased patient mortality and increased healthcare
costs. Indeed, in the case of intensive care, delays in treatment often lead to deterioration of
patient health and this can eventually reduce the efficacy of various treatments (McQuillan
et al. [31]). This also occurs for cardiac arrest (Buist et al. [5], Chan et al. [9]), angioplasty for
acute myocardial infarctions (Luca et al. [26]), and is particularly true for children (Sharek
et al. [38]). In this work, we capture the impact of delayed treatment on mortality risk and
other health outcomes by allowing for the reward for completing a job to decay arbitrarily.
In contrast to our work here, recent work by Chan et al. [7] examines the impact of delayed
treatment on service time.

For a specific scenario in healthcare where scheduling of jobs with decaying values is of
interest, we start by considering patient triage in the aftermath of mass casualty incidents. In
these situations, medical resources are overwhelmed by a sharp increase in demand. In both
civilian and military situations, medical personnel, operating rooms, and ambulances need
to be judiciously allocated so as to minimize the number of deaths and permanent injuries.
Treatment delays will reduce survival probabilities; so rapid scheduling is a necessity. Triage
practices have evolved over time, but must continue to advance as new disasters and new
technologies can render previous strategies obsolete (Iserson and Moskop [21], Moskop and
Iserson [34]). There has been recent work examining patient triage in disaster scenarios by
the operations management community (e.g., Argon, Ziya, and Righter [1], Argon, Ziya,
and Winslow [2], Chan et al. [8]); yet, none have considered an arbitrary decay in reward
as we do here.

While the primary motivation for our work is patient triage in mass casualty events, we
note that the reward decay dynamics we consider in this work extend to other applications
as well. For example, in food processing, perishable food items decay in market value as their
expiration dates approach and efficient scheduling is necessary to maximize profits. Man-
agers must account for variations in customer orders, equipment availability, raw materials,
deliveries, processing rates, and food freshness when making decisions regarding the pro-
duction of perishable foods like ice cream and yogurt (Jakeman [22]). As another example,
scheduling jobs with deadlines has been of particular interest in information services and
computing. In this case, the value of a job decays according to a step function. For example,
deadlines are useful for ensuring high level of quality for customers who are streaming multi-
media (Dua and Bambos [14], Dua et al. [15]). Deadlines have also been considered in more
general “data broadcast” problems, which lead to a number of combinatorial optimization
problems (Kim and Chwa [23], Zheng et al. [49]).

Though the aforementioned applications are quite varied, they share a number of key
similarities. In each case, we need to dynamically schedule jobs with decaying value for
processing/service. The value of the jobs decays over time and we seek to capture as much
of this value as possible. Motivated primarily by patient scheduling in disaster scenarios,

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 3

we choose to focus on non-preemptive scheduling of a “clearing system” in which all jobs
are present at the initial time (see Argon, Ziya, and Winslow [2] and references therein).
To the best of our knowledge, we are the first to account for the fact that jobs each have
an internal value, which may decay over time. For each job, the function which governs this
decay is deterministic and non-increasing; however, the manner of this decay is permitted
to be arbitrary.

The arbitrary decay generalizes the idea of having jobs with deadlines, which is a
common modeling construct (e.g., Argon et al. [1], Chan et al. [8], Dua and Bambos [14],
Kim and Chwa [23]). When jobs have deadlines, this corresponds to step-wise value decay:
the internal value of the job will abruptly transition from full value to zero value after the
deadline. This sharp transition can be thought of as a “hard” deadline. In contrast, our
model allows for “soft” deadlines. That is, rather than having the internal value of a job
abruptly decay from full value to zero value, the decay functions in our paper allow for the
internal value of a job to gradually decay from full value to zero value. The time at which the
job reaches zero value can still be thought of as a deadline, but because the transition from
full value to zero value is gradual, the deadline is “soft” rather than “hard.” The arbitrary
decay associated with soft deadlines allows for additional modeling flexibility beyond what
is allowed by hard deadlines. Our model allows for both soft and hard deadlines as well
as heterogeneity amongst the jobs in the system, thus offering a substantial generalization
over previously studied scheduling models. Soft deadlines have recently been considered in
some service rate control problems (e.g., Master and Bambos [29,30]) but not in scheduling
problems.

This modeling generalization is particularly important in patient scheduling applica-
tions. In the patient scheduling literature (e.g., Argon et al. [1], Chan et al. [8]), hard
deadlines are used to model the time of mortality due to the injury/ailment at hand. How-
ever, this may not capture all of the nuances associated with the patient health in disaster
scenarios, and soft deadlines may be more appropriate. For example, consider the patient
triage scheme developed by Sacco et al. [37]. By consulting a group of physicians, Sacco
et al. design a “health score” which they call RPM (Respiratory rate, Pulse rate, and Motor
response), which decays over 30 min time intervals. In Figure 1, we have plotted a few of

Figure 1. Example RPM curves from Table 5 of Sacco et al. [37].
Note. The RPM scores provide a metric for patient health decay. The scores take integer values {0, 1, . . . , 12}
and decay over 30min time increments.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

4 N. Master, C.W. Chan, and N. Bambos

the decaying RPM curves from Sacco et al. [37, Table 5]. Note that the decay is sometimes
linear but not necessarily. This motivates the arbitrary decay in our model. We emphasize
that while Sacco et al. prioritize patients based on their gradually decaying health, they do
so in a static manner and do not allow for dynamic patient scheduling. A key feature of our
model is that we incorporate decaying job value and dynamic non-preemptive scheduling.
We will discuss Sacco et al. [37] more in the literature review.

While soft and hard deadlines are useful modeling techniques (particularly for patient
scheduling applications), we will show that maximizing the total value over time is computa-
tionally intractable. As such, we turn our attention to a number of intuitive, yet sub-optimal
scheduling heuristics. In doing so, we wish to examine how well one can expect heuristics,
which do not account for future system dynamics to perform. Additionally, we aim to iden-
tify, which heuristics are most effective for various different situations. More specifically, we
consider three different heuristics:

1. Whenever there is a free server, the greedy policy schedules the job which max-
imizes the expected reward generated by the completion of that job, where the
expectation is taken with respect to the job’s service time distribution. As such, the
reward considered by this heuristic accounts for the decay in value of the job.

2. Whenever there is a free server, the rate greedy policy schedules the job with the
maximum expected reward rate. This simply takes the expected reward generated
by the completion of the job as considered by the greedy policy and divides it by the
expected service time of the job in order to estimate the reward generated per unit
of time during the processing of the scheduled job.

3. Whenever there is a free server, the earliest-deadline-first (EDF) policy, sched-
ules the job whose value decays to 0 soonest. In order for this policy to be well
defined, we must assume that for each job there is a finite time at which the value
generated for completing the job is equal to 0, that is, each job has a final deadline.
The EDF policy schedules jobs whose deadlines are most imminent and have not yet
passed.

We provide performance guarantees for each heuristic and are able to show that in some
situations, these bounds are tight. We further explore the performance across the heuristic
policies through simulation and provide some rules-of-thumb for when each of the policies
is most appropriate. In particular, our simulations support the following rules:

• The rate greedy policy is the most robust heuristic in that it seems to always per-
forms well and that for large numbers of jobs with high levels of heterogeneity, it
will perform better than the other two heuristics.

• The greedy policy is also a very good heuristic. For many small-scale problems, it
can outperform the other heuristics. While the rate greedy policy generates more
reward for large problems, the performance of the greedy policy is not far behind.

• EDF can outperform the greedy policies, but it is not very robust. We identify a few
scenarios in which the performance of EDF is on par with the two greedy policies,
but we note that slight deviations from these scenarios will lead to poor performance
for EDF.

The remainder of the paper is outlined as follows. We conclude this section with a brief
overview of some related literature. In Section 2 we introduce our model and the scheduling
problem we consider. We show that while the problem is well-posed, it is computationally
intractable. As such, we turn to heuristic policies in Section 3. We provide performance

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 5

guarantees for three different heuristics and briefly discuss how the proofs can be leveraged
to provide performance guarantees for other myopic policies. In addition to the general
performance guarantees, we show that there are situations in which each policy is better
than the other two. We explore this more in Section 4 via numerical examples. We use these
results to extract rules-of-thumb for understanding when each heuristic should (or should
not) be used. We conclude in Section 5. Proofs of our mathematical results are given in the
appendix.

1.1. Literature Review

Our work is related to the healthcare operations management literature on patient triage and
scheduling. While our primary motivation is scheduling patients in mass casualty events,
our model also has some similarities to work done in perishable inventory control and
information services. More generally, our work is related to theoretical work in scheduling
and the evaluation of heuristic policies.

In the healthcare operations management literature, clearing models for jobs with value
decay have been used to study triage and patient scheduling in mass casualty incidents.
Argon et al. [1] consider a clearing system where jobs are characterized by random service
times as well as random deadlines. They show that if the jobs can be ordered in a particular
way such that the job with the shortest deadline also has the shortest service time, then an
optimal policy is to give priority to the most “time-critical” job. Unfortunately, jobs do not
always exhibit this ordering and, in general, the time-critical first (TCF) heuristic performs
poorly. Our model of job decay is quite different as we allow for arbitrary, deterministic,
non-increasing functions rather than binary functions which are stochastic. We demonstrate
that like the TCF policy, the EDF policy also performs poorly in general, but it can also do
well in certain special cases. Moreover, we also consider the performance of other policies
and provide performance guarantees for them.

In related work, Mills, Argon, and Ziya [33] consider a fluid model for patient triage
which considers dynamic patient survival probabilities. Their model focuses on a finite
number of patient classes each with time varying rewards for service completion. By con-
trolling the service rates for each class, they seek to maximize the long-term reward. We
also consider dynamic patient scheduling. However, instead of using fluid models, which
necessarily only capture “average” behavior (see Gamarnik [19] for a survey), we consider a
stochastic model and evaluate the performance of a number of heuristics. Additionally,
while Mills et al. focus on ambulance transportation, we have calibrated our simula-
tions to provide insight into scheduling surgical procedures in mass casualty events (see
Section 4.2).

Similar to our model, Sacco et al. [37] consider how to do mass casualty triage given
patients have a “health score” which decays over time. This score decreases in a deterministic
fashion over the finite-time horizon and maps to a survival probability. The deterministic
health score system is determined by the Delphi method, an iterative survey technique
which is often used to aggregate expert opinions in a quantitative manner (see Linstone
et al. [25] for an overview of the Delphi method). This suggests that precise formulae for
the deterministic value decay in our model could be determined in a similar fashion. Given
various capacity constraints, a linear program is solved to decide how many patients of
each score should be scheduled in each time slot so as to maximize the expected number of
survivors. Note that this linear program is solved once at the beginning of the time horizon.
As a result, while this technique does allow for arbitrary patient health decay, it does not
allow for dynamic scheduling decisions. In contrast, the policies we consider, albeit myopic,
are dynamic and can adapt to a changing environment.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

6 N. Master, C.W. Chan, and N. Bambos

Another line of research in patient scheduling has been to rely on sophisticated com-
putational techniques to approximately compute optimal policies. For example, Patrick,
Puterman, and Queyranne [35] pose a patient scheduling problem as a Markov Decision
Problem (MDP) and use linear programming based Approximate Dynamic Programming
(ADP) techniques to find high performance policies. We also leverage the theory of MDPs
for studying our scheduling model. However, rather than focus on computational techniques,
we investigate the efficacy of simple heuristics which are easy to implement.

While our primary motivation is healthcare operations, we note that our model also cap-
tures some features present in other types of systems. In inventory control, Federgruen and
Wang [16] recently showed that “shelf-age-dependent” and “delay-dependent” cost struc-
tures are equivalent to traditional “level dependent” cost structures. These time-varying
costs are conceptually similar to the value decay functions which we employ, but their focus
is on inventory models rather than patient scheduling systems. As another example, we
note that jobs with deadlines have played an important role in the information technology
literature. For example, Dua and Bambos [14] consider the problem of scheduling multiple
traffic streams over a wireless downlink. Their solution can be thought of as an algorithmic
incarnation of our rate greedy heuristic which accounts for time-varying parameters and
user preferences. Our work expands on these ideas significantly by considering more general
value decay functions and providing performance guarantees.

In the healthcare context, it is typical to consider non-preemptive scheduling and specif-
ically in mass casualty incidents, it is typical to consider clearing systems (see Argon, Ziya,
and Winslow [2] and the references therein). The key idea is that after a disaster, the vic-
tims will undergo triage in one large batch and once a patient is undergoing a procedure it
is unsafe to preempt service. If the scheduling were preemptive, we could apply the theory
of stochastic depletion problems (Chan and Farias [6]). However, because the scheduling
discipline is non-preemptive, when a server begins work on a job, it will continue until the
job is complete. In this sense, scheduling decisions tend to have a greater impact on the
future evolution of the system and intuitively, this makes non-preemptive scheduling a more
difficult problem. In particular, we will later see that computing an optimal non-preemptive
scheduling policy for our system is at least as difficult as solving a broad class of NP-hard
combinatorial optimization problems.

In the more traditional case where the value of each job does not decay over time and
there is a single server, job scheduling problems are often cast in the framework of multi-
armed bandit problems in which the Gittens Index Theorem allows for efficient computation
of optimal solutions (see Gittins, Glazebrook, and Weber [20] and the references therein).
When the internal state of each job evolves over time, we are faced with a restless bandit
problem (Whittle [47]). Index policies for restless bandit problems have been shown to be
asymptotically optimal (for large numbers of jobs) in the case that the ratio between of the
number of jobs and servers is constant and a certain differential equation describing a fluid
approximation of the system is globally stable (Weber and Weiss [46]). However, verifying
the stability of this differential equation is not always straightforward. In addition, the
indices in this result come from the Lagrange multipliers of an associated optimization
problem and as a result, this type of policy may not be easy to implement in applications.

Still, there exists special cases where restless bandit problems admit solutions which
are easy to compute and implement. In a Markovian setting where the reward for serving
a user decays exponentially as a function of the user’s sojourn time, a greedy policy which
seeks to maximize immediate expected rewards is an optimal policy (Dalal and Jordan [12]).
This type of greedy policy can also be framed as a cμ-type policy (see Walrand [45] for a
review of such policies). The cμ-type policy is shown to be optimal in a heavy traffic setting
(Mandelbaum and Stolyar [27]). These results partially motivate the work in this paper.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 7

We consider similar greedy policies but with arbitrary job value decay. In this more general
setting, the greedy policies are not optimal and so we turn out attention to establishing
bounds on their sub-optimality.

2. MODEL FORMULATION

We now formally introduce our model and discuss the optimization of the scheduling
problem we consider here. While we are primarily motivated by patient triage in mass
casualty events, we present a general model and connect back to the healthcare setting
using simulation in Section 4.2.

2.1. System Dynamics and Dynamic Programming Formulation

We consider a set of J jobs indexed by j ∈ J = {1, 2, . . . , J}. Job j ∈ J has a random
service time σj taking values in {1, 2, 3, . . .}. Let the distribution of σj be Fj(·). The pro-
cessing times are statistically independent and each has a finite mean. There are N identical
processors/servers indexed by n ∈ N = {1, 2, . . . , N}. Each processor has unit service rate
and can process a single job at a time. Service is non-preemptive in the sense that once a
processor begins work on a job, the processor will continue to work on this job until the job
is completed. Time is slotted and indexed by t ∈ {0, 1, 2, . . .}.

Let Bj(t) be the residual service time of job j at time t and let B(t) = (B1(t), . . . , BJ(t))
be the total system backlog. We know that B(0) = (σ1, . . . , σJ) and if all jobs have com-
pleted at time T , B(T) = (0, . . . , 0). Each job service time is random and the realization can
only be seen after the job has completed processing. Therefore, to make optimal scheduling
decisions, we must track the observable backlog vector denoted by b(·):

bj(t) =

⎧⎪⎨
⎪⎩
⊥, job j hasn’t begun processing
t′, job j began processing at time t′ < t and is still being processed
�, job j has completed processing

(1)

Because the service time distributions are known, b(t) encodes the information necessary
to determine the distribution of B(t). We next define the state pn(t) of processor n ∈ N as
follows:

pn(t) =

{
j, if processor n is executing job j ∈ J at the beginning of time slot t

0, if processor n is free at the beginning of time slot t
(2)

The processor state vector is then defined as p(t) = (p1(t), . . . , pN (t)). With these definitions,
we can take the system state at time t as

st = (b(t), p(t)) (3)

where we will sometimes simply write s when the dependence on t is understood. We denote
the state space

S ⊆ ({⊥} ∪ N ∪ {�})J × {0, 1, . . . , J}N
. (4)

Note that at the beginning of each time slot, we can schedule job j on processor n if and
only if bj(t) = ⊥ and pn(t) = 0.

Given state s, let A(s) be the set of feasible scheduling actions. A scheduling action is a
set of pairings between jobs and processors so if A ∈ A(s), then (j, n) ∈ A only if bj(t) = ⊥

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

8 N. Master, C.W. Chan, and N. Bambos

and pn(t) = 0. In addition, since each processor can only work on a single job at a time, if
(j, n) ∈ A and (j′, n′) ∈ A then j �= j′ and n �= n′. If the system is in state s at time t and
action A is take, let S+(s,A) be the random state at time t + 1.

If job j is completed at the end of time slot t, we garner a non-negative reward vj(t). We
assume vj(·) ≥ 0 and that vj(·) is non-increasing. Therefore, vj(·) defines the deterministic
time-varying value of job j. For example, if job j has a value νj and a deterministic deadline
dj , then we can take vj(t) = νj1{t≤dj}.

Recall that if job j is scheduled on processor n at the beginning of time slot t, it will
complete processing at the end of time slot t + σj . Therefore, if the scheduler chooses action
A ∈ A(s), the resulting reward will be

Rt(s,A) =
∑

(j,n)∈A

vj(t + σj). (5)

We restrict our attention to deterministic policies π ∈ Π such that if s ∈ S, then s 	→ πt(s) ∈
A(s). We can now define the value function of policy π as

V π
t (s) = E

[∞∑
τ=t

Rτ (sτ , πτ (sτ))

∣∣∣∣∣ st = s

]
. (6)

The optimal value function is then defined as

V ∗
t (s) = max

π∈Π
V π

t (s). (7)

Any optimal policy which achieves this supremum is denoted π∗.

2.2. Preliminary Mathematical Results

Our problem formulation lends itself to an MDP approach. Given the recursive optimality
equations (i.e., the Bellman equation) associated with an MDP, one can compute the optimal
value function and find an optimal policy via standard techniques (value iteration, policy
iteration, and linear programming (Bertsekas [4])). Our first theorem characterizes the value
function in terms of a Bellman equation, thus demonstrating that this is (in principle) a
valid approach to the problem.

Theorem 1: The quantities in (6) and (7) are well-defined. An optimal policy π∗ exists
and is characterized by the following Bellman equation:

V ∗
t (s) = max

A∈A(s)

{
E[Rt(s,A)] + E[V ∗

t+1(S
+(s,A))]

}
. (8)

Our next theorem shows that this approach is not computationally tractable. Dynamic
programming problems with large state and action spaces typically suffer from the curse
of dimensionality. However, our particular problem is possibly even more difficult to solve.
As mentioned before, requiring non-preemptive scheduling adds a combinatorial “twist” to
the problem. A broad class of “knapsack” problems (see Martello and Toth [28]) can be
reduced to our problem and as a result, our general scheduling problem is NP-hard (see
Cormen et al. [10] for an introduction to complexity theory and NP-hardness).

Theorem 2: Computing π∗ is NP-hard.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 9

3. HEURISTIC POLICIES AND PERFORMANCE GUARANTEES

We have just seen that while the non-preemptive scheduling problem can be solved in
principle, it is unlikely that there is a computationally tractable way of doing so. As such,
we turn our attention to heuristics which are intuitive and easy to use in practice. Unlike
the optimal policy, which solves (8), the heuristics we consider ignore the impact of the
scheduling decision on the future value. We focus on these particular heuristics because
they have been studied in other contexts (e.g., Dalal and Jordan [15], Dua et al. [12],
Mandelbaum and Stolyar [27]) but we will briefly comment on how our proofs can be
extended to other policies. The heuristics are defined as follows:

1. A greedy policy selects the jobs with the largest expected reward:

πG
t (s) ∈ argmax

A∈A(s)

{E[Rt(s,A)]} = argmax
A∈A(s)

⎧⎨
⎩

∑
(j,n)∈A

E[vj(t + σj)]

⎫⎬
⎭

2. A rate greedy policy selects the jobs with the largest expected reward rate:

πg
t (s) ∈ argmax

A∈A(s)

⎧⎨
⎩

∑
(j,n)∈A

E[vj(t + σj)]
E[σj]

⎫⎬
⎭

3. An EDF policy schedules the jobs with the most imminent deadline:

πEDF
t (s) ∈ argmin

A∈A(s)

⎧⎨
⎩

∑
(j,n)∈A

dj − t

1{dj≥t}

⎫⎬
⎭

where dj = arg supt{vj(t) > 0} < ∞ and we consider c/0 = ∞ for any c ∈ R. Note
that this policy is only well-defined when the reward functions have finite deadlines.
That is, for each job j, there is a finite integer dj such that vj(dj) > 0 but vj(dj +
1) = 0. Under the EDF policy, if a deadline has passed, it will not schedule this job
until after all other jobs have been scheduled.

For each policy, we assume that ties are broken in an arbitrary fashion (e.g., assigning
an ordering to actions and taking the “smallest”). While each of these strategies is intuitive,
they can lead to drastically different performance. For example, consider when the service
requirements are identically distributed with distribution F (·) and vj(t) = 1{t≤dj} for given
deadlines {dj}j∈J . Because the service times are independent and identically distributed
(IID) πG and πg coincide with:

πG
t (s) = πg

t (s) = argmax
A∈A(s)

⎧⎨
⎩

∑
(j,n)∈A

E[vj(t + σj)]

⎫⎬
⎭ = argmax

A∈A(s)

⎧⎨
⎩

∑
(j,n)∈A

F (dj − t)

⎫⎬
⎭ .

Because F (·) is monotonically increasing, πG and πg will schedule jobs with the latest
deadlines, the idea being that these jobs are most likely to complete processing before their
deadline and generate reward. In this sense, πEDF is the opposite of πG and πg. While each
strategy is intuitive in its own way, it is not immediately clear which policy will have better
performance under different situations. The following examples demonstrate that no one of
the heuristics dominates any of the others – there are situations in which each heuristic has
a greater expected value.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

10 N. Master, C.W. Chan, and N. Bambos

Example 1 (πG can be better than πg): Consider a system at t = 0 with J = 2 and N = 1.
Let job 1 be characterized by

σ1 =

{
1, w.p. 0.99

100, w.p. 0.01
, v1(t) = 1{t≤1}

and job 2 be characterized by

σ2 = 1, v2(t) = (1 − δ)1{t≤1}

for any δ ∈ (0.01, 0.5). A simple computation shows that πG will schedule job 1 and then
job 2 so that V G

0 (s) = 0.99 while πg will schedule job 2 then job 1 so that V g
0 (s) = 1 − δ.

Therefore, V G
0 (s) > V g

0 (s).

The intuition behind πg is that because of the decaying value of each job, one should
try to maximize the immediate reward per unit time rather than merely the immediate
reward. To this end, πg maximizes E[vj(t + σj)]/E[σj] rather than E[vj(t + σj)]. Example 1
shows how this estimate of the reward rate can go wrong. When σj has high variance, the
expected reward divided by the expected service time is not a good estimate of the reward
rate. Indeed, in the previous example the standard deviation of σ1 was nearly 10. This
issue is exacerbated by the fact that the time horizon is short (effectively one time slot)
relative to the standard deviation. Since πG maximizes the immediate reward rather than
the immediate reward rate, πG is able to outperform πg. The next example shows that this
is not always the case and the relative performance of the policies can be flipped.

Example 2 (πg can be better than πG): Consider a system at t = 0 with J = 2 and N = 1.
For some fixed δ ∈ (0, 1

2), let job 1 be characterized by

σ1 = 1, v1(t) = (1 − δ)1{t≤1}.

Let job 2 be characterized by

σ2 = 2, v2(t) = 1{t≤3}.

The policy πG will schedule job 2 and then job 1 so V G
0 (s) = 1. In contrast, πg will schedule

job 1 and then job 2 so V g
0 (s) = 2 − δ. Therefore, V g

0 (s) > V G
0 (s).

In contrast with Example 1, Example 2 demonstrates the benefits of maximizing the
immediate reward rate rather than maximizing the immediate reward. The distribution in
Example 1 is somewhat pathological – a service time like σ1 in Example 1 is unlikely to arise
in a most applications. However, to give a rigorous performance guarantee that holds for all
service time distributions and value decay functions, we need to consider such situations.

Example 3 (πEDF can be better than πg and πG and vice versa): Consider a system at t =
0 with J = 2 and N = 1. For ε ∈ (0, 1), define σ as

σ =

{
1, w.p. ε,

2, w.p. 1 − ε,

and let σ1
d= σ2

d= σ. Let job 1 be characterized by v1(t) = 1{t≤1} and job 2 be characterized
by v2(t) = 1{t≤2}. The EDF policy will schedule job 1 and then job 2. Both jobs complete

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 11

with probability ε2 and with probability ε(1 − ε) we only complete job 1. Hence, V EDF
0 (s) =

ε2 + ε. In contrast, πg and πG will schedule job 2 and then job 1. Hence, V g
0 (s) = V G

0 (s) = 1.
We can use the quadratic formula to show that if ε < (

√
5 − 1)/2 then V EDF

0 (s) <
V g

0 (s) = V G
0 (s), if ε = (

√
5 − 1)/2 then V EDF

0 (s) = V g
0 (s) = V G

0 (s), and if ε > (
√

5 − 1)/2
then V EDF

0 (s) > V g
0 (s) = V G

0 (s).

Remark 1: Note that in Example 3, πEDF only outperforms the other heuristics when the
service times are nearly constant – in this example, when P(σ = 1) = ε is qualitatively large.
Otherwise, πEDF can perform arbitrarily poorly. In contrast, πg and πG are insensitive to
the value of ε.

These examples have demonstrated that each heuristic may be valuable in different
situations. To distinguish the heuristics, we now present performance guarantees that hold
for all service time distributions (with finite mean) and all reward decay functions. Our
performance guarantees will be of the following form:

Definition 1: Given a policy π ∈ Π, we say that π is an α-approximation if

V ∗
t (s) ≤ αV π

t (s)

for all s and t. An optimal policy π∗ is a 1-approximation and if a sub-optimal π is an
α-approximation then α > 1.

We can think of V ∗
t (s) as the maximum amount of reward that is available. If we used

an optimal policy, we would be able to attain all of this reward. More generally, if a policy
π is an α-approximation, then we have a guarantee that π will attain a fraction 1/α of the
possible reward. Note that if π is an α-approximation then it is also an α′-approximation
for any α′ ≥ α.

Theorem 3: Define
σmax = max

j∈J
σj and σmin = min

j∈J
σj .

Then πG is a (1 + 2E[σmax/σmin])-approximation.

The term E[σmax/σmin] shows that πG is sensitive to the heterogeneity of the service
times. If the service times are deterministically equal, then σmax/σmin = 1, but typically,
σmax/σmin > 1. When the service times are deterministically equal, Theorem 3 tells us that
πG is a 3-approximation. As the gap between the largest service time and the smallest
service time widens, this guarantee becomes weaker.

Theorem 4: Define

Δ =
E[maxj∈J σj]
minj∈J E[σj]

=
E[σmax]

minj∈J E[σj]
.

Then πg is a (2 + Δ)-approximation.

The Δ term shows that πg is also sensitive to the heterogeneity of the service times
but in a different way. Note that the performance guarantee for πg involves the minimum
of the expected services times (minj E[σj]) while the performance guarantee for πG involves
the pointwise minimum (σmin = minj σj). The pointwise minimum is more sensitive to the

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

12 N. Master, C.W. Chan, and N. Bambos

underlying service time distributions and this makes the performance guarantee for πg

somewhat more robust than the performance guarantee for πG. However, we see a similar
trend as with πG: when the service times are deterministically equal, πg is a 3-approximation
and as the service times become more heterogeneous this performance guarantee weakens.

Proposition 1: When E[σ1] = E[σ2] = · · · = E[σJ] then πg and πG are the same policy.
Furthermore, when the service times are identically distributed, both πg and πG are 2-
approximations.

This proposition shows that the performance guarantees in Theorem 3 and Theorem 4
are not tight. In the “best” case when the service times are deterministically equal, the
previous theorems told us that πg and πG were 3-approximations. However, the proposition
tells us that they are actually 2-approximations. Intuitively, it is quite reasonable that πg

and πG have better guarantees when the services times are IID. Indeed, when there is
less heterogeneity amongst the jobs, scheduling decisions matter less because the jobs are
less distinguishable and hence, a greedy heuristic should perform better. Our next example
demonstrates that when the services times are IID, the performance guarantee provided
by Proposition 1 is tight. In other words, when the service times are IID, 2 is the smallest
α such that πg and πG are α-approximations. That said, it is still unknown whether the
bounds in Theorem 3 and Theorem 4 are tight under non-IID service time distributions.

Example 4 (Proposition 1 is tight): Consider a system at t = 0 with J = 2 and N = 1. Let
σ1 = σ2 = 1 with probability 1. Fix ε ∈ (0, 1). The jobs are then distinguished by their value
decay functions:

v1(t) = (1 − ε)1{t≤1}, v2(t) = 1

In this case, πg and πG will schedule job 2 and then job 1. Hence, V g
0 (s) = V G

0 (s) = 1. On
the other hand, an optimal policy will schedule job 1 and then job 2 which gives us V ∗

0 (s) =
2 − ε. Therefore, for any ε ∈ (0, 1) we have that V ∗

0 (s) = (2 − ε)V g
0 (s) = (2 − ε)V G

0 (s). We
can make ε arbitrarily small so the bound in Proposition 1 is tight.

Now we turn our attention to the EDF policy. Recall that πEDF is well-defined whenever
the value decay functions reach zero in finite time. However, EDF policy does not make
use of the service time distributions, so that its performance may be arbitrarily bad for
heterogenous service time distributions. Indeed, even for the simpler case of IID service
times, Example 3 showed that πEDF can span the gamut from achieving nearly zero of
the possible reward to being optimal as the underlying service distribution varies. In light
of this, we focus our performance analysis of EDF when the service distributions are IID
(we relax this assumption in our numeric experiments in Section 4). We have the following
performance guarantee:

Theorem 5: Assume that the service times are identically distributed and define

M = max
j,t

{E[vj(t + σj)]} and m = min
j,t

{E[vj(t + σj)] : E[vj(t + σj)] > 0} .

Then πEDF is a (1 + M/m)-approximation.

Note that this performance guarantee is not very strong, in general. However, when we
consider reward functions which have hard deadlines, it can be slightly refined:

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 13

Corollary 1: Assume that the service times are identically distributed and that vj(t) =
1{t≤dj} for fixed dj. Let pmin = mint {F (t) : F (t) > 0}. Then πEDF is a (1 + 1/pmin)-
approximation.

Unfortunately, the guarantees in Theorem 5 and Corollary 1 are quite weak. Generally,
m can be quite small and hence (1 + M/m) will be quite large. In the case of IID service
times, πg and πG were 2-approximations regardless of the underlying service time distribu-
tion. In contrast, we see that the performance guarantee for πEDF is very sensitive to the
underlying distribution. If we focus on the situation in Corollary 1, note that when the ser-
vice times are deterministically equal to a constant, pmin = 1 and πEDF is a 2-approximation.
As the service time distributions become stochastic, this guarantee is weakened. While this
performance guarantee may seem weak, it actually tight:

Remark 2 (Theorem 5 is tight): Example 3 also demonstrates that the performance guar-
antee for πEDF is tight. We showed that V EDF

0 (s) = max
{

1
ε2+ε , 1

}
V ∗

0 (s). Note that in this

case 1 + M/m = 1 + 1/ε. For ε < (
√

5 − 1)/2,

V ∗
0 (s0)/V EDF

0 (s0)
1 + M/m

=
V ∗

0 (s0)/V EDF
0 (s0)

1 + 1/ε
=

1
ε2+ε

1 + 1
ε

=
ε

ε(ε + 1)2
=

1
(1 + ε)2

.

Therefore, the ratio of the actual performance and the performance guarantee tends to 1 as
ε → 0. In this sense, even though the performance can be arbitrarily bad, the performance
guarantee is asymptotically tight.

While this performance guarantee seems to suggest that the EDF policy has weak per-
formance, recall that this is not necessarily the case. As shown by Argon et al. [1], prioritizing
time-critical jobs can be optimal in special cases. In addition, Example 3 demonstrates that
the EDF policy can outperform both the greedy and rate greedy policies. We will see in
our simulations that while the EDF policy will not generally perform well, it can be a high
performing scheduling policy in special cases.

Given these theorems and examples, we summarize the given performance guarantees
in Table 1. Note that in the case of IID service times, all of the performance bounds are
tight. In addition, Proposition 2 shows that we can order these performance guarantees.

Proposition 2: The performance bounds can be ordered as follows:

1 + 2E

[
σmax

σmin

]
≥ 2 + Δ; 1 +

M

m
≥ 2.

Table 1. A summary of the performance guarantees for each of the heuristic policies.

Heuristic

Service time distributions πG πg πEDF

Independent 1 + 2E[σmax/σmin] 2 + Δ None available
IID 2 (tight) 2 (tight) 1 + M/m (tight)

In each cell, we give a value for α such that the policy in question is an α-approximation. Note that for IID service
times, our performance guarantees are tight.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

14 N. Master, C.W. Chan, and N. Bambos

Proposition 2 tells us that in the non-IID case, πg has a better performance guarantee
than πG. In the IID case, πg and πG each have better performance guarantees than πEDF. It
appears that πg is better than πG and in the IID case, both are better than πEDF. However,
our examples have shown that this is not always the case – each of the policies can attain
a higher expected value than the other policies depending on the situation. The examples
were constructed to illustrate this fact and so more numerical experiments are needed to
evaluate the performance of the different heuristics.

Before conducting this numerical performance evaluation, we briefly comment on the
proofs of the performance guarantees (which can be found in the appendices). The proofs
are structurally similar and this structure can potentially be leveraged for proving perfor-
mance guarantees for other myopic heuristics. The appendices illustrate how after proving
one performance guarantee we can modify certain bounds to prove each subsequent perfor-
mance guarantee. This opens the door for exploring a multitude of other myopic scheduling
heuristics that might be of interest in other applications. The details of this overarching
proof structure is described in more detail in the appendices.

4. PERFORMANCE EVALUATION

We have given performance guarantees for each heuristic and have shown that some of these
bounds are tight. These performance bounds hold for arbitrary systems but we have seen in
some simple examples that the relative performance of the different policies can depend on
the system parameters. The system is parameterized by N , J , {Fj(·)}j∈J , and {vj(·)}j∈J so
even small problems have a high dimensional parameter space. Though motivated primarily
by patient scheduling in mass casualty incidents, this model is broad enough to encompass
several application areas. Consequently, we opt to take two complementary approaches to
numerically explore this space:

1. We first focus on a handful of representative distributions and value decay functions
which could be of potential interest to a variety of applications. We consider some
relatively small problems in which we can compute π∗, thus allowing us to compare
π∗, πg, πG, and πEDF for different combinations of service distributions and value
decay functions. We also consider larger problems in which computing π∗ is not
computationally tractable. In these larger cases, we simply compare the performance
of each heuristic to the others.

2. We then conduct simulations in which the value decay functions and service time
distributions would be of interest in healthcare operations management. Our model
does not consider all of the details of a hospital, but our simulations do show how
our results could be applied to patient scheduling in mass casualty scenarios.

4.1. General Numerical Experiments

We consider four kinds of service time distributions, the probability mass functions (PMFs)
of which are depicted in Figure 2. We consider a uniform PMF, a exponentially decreasing
PMF, an exponentially increasing PMF, and a “bathtub” shaped PMF, each of which is
parameterized by a value a ∈ [0, 1] which can be used to adjust the mean and/or variance of
the distribution. The uniform PMF models the situation in which we do not know anything
about the job service time other than an upper bound (i.e., �aT �) and a lower bound (i.e., 1)
and hence choose the “most random” distribution (i.e., the maximum entropy distribution).
The increasing (decreasing) PMF models the situation in which we believe the job is likely

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 15

Figure 2. Service time distributions.
Note: We consider four PMFs on {1, . . . , T} corresponding to four different service time distributions each

of which is parameterized by a value a ∈ [0, 1]. The first is uniform, the second is exponentially decreasing,

and the third is exponentially increasing. The fourth PMF is a “bathtub” curve.

to complete service in a short (long) period of time. Note that the decreasing PMF is
a truncated geometric PMF with parameter (1 − e−a) and so for long time horizons the
decreasing PMF will be a good approximation for the geometric PMF. Note that this is the
discrete-time analog to the exponential distribution which was used by Dalal and Jordan
[12] when studying “impatient” users. The bathtub PMF is a bi-modal distribution, which
models the situation in which we believe the job will likely complete in either a short or
long period of time but we are not sure which. This is conceptually similar to how bathtub
curves are used to model failure rates in reliability models (Xie and Lai [48]).

As depicted in Figure 3, we consider stepwise, linear, and exponential value decay func-
tions. Each of these functions is parameterized by an initial value b ∈ [0, 1] and a final
deadline c ∈ {1, . . . , T}. The step functions would be useful for modeling jobs whose ser-
vice requirements are characterized by deadlines. If the internal value of the job decreases
steadily, then a linear decay function would be more appropriate. Finally, if there is an
incentive to complete service sooner and the job value will decay rapidly, the exponential
decay function would be the most appropriate of these functions. Note that for large values
of c, the exponential value decay function is approximately the same as the function used
by Dalal and Jordan [12] to model “impatience” amongst users.

Figure 3. Job value decay functions.
Note: We consider three job value decay functions, each parameterized by a value b ∈ [0, 1] and a deadline

c ∈ {1, . . . , T}. The first is a step function, which can be used to model systems with job deadlines. The

second is a linear decay function and the third is an exponential decay function.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

16 N. Master, C.W. Chan, and N. Bambos

4.1.1. Small-Scale Problems: Comparisons to Optimal. We compare the policies in dif-
ferent situations by choosing all combinations of the service time distributions and job value
decay functions. We also consider “heterogeneous” cases in which the job service time dis-
tribution and/or family of value decay function is chosen randomly and uniformly from the
possible choices. In all cases, the parameters b and c for each job value decay function are
chosen randomly and uniformly. For a given combination of service time distributions and
value decay functions, let απ = V ∗

0 (s0)/V π
0 (s0) be the average of the ratio of the optimal

value and the value under policy π. For each myopic policy and each combination, we esti-
mate απ and provide a standard error by performing a Monte Carlo procedure with 1,000
samples. We call this estimate α̂π. We give the results of the comparison for a system with
J = 5, N = 2, and a finite-time horizon of T = 5. Even though this may appear to be a
small problem, |S| ≈ 20, 000 and computing π∗ is non-trivial.

In Table 2, we show the results for the case in which we always take a = 1. Note
that under this restriction, the service times are IID, except in the case of “Heteroge-
neous”, so that πg and πG are the same policy. For the first three rows, πg and πG are
both 2-approximations (by Proposition 1) while πEDF is a (1 + M/m)-approximation (by
Theorem 5). In the “Heterogeneous” row, πg is a (2 + Δ)-approximation (by Theorem 4)
and πG is a (1 + 2E[σmax/σmin])-approximation (by Theorem 3). In this case, πEDF does
not have any performance guarantee.

Table 2 shows that in many scenarios, πg and πG both exhibit high performance. In
fact, when the PMFs are increasing, both πg and πG perform as well as the optimal policy.

Table 2. Performance of πG, πg, and πEDF compared to π∗ when a = 1 and (b, c) is
random.

Step Linear Exponential Heterogeneous

(a) α̂G, (SE(α̂G))
Uniform 1.00615 (0.00058) 1.00143 (0.00024) 1.00073 (0.00013) 1.00171 (0.00026)
Decreasing 1.09513 (0.00303) 1.01500 (0.00112) 1.00445 (0.00051) 1.05256 (0.00237)
Increasing 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000)
Bathtub 1.01831 (0.00112) 1.00478 (0.00055) 1.00133 (0.00024) 1.00997 (0.00090)
Heterogeneous 1.03002 (0.00175) 1.00465 (0.00063) 1.00123 (0.00026) 1.01682 (0.00140)

(b) α̂g (SE(α̂g))
Uniform 1.00615 (0.00058) 1.00143 (0.00024) 1.00073 (0.00013) 1.00171 (0.00026)
Decreasing 1.09513 (0.00303) 1.01500 (0.00112) 1.00445 (0.00051) 1.05256 (0.00237)
Increasing 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000) 1.00000 (0.00000)
Bathtub 1.01831 (0.00112) 1.00478 (0.00055) 1.00133 (0.00024) 1.00997 (0.00090)
Heterogeneous 1.03087 (0.00171) 1.00701 (0.00099) 1.00673 (0.00101) 1.03087 (0.00171)

(c) α̂EDF (SE(α̂EDF))
Uniform 2.49332 (0.04113) 48.7847 (5.60725) 289.450 (131.128) 25.9185 (2.88039)
Decreasing 1.14566 (0.00607) 6.23741 (0.67474) 9.43225 (0.67082) 4.56169 (0.87904)
Increasing 15.0676 (0.62802) 200851. (48723.5) 344279. (59059.1) 69799.3 (27137.3)
Bathtub 1.64460 (0.01817) 15.3726 (1.21637) 43.8726 (5.24929) 11.3964 (1.36760)
Heterogeneous 4.02893 (0.36334) 2012.63 (997.432) 3515.13 (2447.49) 204.043 (81.5023)

We consider a system with J = 5 jobs, N = 2 processors, and a finite-time horizon of T = 5. We take s0 to be the
initial state in which all processors are free, no jobs have begun processing, and t = 0. The columns in the table
indicate the type of job value decay functions and the rows in the table indicate the kind of service time distribution.
The parameters (b, c) defining the job value decay functions are randomly chosen uniformly on [0, 1] × {1, . . . , T},
while we fix a = 1 for all service time distributions. When the column (row) is labeled “heterogeneous”, the kind
of value decay (service distribution) is chosen randomly and uniformly from the available kinds. Each scenario is
repeated 1,000 times and we report the average of απ along with a standard error (to six significant figures).

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 17

When the service time distributions are heterogeneous, we notice that πG consistently per-
forms slightly better than πg. The difference is most substantial when the type of value
decay functions is also heterogeneous. This reinforces the intuition we gleaned from Exam-
ple 1: maximizing the expected reward rate rather than the expected reward can lead to
suboptimal performance. We will further explore the performance differences between πg

and πG in other numerical experiments.
In contrast to πg and πG, πEDF does not perform very well. In Table 2, we see that

α̂EDF is very large, sometimes of the order of 105. However, we do notice some interesting
trends. In particular, we see that for each row of the table, πEDF performs best when the
value decay is stepwise. The EDF heuristic is motivated by deadlines so this matches our
intuition. When we further examine the column corresponding to stepwise value decay, we
see that πEDF performs best when the PMFs are decreasing. This bolsters the intuition
from Example 3 and Remark 1: πEDF can perform well when there is high probability of
completing each job in a short amount of time. This is another phenomenon that we will
explore more in our other numerical experiments.

In Table 3, we consider the case of when a, b, and c are all randomly chosen uni-
formly from their possible values. In this case, πg is a (2 + Δ)-approximation, πG is a
(1 + 2E[σmax/σmin])-approximation, and there is no known performance guarantee for πEDF.
Because all three parameters are chosen randomly for each job, the jobs are more diverse
than they were in the previous numerical experiment. This should “stress” the heurstics
more because the optimal scheduling choices are now less obvious. Indeed, if we compare

Table 3. Performance of πG, πg, and πEDF compared to π∗ when (a, b, c) is random.

Step Linear Exponential Heterogeneous

(a) α̂G (SE(α̂G))
Uniform 1.04897 (0.002167) 1.00768 (0.000844) 1.00138 (0.000236) 1.01387 (0.001245)
Decreasing 1.04691 (0.002012) 1.00788 (0.000758) 1.00180 (0.000268) 1.02233 (0.001544)
Increasing 1.00127 (0.000230) 1.00023 (0.000066) 1.00009 (0.000031) 1.00037 (0.000104)
Bathtub 1.00041 (0.000089) 1.00181 (0.000293) 1.00011 (0.000035) 1.00017 (0.000046)
Heterogeneous 1.02546 (0.001638) 1.00276 (0.000504) 1.00076 (0.000199) 1.00783 (0.000948)

(b) α̂g (SE(α̂g))
Uniform 1.05640 (0.002226) 1.00906 (0.000852) 1.00760 (0.000962) 1.01485 (0.001315)
Decreasing 1.04330 (0.001952) 1.00923 (0.001002) 1.00518 (0.000558) 1.02275 (0.001470)
Increasing 1.00154 (0.000243) 1.00078 (0.000174) 1.00065 (0.000121) 1.00128 (0.000217)
Bathtub 1.00093 (0.000148) 1.00181 (0.000293) 1.00042 (0.000102) 1.00047 (0.000110)
Heterogeneous 1.02546 (0.001638) 1.00461 (0.000682) 1.00455 (0.000631) 1.01150 (0.001229)

(c) α̂EDF (SE(α̂EDF))
Uniform 1.78906 (0.033164) 33.3784 (6.97825) 85.3505 (32.4023) 95.5145 (75.0312)
Decreasing 1.51489 (0.018046) 14.4466 (1.63058) 51.9981 (21.8992) 6.62267 (0.605458)
Increasing 7.08516 (0.334549) 2467.51 (354.735) 8653.56 (1422.52) 9076.97 (6364.62)
Bathtub 6.06017 (0.197840) 44.1500 (7.09408) 5034.91 (1911.05) 831.657 (224.303)
Heterogeneous 3.90997 (0.185022) 552.404 (146.859) 2386.36 (683.175) 234.359 (93.5448)

We consider a system with J = 5 jobs, N = 2 processors, and a finite-time horizon of T = 5. We take s0 to be the
initial state in which all processors are free, no jobs have begun processing, and t = 0. The columns in the table
indicate the type of job value decay functions and the rows in the table indicate the kind of service time distribution.
The parameters (a, b, c) defining each job are randomly chosen uniformly on [0, 1] × [0, 1] × {1, . . . , T}. When the
column (row) is labeled “heterogeneous”, the kind of value decay (service distribution) is chosen randomly and
uniformly from the available kinds. Each scenario is repeated 1,000 times and we report the average of απ along
with a standard error (to 6 significant figures).

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

18 N. Master, C.W. Chan, and N. Bambos

Tables 2 and 3, we typically see larger values (i.e., lower performance) in Table 3. For
example, in the “Increasing” row of Table 2, α̂g and α̂G were both equal to one, but this
is not the case for Table 3. In both tables, we notice the same general trends that πg

and πG perform quite well, while πEDF does not. Now that πg and πG are different for all
scenarios, we continue to see that πG performs slightly better than πg. The EDF policy per-
forms quite poorly, but performs best when the value decay is stepwise and the PMFs are
decreasing.

4.1.2. Large-Scale Problems: Comparing the Heuristics to Each Other. We now consider
larger problems in which computing π∗ is not feasible. We consider a system with a finite-
time horizon of T = 50 and N = 5, while varying J ∈ {10, 20, 30, 40, 50, 60}. Increasing J
corresponds to increasing the congestion of the system. In a more congested system, the
appropriate scheduling decisions become both more critical and less obvious. The state
space is now so large that computing an optimal policy is not feasible and exact perfor-
mance evaluation of sub-optimal policies is also not feasible. Instead, we randomly choose
the system parameters and simulate the system evolution under the various heuristic poli-
cies. We report the average result of 1, 000 simulations. We consider either stepwise or
heterogeneous value decay and either decreasing or heterogeneous PMFs. Because T = 50,
the decreasing PMF is “almost” a geometric PMF. Indeed, if σ is a geometric random
variable on {1, 2, . . .} with parameter (1 − 1/e), then P(σ > T) ≈ 10−16. As a result, in
this section we will refer to the decreasing PMF as a geometric PMF. Therefore, we are
comparing the special cases of deadlines and geometric service times against heteroge-
neous value decay functions and heterogeneous service time distributions. In every case,
the parameters b and c, which define each job value decay function are chosen randomly.
In Figure 4, we consider when a = 1 and in Figure 5, we consider when a is also chosen
randomly.

In Figure 4(a), we have geometric PMFs and stepwise value decay, while in Figure 4(b)
we have geometric PMFs and heterogeneous value decay. Note that in these cases, πg and
πG are equivalent. In both plots, we see that the value associated with each of the three
heuristic policies increases as the number of jobs increases. This shows that when the service
times are geometric, all three heuristics can manage increasing congestion reasonably well.
An interesting feature of these plots is that πEDF outperforms πg and πG. This matches
our intuition from Example 3 and the small-scale simulation from the previous section. In
the previous section, we saw that πEDF performed best when the PMFs were (truncated)
geometrics. Recall that in Example 3, when P(σ = 1) is close to 1, πEDF outperforms πg

and πG. Because (1 − 1/e) ≈ 0.63, the probability of a job completing in one time slot is
indeed qualitatively close to 1. In these examples, all of the jobs are very likely to finish in
a short amount of time and since πEDF prioritizes time-critical jobs, πEDF does very well.
Note that πg and πG also perform well. Furthermore, when the value decay functions are
heterogeneous, the performance gap between πg/πG and πEDF is quite small. These plots
show that while it may be slightly better to use πEDF when the service times are short (with
high probability), πg and πG are both good options as well.

In Figure 4(c), we have heterogeneous PMFs and stepwise value decay, while in
Figure 4(d) we have heterogeneous PMFs and heterogeneous value decay. Note that in
these cases, the performance guarantee for πEDF does not apply because the service times
are not identically distributed. We see that πEDF performs quite poorly and the value
associated with πEDF does not increase as J is increased. This demonstrates that with het-
erogeneous PMFs, πEDF does not handle congestion well. With heterogeneous PMFs, there
are some jobs which will complete quickly, but many of the jobs will not. The results in

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 19

(a) (b)

(c) (d)

Figure 4. Performance of πG, πg, and πEDF when a = 1 and (b, c) is random. (a) Stepwise
decay, Geometric PMFs, (b) Heterogeneous decay, Geometric PMFs, (c) Stepwise decay,
Heterogeneous PMFs, (d) Heterogeneous decay, Heterogeneous PMFs.
Note. We compare the performance of the heuristics when N = 5 and T = 50 while varying J .

Figure 4 demonstrate that the EDF policy is sensitive to the underlying service time dis-
tributions: πEDF will perform well when there is a high probability that the jobs will each
complete in a single time slot, but otherwise πEDF will perform quite poorly. In contrast,
both πg and πG perform well in the heterogeneous environments and are able to gain a
greater reward as J increases. In Figure 4(c), we see that πg and πG perform nearly iden-
tically until J > 30. For J > 30, πg performs slightly better than πG. In Figure 4(d), this
dichotomy becomes evident when J > 10. This suggests that though πg and πG perform
similarly for small problems, πg will be better when the system is more congested. Further-
more, the benefit of πg over πG is more evident when there is greater heterogeneity amongst
the jobs.

Figure 5 (the case in which the parameter a is randomly chosen for each job rather than
being fixed), shows many of the same trends as Figure 4, but gives us additional insights
into how heterogeneity in service times affects each heuristic policy. First note that each
subfigure in Figure 5 shows that πg outperforms πG and that the difference in performance
increases as J increases. This demonstrates that for large numbers of jobs πg is superior
to πG. In Figure 4(a) and 4(b), we saw that πEDF gained more rewards as J increased.
However, in Figures 5(a) and 5(b), we see that the value associated with πEDF saturates
as J increases, while the values associated with πG and πg do not. This supports the idea
that πEDF is not nearly as robust as πg and πG. Although πEDF can perform well, it may
be more prudent to apply πg or πG. Furthermore, for larger problems it may be best to use
πg rather than πG.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

20 N. Master, C.W. Chan, and N. Bambos

(a) (b)

(c) (d)

Figure 5. Performance of πG, πg, and πEDF when (a, b, c) is random. (a) Stepwise decay,
Geometric PMFs, (b) Heterogeneous decay, Geometric PMFs, (c) Stepwise decay, Hetero-
geneous PMFs, (d) Heterogeneous decay, Heterogeneous PMFs.
Note. We compare the performance of the heuristics when N = 5 and T = 50 while varying J .

4.1.3. Rules-of-Thumb. Our numerical experiments and theoretical results have
revealed several insights into the general problem of non-preemptive scheduling of jobs
with decaying value. We summarize these insights with the following rules-of-thumb:

• The rate greedy policy has the best performance guarantee. The greedy policy has
a better performance guarantee than EDF. In this sense, rate greedy policy is the
most robust to changes in the underlying system parameters.

• For problems with relatively short time horizons, the greedy policy performs
best.

• Despite the seemingly weak performance guarantee, EDF performs well under long
time horizons when there is a high probability that the service times are short. In
these situations, the rate greedy and greedy policies also perform very well, but EDF
can perform even better.

• When the service times are large with high probability and/or if the reward decay
function cannot be characterized by deadlines, EDF performs poorly. In these cases,
it is better to use one of the greedy policies.

• For problems with long time horizons and heterogenous service time distributions,
the rate greedy policy performs slightly better than the greedy policy. This difference
is more pronounced when the reward decay functions are also heterogeneous.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 21

4.2. Patient Scheduling in a Disaster Scenario

We now consider a patient scheduling problem where patients are “jobs” and operating
rooms in a surgical center are “servers”. We are concerned with the 24 h period immedi-
ately after a mass casualty incident as studies have shown that this is a critical period for
hospitals responding to mass casualty incidents (e.g., Aylwin et al. [3], Turégano-Fuentes
et al. [41,42]). The random service times correspond to uncertainty in procedure dura-
tions and the internal value decay corresponds to the deterioration of patient health due to
scheduling delays. For example, recall the “health score” used by Sacco et al. [37] to model
the decline in patient health as procedures are delayed. We consider a clearing system, which
is often used to model mass casualty incidents (e.g., Argon, Ziya, and Winslow [2] and Chan
et al. [8]). Our model does not explicitly consider the details of a surgical operation (e.g., the
pre-operative and post-operative phases), but does address the key dilemma of scheduling
and prioritizing patients when there is a scarcity of operating rooms. Sub-optimal operating
room schedules can lead to delays even in typical circumstances (Wachtel and Dexter [44])
and a spike in demand due to a disaster will only exacerbate this issue, so our model is able
to capture a primary operational concern.

For the service time distributions, we use lognormal distributions. Strum, May, and Var-
gas [40] showed that lognormal distributions model surgical procedure times better than
normal distributions. Furthermore, Spangler et al. [39] demonstrated how to fit the param-
eters of a lognormal distribution to surgical data from hospitals. The use of lognormal
distribution in modeling surgical procedure times is now quite common (e.g., Mihaylova
et al. [32]). We have elected to calibrate our simulation according to surgical procedures
because these types of procedures are common when managing mass casualty incidents, for
example, during civilian terrorist attacks (Frykberg [17]) and in the aftermath of military
combat (King and Jatoi [24]).

Because we have a discrete-time model, we need to discretize the lognormal density.
Given parameters �, m, s, and a standard normal random variable Z, σ is lognormal if

σ = � + em+sZ . (9)

We will assume that σ is measured in minutes. Given a time discretization δ and a number
of time slots T , we can compute a PMF pln(·) which approximates the density of σ. See the
appendix for details.

For each patient, we fix � = 60, randomly select m from a uniform distribution on
[1.0, 4.0], and randomly select s from a uniform distribution on [1.0, 1.25]. With these param-
eters, expected procedure times are on the order of 2–3 h, and the coefficient of variation
for each procedure is between 0.1 and 1.5. This range for the coefficients of variation is
motivated by Spangler et al. [39] who showed that when fitting lognormal random variables
to surgical procedure times, nearly procedures studied had coefficients of variation less than
1.5. While the study by Spangler et al. [39] was not motivated by disaster scenarios, we note
that there is an inherent difficulty in fitting statistical models to the types of procedures
which arise during mass casualty incidents. Frykberg [17] points out that the procedures
required during mass casualty incidents are characterized by “complex and difficult wound-
ing patterns that are not typically seen in routine practice” and that the rare nature of these
procedures makes controlled statistical analysis difficult to perform. Consequently, while the
selected parameter ranges are reasonable and somewhat plausible, one would need to make
more judicious parameter choices in order to model specific scenarios. Incorporating expert
knowledge can be useful when a data-driven approach is not feasible and as mentioned
before, one could apply the Delphi method (Linstone et al. [25]) to build models for specific
disasters and injury types.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

22 N. Master, C.W. Chan, and N. Bambos

We consider a 24 h period discretized into 10 min time slots, so that δ = 10 and T = 144.
We assume there are six operating rooms (the average number of operating rooms in a
hospital in the United States according to Gallup [18]) and that the medical resources
are sufficient to complete operations at a constant rate. We assume that the time between
procedures is negligible. If we assume that preparations such as the application of anesthesia
are included in the service time distribution (as is done in Spangler et al. [39]), then this is
a fairly benign assumption.

Motivated by Sacco et al. [37], we consider continuous piecewise linear value decay.
Recall that in Sacco et al. [37], a panel of expert physicians developed a deterministic
mechanism for scoring how patients’ health decays over time. As shown earlier in Figure 1,
the health scores decay continuously and in a piecewise linear fashion. Maximizing patient
health is one way of optimizing quality of care, so our notion of value is analogous to the
health score from Sacco et al. [37]. Mathematically, we can write such a value decay function
as follows. The interval [0, T] is divided into I disjoint intervals such that

vpl(t) =
I−1∑
i=0

(ait + bi)1{ti≤t≤ti+1},

where {ai}I−1
i=0 are non-positive constants and {bi}I−1

i=0 are non-negative constants. We
additionally require

aiti+1 + bi = ai+1ti+1 + bi+t,

so that vpl(·) is continuous. For each patient, we randomly select {ai}I−1
i=0 and {bi}I−1

i=0 with
an algorithm detailed in the appendix. An example of a continuous piecewise linear value
decay function is shown in Figure 6.

We vary the number of patients J ∈ {50, 75, 100, . . . , 200} and compare the performance
of πG, πg, and πEDF. Depending on the type of incident, the number of patients could
range from tens (e.g., Aylwin et al. [3], Turégano-Fuentes et al. [41,42]) to hundreds (e.g.,
Cushman, Pachter, and Beaton [11]), so this is a reasonable range for J . For each J , we

Figure 6. A plot of a piecewise linear value decay function.
Note. The patient has a health score (i.e., internal value) that is initially positive and less than 1. As the

patient awaits treatment, this health score decreases in a continuous piecewise linear fashion. This kind of

health decay model has been used in the medical literature, for example, in [37].

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 23

(a) (b)

Figure 7. Performance of πG, πg, and πEDF in a patient scheduling scenario.
Note. We compare the performance of the heuristics when there are N = 6 operating rooms and T = 144

time slots of δ = 10 min duration (i.e., 24 h divided into 10 min time slots). The patients have piecewise

linear value decay and discretized lognormal service times. The parameters which characterize each patient

are chosen randomly. We increase the number of patients J ∈ {50, 75, 100, . . . , 200} and for each J we report

the average of 1, 000 simulations. In addition to reporting V π
0 (s0), we also report the fraction of patients

who are served by their final deadline.

repeat the simulation 1, 000 times and report the average. In addition to reporting V π
0 (s0),

we also report the fraction of patients who are served by their final deadline. The results
are shown in Figure 7.

For πG and πg, we see some expected trends: as J increases, both policies increase in
value, while the fraction of patients served gradually decreases. As with our other “large-
scale” numerical experiments, πg performs slightly better than πG. The results for πEDF

are more nuanced. For J ≤ 75, the value associated with πEDF is less than that of πG and
πg, but only slightly. However, for J ≤ 75, πEDF serves more than 95% all patients. As a
result, for J ≤ 75, πEDF is better at preventing mortality than πG or πg though potentially
at the cost of lower quality of care. While this is a positive result, we see a decrease in
performance when J increases beyond 100. For J ≥ 100, the value of πEDF and the fraction
of patients served decreases substantially. While πG and πg decay in performance gradually
as J increases, πEDF exhibits a phase transition from “good” performance to “poor” per-
formance. Although the “critical point” of this phase transition is difficult to know a priori,
this behavior can qualitatively be explained by the combination of piecewise linear value
decay and lognormal service distributions. Because the patient characteristics are randomly
generated, as J increases, it becomes more likely that patients with early deadlines have
long service times and low health values. This is due to the fact that the randomly gener-
ated piecewise linear value functions can decay quickly coupled with the fact that lognormal
distributions are heavy-tailed. These patients occupy the operating rooms and block other
patients from being scheduled. This causes many patients to not be served and for an overall
low total value.

These results echo the results that we saw in our previous numerical experiments.
Both πG and πg perform well and are reasonably robust. In contrast, πEDF can perform
well sometimes but is not robust. In general, one will not know a priori where πEDF will
experience its phase transition from good to bad performance. Because of this unpredictable
behavior, for critical applications like patient scheduling it is probably best to avoid πEDF.
On the other hand, πG and πg are both good choices with πg being slightly better in
large-scale scenarios.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

24 N. Master, C.W. Chan, and N. Bambos

5. CONCLUSION

We have presented a novel discrete-time model for non-preemptive scheduling. In this model,
jobs have random service times and the value of each job decays deterministically. The
jobs are dynamically scheduled on identical servers, which each have unit service rate. We
formulated the problem in a dynamic programming framework and showed that while an
optimal scheduling policy exists, finding it is computationally intractable. This leads us to
consider three low-complexity heuristics: a greedy policy, a rate greedy policy and an EDF
policy. In addition to providing performance guarantees (some of which are sharp), we have
conducted extensive numerical experiments to compare the policies.

We have demonstrated that, in general, it is best to use the rate greedy policy; the
greedy policy performs nearly as well as the rate greedy policy; and, EDF typically does
not perform well at all. However, there are some scenarios in which EDF performs better
than either greedy policy. Specifically, EDF performs better when the time horizon is long
and all of the jobs have a high probability of completing service in a short amount of
time. In all other situations which we considered, EDF performs poorly. In particular, our
simulations suggest that in patient scheduling scenarios, it is best to use the rate greedy
policy. We find that it would be reasonable to use the greedy policy, but EDF likely should
be avoided.

Our insights also point us to other research topics of potential interest. For example,
although the heuristics considered in this work can be applied even when there are job
arrivals, our performance guarantees would no longer be valid. Incorporating job arrivals
would be a slight modeling extension but it would drastically change our analysis. In par-
ticular, our proofs apply backwards induction to the number of jobs in the system. This
requires that the number of jobs in the system is non-increasing which would clearly be
violated if there were arrivals. We could also consider a model in which job value decays
stochastically. This would be useful for situations in which our understanding of the internal
job dynamics is imperfect so we only have a distribution on the value dynamics. In addi-
tion to considering modeling extensions, within this same model we could consider many
other myopic heuristics which could be relevant to other applications. As noted above, the
proofs can easily be adapted and extended to other myopic scheduling policies, which may
be useful for other applications.

Acknowledgments

Neal Master is funded by Stanford University through a Stanford Graduate Fellowship (SGF) in Science
& Engineering. The work by Carri W. Chan was supported in part by NSF CAREER grant number
CMMI-1350059.

References

1. Argon, N.T., Ziya, S., & Righter, R. (2008). Scheduling impatient jobs in a clearing system with insights
on patient triage in mass casualty incidents. Probability in the Engineering and Informational Sciences
22(03): 301–332.

2. Argon, N.T., Ziya, S., & Winslow, J.E. (2011). Triage in the aftermath of mass-casualty incidents.
Hoboken, NJ: Wiley Encyclopedia of Operations Research and Management Science.

3. Aylwin, C.J., König, T.C., Brennan, N.W., Shirley, P.J., Davies, G., Walsh, M.S., & Brohi, K. (2007).
Reduction in critical mortality in urban mass casualty incidents: Analysis of triage, surge, and resource
use after the london bombings on July 7, 2005. The Lancet 368(9554): 2219–2225.

4. Bertsekas, D.P. (2012). Dynamic programming and optimal control vol. II: Approximate dynamic
programming. Belmont, MA: Athena Scientific.

5. Buist, M.D., Moore, G.E., Bernard, S.A., Waxman, B.P., Anderson, J.N., & Nguyen, T.V. (2002). Effects
of a medical emergency team on reduction of incidence of and mortality from unexpected cardiac arrests
in hospital: preliminary study. British Medical Journal 324: 7334.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 25

6. Chan, C.W. & Farias, V.F. (2009). Stochastic depletion problems: Effective myopic policies for a class

of dynamic optimization problems. Mathematics of Operations Research 34(2): 333–350.
7. Chan, C.W., Farias, V.F., & Escobar, G. (2015). The impact of delays on service times in the intensive

care unit. Columbia Business School, Working Paper.
8. Chan, C.W., Green, L.V., Lu, Y., Leahy, N., & Yurt, R. (2013). Prioritizing burn-injured patients during

a disaster. Manufacturing & Service Operations Management 15(2): 170–190.
9. Chan, P.S., Krumholz, H.M., Nichol, G., Nallamothu, B.K., & the American Heart Association National

Registry of Cardiopulmonary Resuscitation Investigators. (2008). Delayed time to defibrillation after
in-hospital cardiac arrest. The New England Journal of Medicine 358: 9–17.

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2009). Introduction to algorithms. Cambridge,

MA: MIT Press.
11. Cushman, J.G., Pachter, H.L., & Beaton, H.L. (2003). Two New York city hospitals surgical response to

the September 11, 2001, terrorist attack in New York city. Journal of Trauma and Acute Care Surgery
54(1): 147–155.

12. Dalal, A.C. & Jordan, S. (2005). Optimal scheduling in a queue with differentiated impatient users.
Performance Evaluation 59(1): 73–84.

13. Dewan, S. & Mendelson, H. (1990). User delay costs and internal pricing for a service facility.
Management Science 36(12): 1502–1517.

14. Dua, A. & Bambos, N. (2007). Downlink wireless packet scheduling with deadlines. Mobile Computing,
IEEE Transactions on 6(12): 1410–1425.

15. Dua, A., Chan, C.W., Bambos, N., & Apostolopoulos, J. (2010). Channel, deadline, and distortion (CD
2) aware scheduling for video streams over wireless. IEEE Transactions on Wireless Communications
9(3): 1001–1011.

16. Federgruen, A. & Wang, M. (2015). Inventory models with shelf-age and delay-dependent inventory
costs. Operations Research 63(3): 701–715.

17. Frykberg, E.R. (2004). Principles of mass casualty management following terrorist disasters. Annals of
Surgery 239(3): 319.

18. Gallup, Inc. (2001). Operating room directors study. Conducted for Surgical Information Systems.
19. Gamarnik, D. (2010). Fluid models of queueing networks. Hoboken, NJ: Wiley Encyclopedia of

Operations Research and Management Science.
20. Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-armed bandit allocation indices. Chichester, UK:

John Wiley & Sons.
21. Iserson, K.V. & Moskop, J.C. (2007). Triage in medicine, part I: Concept, history, and types. Annals

of Emergency Medicine 49(3): 275–281.
22. Jakeman, C.M. (1994). Scheduling needs of the food processing industry. Food Research International

27(2): 117–120.
23. Kim, J.-H. & Chwa, K.-Y. (2004). Scheduling broadcasts with deadlines. Theoretical Computer Science

325(3): 479–488.
24. King, B. & Jatoi, I. (2005). The mobile army surgical hospital (mash): A military and surgical legacy.

Journal of the National Medical Association 97(5): 648.
25. Linstone, H.A. & Turoff, M. (1975). The Delphi method: Techniques and applications, vol. 29; Reading,

MA: Addison-Wesley.
26. Luca, G.D., Suryapranata, H., Ottervanger, J.P., & Antman, E.M. (2004). Time delay to treatment

and mortality in primary angioplasty for acute myocardial infarction: Every minute of delay counts.
Circulation 109: 1223–1225.

27. Mandelbaum, A. & Stolyar, A.L. (2004). Scheduling flexible servers with convex delay costs: Heavy-
traffic optimality of the generalized cμ-rule. Operations Research 52(6): 836–855.

28. Martello, S. & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. New
York, NY: John Wiley & Sons, Inc.

29. Master, N. & Bambos, N. (2014). Power control for wireless streaming with HOL packet deadlines. In
2014 IEEE International Conference on Communications (ICC). IEEE, pp. 2263–2269.

30. Master, N. & Bambos, N. (2015). Service rate control for jobs with decaying value. In 2015 American
Control Conference (ACC). IEEE, pp. 3255–3260.

31. McQuillan, P., Pilkington, S., Allan, A., Taylor, B., Short, A., Morgan, G., Nielsen, M., Barrett, D., &

Smith, G. (1998). Confidential inquiry into quality of care before admission to intensive care. British
Medical Journal 316: 1853–1858.

32. Mihaylova, B., Briggs, A., O’Hagan, A., & Thompson, S.G. (2011). Review of statistical methods for
analysing healthcare resources and costs. Health Economics 20(8): 897–916.

33. Mills, A.F., Argon, N.T., & Ziya, S. (2013). Resource-based patient prioritization in mass-casualty

incidents. Manufacturing & Service Operations Management 15(3): 361–377.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

26 N. Master, C.W. Chan, and N. Bambos

34. Moskop, J.C. & Iserson, K.V. (2007). Triage in medicine, part II: Underlying values and principles.

Annals of Emergency Medicine 49(3): 282–287.
35. Patrick, J., Puterman, M.L., & Queyranne, M. (2008). Dynamic multipriority patient scheduling for a

diagnostic resource. Operations Research 56(6): 1507–1525.
36. Poon, E.G., Gandhi, T.K., Sequist, T.D., Murff, H.J., Karson, A.S., & Bates, D.W. (2004). ‘I wish I

had seen this test result earlier!’: Dissatisfaction with test result management systems in primary care.
Archives of Internal Medicine 164: 2223–2228.

37. Sacco, W.J., Navin, D.M., Fiedler, K.E., Waddell, I.I., Robert, K., Long, W.B., & Buckman, R.F.
(2005). Precise formulation and evidence-based application of resource-constrained triage. Academic
Emergency Medicine 12(8): 759–770.

38. Sharek, P.J., Parast, L.M., Leong, K., Coombs, J., Earnestand, K., & Sullivan, J., Frankel, L.R., &
Roth, S.J. (2007). Effect of a rapid response team on hospital-wide mortality and code rates outside
the ICU in a children’s hospital. Journal of the American Medical Association 298: 2267–2274.

39. Spangler, W.E., Strum, D.P., Vargas, L.G., & May, J.H. (2004). Estimating procedure times for surgeries
by determining location parameters for the lognormal model. Health care management science 7(2):
97–104.

40. Strum, D.P., May, J.H., & Vargas, L.G. (2000). Modeling the uncertainty of surgical procedure times:
Comparison of log-normal and normal models. Anesthesiology 92(4): 1160–1167.

41. Turégano-Fuentes, F., Caba-Doussoux, P., Jover-Navalón, J.M., Mart́ın-Pérez, E., Fernández-Luengas,
D., Diez-Valladares, L., Perez-Diaz, D., Yuste-Garcia, P., Guadalajara Labajo, H., Rios-Blanco, R.,
Hernando-Trancho, F., Garćıa-Moreno Nisa, F., Sanz-Sánchez, M., Garćıa-Fuentes, C., Mart́ınez-Virto,
A., León-Baltasar, J. L., Vazquez-Estévez, J. (2008). Injury patterns from major urban terrorist
bombings in trains: The madrid experience. World Journal of Surgery 32(6): 1168–1175.

42. Turégano-Fuentes, F., Pérez-Dı́az, D., Sanz-Sánchez, M., & Alonso, J.O. (2008). Overall assessment of
the response to terrorist bombings in trains, madrid, 11 March 2004. European Journal of Trauma and
Emergency Surgery 34(5): 433–441.

43. Van Mieghem, J.A. (2003). Commissioned paper: Capacity management, investment, and hedging:
Review and recent developments. Manufacturing & Service Operations Management 5(4): 269–302.

44. Wachtel, R.E. & Dexter, F. (2009). Reducing tardiness from scheduled start times by making
adjustments to the operating room schedule. Anesthesia & Analgesia 108(6): 1902–1909.

45. Walrand, J. (1988). An introduction to queuing networks. Englewood Cliffs, NJ: Prentice–Hall, Inc.
46. Weber, R.R. & Weiss, G. (1990). On an index policy for restless bandits. Journal of Applied Probability

27: 637–648.
47. Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal of Applied

Probability 25: 287–298.
48. Xie, M. & Lai, C.D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped

failure rate function. Reliability Engineering & System Safety 52(1): 87–93.
49. Zheng, F., Fung, S., P.Y., Chan, W.-T., Chin, F.Y.L., Poon, C.K., & Wong, P.W.H. (2006). Improved

on-line broadcast scheduling with deadlines. In Computing and Combinatorics Conf. Springer, 320–329.

APPENDIX A: PRELIMINARY MATHEMATICAL DEFINITIONS AND RESULTS

A.1. Definitions

In addition to the notation in Section 2.1, we introduce the following notation.
Given a random variable X the conditional value function for a policy π is

V π
t (s|X) = E

[∞∑
τ=t

Rτ (sτ , πτ (sτ))

∣∣∣∣∣ X

]
.

If we want to condition on an event E, take X = 1{E} and let V π
t (s|E) = V π

t (s|X)1{X=1}.
If s = (b(t), p(t)), then we let b(s) = b(t) and p(s) = p(t).

A.2. Proof of Theorem 1

If for some finite T we have b(T) = (�,�, . . . ,�), then p(T) = (0, 0, . . . , 0) and sT = (b(T), p(T)) is a no

cost/reward trapping state. If we fix any non-idling policy, because E[σj] < ∞ for all j ∈ J , there is an
associated finite stopping time T at which b(T) = (�,�, . . .�). Therefore, we have a stochastic shortest
path problem with destination state sT . The system will reach sT in a finite amount of time and so the

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 27

given policy is proper. This guarantees the existence of an optimal policy which is obtainable via policy

iteration [4, Proposition 3.2.2].

A.3. Proof of Theorem 2

Consider a particular instance of the problem in which σj is known with probability 1 and vj(t) = cj1{t≤K}
for some fixed constants {cj} and K. In this case, the job service times are essentially deterministic and the
jobs have a shared deadline. This is a 0/1 Multiple Knapsack Problem in which there are J objects with
sizes {σj} and values {cj} which need to be placed in N knapsacks each with capacity K. This particular
instance of the problem is NP-hard (see [28] and references therein), so the problem of computing an optimal
policy is NP-hard.

APPENDIX B: SOME USEFUL LEMMAS

We will now prove a few lemmas, which will be useful when proving the main results of the papers.
Intuitively, if there are more jobs in the system, then there are more scheduling choices available and an

optimal policy will be able to accrue a greater reward. This intuition is formalized in the following lemma.

Lemma 1 (Monotonicity in Jobs): Consider states s and s′ which are related by the three following
conditions:

b(s′)j �∈ {⊥,�} =⇒ b(s′)j = b(s)j ; b(s′)j = ⊥ =⇒ b(s)j = ⊥; p(s′) = p(s).

Then V ∗
t (s) ≥ V ∗

t (s′).

Proof: Consider a coupling of two systems each starting at s and s′ such that they see the same realiza-
tions of service times {σj}j∈J . Let Js′ = {j ∈ J : b(s′)j �= �} and Js = {j ∈ J : b(s)j �= �}. Note that
Js′ ⊆ Js.

Let π∗ be an optimal policy. We assume that π∗ is applied to the s′-system. Consider the following
suboptimal policy π̃, which is used for the s-system: π̃ takes the same actions as π∗ until all the jobs j ∈ Js′
are completed and then completes jobs j ∈ Js \ Js′ in sequential order. Let Tj be the completion time of
job j in the s-system when using policy π̃. Let T ∗

j be the completion time of job j in the s′-system using
the policy π∗. The coupling ensures that Tj = T ∗

j for all j ∈ Js′ .

V π̃
t (s|σ1, . . . , σJ) =

∑
j∈Js

vj(Tj) =
∑

j∈Js′
vj(Tj) +

∑
j∈Js\Js′

vj(Tj) =
∑

j∈Js′
vj(T

∗
j) +

∑
j∈Js\Js′

vj(Tj)

≥
∑

j∈Js′
vj(T

∗
j) = V ∗

t (s′|σ1, . . . , σJ).

Taking the expectation gives us that V π̃
t (s) ≥ V ∗

t (s′). The optimality of V ∗ tells us that V ∗
t (s) ≥ V π̃

t (s) so
we can conclude that V ∗

t (s) ≥ V ∗
t (s′). �

Because the internal value of the jobs decays over time, one would expect an optimal policy to be
non-idling. Our next lemma shows that it is sufficient to focus our attention on non-idling policies. Note
that because of Lemma 2, we will assume throughout that any optimal policy is non-idling.

Lemma 2 (Non-idling): Suppose that in state st, there are M = |{n ∈ N : p(s)n = 0}| free machines and
that the number of jobs remaining to be processed is K = |{j ∈ J : b(s)j = ⊥}|. Then there exists an
optimal policy π∗ such that π∗

t (s) schedules min {K, M} jobs.

Proof: Let A = π∗
t (st). We show that nothing can be gained by having |A| < min {K, M}. Suppose under

π∗ that a processor remains idle even though there is an available job. Consider another policy π′ which

schedules identically to π∗ except it begins processing all jobs on the idling machine one time slot earlier.
Since vj(·) is non-increasing, V π′

t (s) ≥ V ∗
t (s). Therefore, π′ is also optimal and does not idle. �

Consider a “virtual machine” which is able to complete jobs instantaneously. Intuitively, such a virtual
machine would allow for a greater total expected reward. Our next lemma justifies this intuition.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

28 N. Master, C.W. Chan, and N. Bambos

Lemma 3 (Virtual Machine Rewards): Fix a state s and a job i such that b(s)i = ⊥. Let s′i = S′(s, i) denote

the resulting state if job i were processed without occupying a processor. In notation,

b(s)i = ⊥, b(s′i)i = �, p(s) = p(s′i), b(s′i)j = b(s)j ∀ j ∈ J \ {i} .

Then V ∗
t (s) ≤ E[vj(t + σj)] + V ∗

t (S′(s, j)).

Proof: Consider two systems starting in states s and S′(s, j), respectively. We couple the systems so
that they see the same realizations of the services times. We assume that the s-system evolves under

an optimal policy π∗. Let
{

t∗j
}

be the random times are which jobs j ∈ Js = {j ∈ J : b(s)j = ⊥} begin

processing. Let π′ be the policy for the s′i-system. Let
{

t′j
}

be the random times at which job j ∈ J ′ ={
j ∈ J : b(s′i)j = ⊥}

. We assume that π′ mimics π∗ as follows. Policy π′ takes the same actions as π∗ for
all jobs j ∈ J ′ and when π∗ would be processing job i, π′ idles. Therefore, t′j = t∗j for all j ∈ J ′:

V ∗
t (s) = E

⎡
⎣ ∑

j∈Js

vj(t
∗
j + σj)

⎤
⎦ = E

⎡
⎣ ∑

j∈Js\{i}
vj(t

∗
j + σj)

⎤
⎦ + E[vi(t

∗
i + σi)]

= E

⎡
⎣ ∑

j∈J ′
vj(t

′
j + σj)

⎤
⎦ + E[vi(t

∗
i + σi)] = V π′

t (s′i) + E[vi(t
∗
i + σi)] ≤ V ∗

t (s′i) + E[vi(t + σi)].

The final inequality follows from the optimality of V ∗
t (s′i) and the non-decreasing nature of vi(·). �

APPENDIX C: PROOF OF THEOREM 4

The proof of the performance bound for πg is slightly more complicated than the proofs required for πG

and πEDF. However, the proofs are structurally similar and so the later appendices will modify the proof
presented here. We first need to prove the following lemma, which shows how sub-optimal scheduling of
“replica” jobs can affect the performance of the system.

Lemma 4: Consider an augmented set of jobs J̃ = J ∪ {
g̃, ĩ

}
where g̃ is a replica of some job g and ĩ is a

replica of some job i. By replica, we mean that σg̃
d
= σg and σĩ

d
= σi but that vg̃(t) = vĩ(t) = 0.

Consider a state st = s at time t. Let Js = {j ∈ J : b(s)j �= �} and fix

g ∈ argmax
j∈Js

E[vj(t + σj)]

E[σj]
.

Assume that for some f ∈ N , p(s)f = 0 (i.e., processor f is free).
Denote by sg and si two states, which are related to state s in the following manner. The two states

are identical to state s except on machine f . In state sg, machine f is occupied by the replica g̃ so that
p(sg)f = g̃. Similarly for state si, p(si)f = ĩ. Then

V ∗
t (si) ≤

(
1 +

E[maxj∈Js σj]

E[σg]
− E[σi]

E[σg]

)
E[vg(t + σg)] + V ∗

t (sg).

Note that because the replica jobs do not generate any rewards, the augmented system can be optimally
controlled by a policy that is essentially the same as an optimal policy for the original system. If we take
any optimal policy for the original system, we can create an optimal policy for the augmented system as
follows: take the same actions as the given optimal policy until all jobs in J have completed; then complete
the replica jobs. Since the replica jobs have no reward, the optimal value is the same in both systems. As a
result we will abuse notation and use V ∗

t (·) as the optimal value function for all systems in Lemma 4.

Proof of Lemma 4.: We begin by coupling the systems such that they see the same realizations for service
times. Consider a policy π′

g for the sg-system which attempts to mimic the actions taken by an optimal
policy π∗

i on the si-system. There are two possible cases, σĩ ≥ σg̃ and σĩ < σg̃.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 29

• Case 1, σĩ ≥ σg̃: After job g̃ has completed, the π′
g policy idles on machine f until t + σĩ (time which

machine f is free in the si-system). At this point, the sg-system is “synced” with the si-system
and it proceeds with executing the optimal policy for the si system, π∗

i .
If T ∗

j (si) is the completion time of job j in the si-system under optimal policy π∗
i , and Tj is

the completion time of job j in the sg-system under the π′
g , then Tj = T ∗

j (si) for all j ∈ Js.

V ∗
t (si|σĩ ≥ σg̃) = E

⎡
⎣ ∑

j∈Js

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ ≥ σg̃

⎤
⎦ = E

⎡
⎣ ∑

j∈Js

vj(Tj)

∣∣∣∣∣∣ σĩ ≥ σg̃

⎤
⎦ = V

π′
g

t (sg |σĩ ≥ σg̃)

≤ V ∗
t (sg |σĩ ≥ σg̃)

≤ V ∗
t (sg |σĩ ≥ σg̃) +

(
1 +

E[maxj∈Js σj]

E[σg]
− E[σi]

E[σg]

)
E[vg(t + σg)]. (C.1)

The inequalities come from the construction of π′
g and the fact that the added term is non-negative.

• Case 2, σĩ < σg̃: In this case, π′
g cannot exactly mimic π∗

i policy because machine f will continue

to be busy after ĩ completes in the si-system. While machine f is processing g̃ in the sg-system,
machine f will process jobs Jsim in the si-system. The π′

g policy will “simulate” the processing of
the jobs in Jsim while they are actually being processed in the si-system. After job g̃ is completed in
the sg-system, π′

g will continue to mimic π∗
i as if the simulated jobs were actually completed. When

π∗
i has completed all jobs in the si-system, π′

g will then complete jobs in Jsim in the sg-system in
some arbitrary order.

If T ∗
j (si) is the completion time of job j in the si-system under optimal policy, π∗

i and Tj is the
completion time of job j in the sg-system under the π′

g policy, then Tj = T ∗
j (si) for all j ∈ J \ Jsim.

V ∗
t (si|σĩ < σg̃) = E

⎡
⎣ ∑

j∈Js

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

= E

⎡
⎣ ∑

j∈Jsim

vj(T
∗
j (si)) +

∑
j �∈Jsim

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

≤ E

⎡
⎣ ∑

j∈Jsim

vj(T
∗
j (si)) +

∑
j �∈Jsim

vj(T
∗
j (si)) +

∑
j∈Jsim

vj(Tj)

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

= E

⎡
⎣ ∑

j∈Jsim

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ + V

π′
g

t (sg |σĩ < σg̃)

≤ E

⎡
⎣ ∑

j∈Jsim

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ + V ∗

t (sg|σĩ < σg̃).

(C.2)

The first equality follows by definition. The second equality follows because Js = Jsim ∪ J c
sim.

The inequality comes from the non-negativity of vj(·). The final two equalities follow from the
construction of π′

g .
Continuing, note that at the earliest, job j can be completed at t + σj so T ∗

j (si) ≥ t + σj .
Since vj(·) is non-decreasing, we have the following:

V ∗
t (si|σĩ < σg̃) ≤ E

⎡
⎣ ∑

j∈Jsim

vj(T
∗
j (si))

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ + V ∗

t (sg |σĩ < σg̃)

≤ E

⎡
⎣ ∑

j∈Jsim

vj(t + σj)

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ + V ∗

t (sg |σĩ < σg̃).

(C.3)

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

30 N. Master, C.W. Chan, and N. Bambos

Now focus on the first term. Since Jsim depends on the realizations of σĩ and σg̃ , it is a random

set upon which we can condition.

E

⎡
⎣ ∑

j∈Jsim

vj(t + σj)

∣∣∣∣∣∣ σĩ < σg̃ ,Jsim

⎤
⎦ = E

⎡
⎣ ∑

j∈Jsim

E[σj]
vj(t + σj)

E[σj]

∣∣∣∣∣∣ σĩ < σg̃ ,Jsim

⎤
⎦

=
∑

j∈Jsim

E[σj]
E[vj(t + σj)|σĩ < σg̃,Jsim]

E[σj]

≤
∑

j∈Jsim

E[σj]
E[vg(t + σg)]

E[σg]
=

E[vg(t + σg)]

E[σg]

∑
j∈Jsim

E[σj].

The first equality is valid because σj ≥ 1 and the second equality is an application of the
linearity of conditional expectation. The final inequality is due to the fact that the index g is
chosen independently of σĩ, σg̃ , and Jsim.

The maximum amount of time machine f will idle in the sg-system will be σg̃ − σĩ + σmax.
Indeed, π′

g will need to simulate jobs for at least σg̃ − σĩ and one job may begin simulation just
before t + σg̃ . Applying this bound and taking the expectation of Jsim gives the following:

E

⎡
⎣ ∑

j∈Jsim

vj(t + σj)

∣∣∣∣∣∣ σĩ < σg̃ ,

⎤
⎦ ≤ E[vg(t + σj)]

E[σg]
E

⎡
⎣ ∑

j∈Jsim

E[σj]

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

≤ E[vg(t + σj)]

E[σg]
E[σg̃ − σĩ + σmax|σĩ < σg̃].

So we have that

V ∗
t (si|σĩ < σg̃) ≤ E[vg(t + σj)]

E[σg]
E[σg̃ − σĩ + σmax|σĩ < σg̃] + V ∗

t (sg|σĩ < σg̃). (C.4)

Now combine (C.1) and (C.4) and take the expectation over σĩ ≥ σg̃ and σĩ < σg̃. Noting that σĩ
d
= σi

and σg̃
d
= σg gives us the result:

V ∗
t (si) ≤ E[vg(t + σg)]

E[σg]
(E[σg] − E[σi] + E[σmax]) + V ∗

t (sg)

= E[vg(t + σg)]

(
1 +

E[σmax]

E[σg]
− E[σi]

E[σg]

)
+ V ∗

t (sg).

�

Now we can prove the performance guarantee in Theorem 4. One of the key ideas of the proof is as
follows: we will add replica jobs as in Lemma 4, apply the monotonicity result in Lemma 1, and make use of
the virtual machines in Lemma 3 to complete the replicas. Because the replica jobs have no value, “adding
and subtracting” these replicas does not impact the total value of system.

Proof of Theorem 4: The proof proceeds by induction on the number of jobs remaining to be processed,∑
j∈J 1{bj(t)=⊥}. The claim is trivially true if there is only one job remaining to be processed because πg

and any (non-idling) π∗ will coincide. Now consider a state s such that
∑

j 1{b(s)j=⊥} = K, and assume

that the claim is true for all states s′ with
∑

j 1{b(s′)j=⊥} < K.

Now if π∗
t (s) = πg

t (s) the then the next state encountered and rewards generated in both systems are
identically distributed so that the induction hypothesis immediately yields the result for state s.

Consider the case where π∗
t (s) �= πg

t (s). Let A∗ and Ag denote the optimal and myopic scheduling
policy, respectively, given state s in time slot t. Denote by J∗ and Jg the corresponding sets of jobs
processed by the optimal and myopic policies in state s at time t. We suppress the dependence on s and t

for notational compactness. Recall that by Lemma 2, |J∗| = |Jg |. Furthermore, the free processors which are
being assigned jobs define a bijection between J∗ and Jg . If we take i ∈ J∗ then g(i) ∈ Jg is corresponding
job. Similarly, if we take g ∈ Jg then i(g) ∈ J∗ is the corresponding job. The myopic policy will select the

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 31

|Jg | jobs with the largest reward rate. Since the processors are identical, we can therefore assume that jobs

are matched to processors in a way so that

E[vi(t + σi)]

E[σi]
≤ E[vg(i)(t + σg(i))]

E[σg(i)]
.

Taking definitions from before, we define S̃(s, A) as the random next state encountered given that we
start in state s and action A is taken. Also, S′(s, i) is identical to state s but with job i is completed:
b(S′(s, i))i = �.

Given a scheduling action A and state s at time t, we define the augmented state ŝ = Ŝ(s, A) as

follows. Let JA denote the jobs to be scheduled by A and J̃A to be replicas of these jobs. Recall that
replica jobs have the same service requirements but no reward: if j ∈ JA and j̃ ∈ J̃A is the replica, then

σj̃
d
= σj and vj̃(·) = 0. Then ŝ is given by scheduling the replica jobs instead of the original jobs. In notation,

b(ŝ)j = b(s)j for j ∈ JA, b(ŝ)j̃ = t for j̃ ∈ J̃A, p(ŝ)n = j̃ for (j, n) ∈ A, and p(ŝ)n = p(s)n otherwise.
Using this notation, we have the following:

V ∗
t (s) =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (S̃(s, A∗))] =

∑
j∈J∗

E[σj]
E[vj(t + σj)]

E[σj]
+ E[V ∗

t (S̃(s, A∗))]

≤
∑

i∈J∗
E[σi]

E[vg(i)(t + σg(i))]

E[σg(i)]
+ E[V ∗

t (S̃(s, A∗))]

≤
∑

i∈J∗
E[σi]

E[vg(i)(t + σg(i))]

E[σg(i)]
+ E[V ∗

t (Ŝ(s, A∗))].

(C.5)

The first inequality comes from the definition of the myopic policy; the reward rate for myopic jobs is
higher than for the optimal jobs. If we consider the replica jobs in Ŝ(s, A∗) as being completed in S̃(s, A∗)
(this is consistent because the replicas have no reward), the second inequality comes from the monotonicity
property proven in Lemma 1.

Consider the second term in (C.5). Because we have a bijection between jobs scheduled by π∗ and jobs
scheduled by πg , we can apply Lemma 4 to each job-processor to conclude the following:

E[V ∗
t (Ŝ(s, A∗))] ≤ E[V ∗

t (Ŝ(s, Ag))] +
∑

g∈Jg

E[vg(t + σg)]

(
1 − E[σi(g)]

E[σg]
+

E[σmax]

E[σg]

)
.

Substituting this into (C.5) gives us the following:

V ∗
t (s) ≤ E[V ∗

t (Ŝ(s, Ag))] +
∑

g∈Jg

E[vg(t + σg)]

(
1 +

E[σmax]

E[σg]

)
. (C.6)

Now consider the upper bound in (C.6):

E[V ∗
t (Ŝ(s, Ag))] +

∑
g∈Jg

E[vg(t + σg)]

(
1 +

E[σmax]

E[σg]

)

≤ E[V ∗
t (S̃(s, Ag))] +

∑
g∈Jg

E[vg(t + σg)]

(
2 +

E[σmax]

E[σg]

)

≤ E[V ∗
t (S̃(s, Ag))] +

∑
g∈Jg

E[vg(t + σg)](2 + Δ)

≤ (2 + Δ)E[V g
t (S̃(s, Ag))] +

∑
g∈Jg

E[vg(t + σg)](2 + Δ)

= (2 + Δ)V g
t (s). (C.7)

The first inequality comes from applying Lemma 3 to each processor being scheduled. The second inequality
comes from the definition of Δ. The third inequality comes from the induction hypothesis. The final equality
comes from the Bellman recursion corresponding to πg . We can conclude that V ∗

t (s) ≤ (2 + Δ)V g
t (s). �

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

32 N. Master, C.W. Chan, and N. Bambos

APPENDIX D: PROOF OF THEOREM 4

To prove Theorem 3, we will need to slightly modify the results from above. First, we will modify Lemma 4
so that the replica jobs correspond to those scheduled by πG rather than πg .

Lemma 5: Modify the conditions of Lemma 4 so that g ∈ argmaxj∈Js
E[wj(t + σj)]. Then we have the

following inequality:

V ∗
t (si) ≤ E[vg(t + σg)]E

[
σmax − σi + σg

σmin

]
+ V ∗

t (sg).

Proof: As in (C.1), V ∗
t (si|σĩ ≥ σg̃) ≤ V ∗

t (sg|σĩ ≥ σg̃). Therefore,

V ∗
t (si|σĩ ≥ σg̃) ≤ E[vg(t + σg)]E

[
σmax − σi + σg

σmin

]
+ V ∗

t (sg|σĩ ≥ σg̃). (D.1)

For the case that σĩ < σg̃ , define π′
g and π∗

i as in Lemma 4. As in (C.3),

V ∗
t (si|σĩ < σg̃) ≤ E

⎡
⎣ ∑

j∈Jsim

vj(t + σj)

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ + V ∗

t (sg |σĩ < σg̃).

Now we bound the first term.

E

⎡
⎣ ∑

j∈Jsim

vj(t + σj)

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦ ≤ E

⎡
⎣ ∑

j∈Jsim

vg(t + σg)

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

≤ E[vg(t + σg)|σĩ < σg̃]E[|Jsim| |σĩ < σg̃]

≤ E[vg(t + σg)]E[|Jsim| |σĩ < σg̃]

≤ E[vg(t + σg)]E

⎡
⎣ 1

σmin

∑
j∈Jsim

σj

∣∣∣∣∣∣ σĩ < σg̃

⎤
⎦

≤ E[vg(t + σg)]E

[
σg̃ − σĩ + σmax

σmin

∣∣∣∣ σĩ < σg̃

]

= E[vg(t + σg)]E

[
σg − σi + σmax

σmin

∣∣∣∣ σĩ < σg̃

]
.

The first inequality follows from the definition of job g. The second inequality follows from an elementary
application of Wald’s identity. The third inequality follows because job g is chosen independently from
σĩ and σg̃ . The fourth inequality follows because the number of simulated jobs is upper bounded by the
simulation duration divided by the smallest amount of time it takes to simulate a job. The fifth inequality

follows from the same reasoning in Lemma 4. The final equality follows because σĩ
d
= σi, σg̃

d
= σg , and the

service times are independent. Therefore,

V ∗
t (si|σĩ < σg̃) ≤ E[vg(t + σg)]E

[
σg − σi + σmax

σmin

∣∣∣∣ σĩ < σg̃

]
+ V ∗

t (sg |σĩ < σg̃).

Combining the two cases and taking the expectation gives us the result. �

The proof of Theorem 3 is now similar to the proof of Theorem 4: we will add zero-value replica jobs as
in Lemma 4, apply the monotonicity result in Lemma 1, and make use of the virtual machines in Lemma 3

to complete the replicas.

Proof of Theorem 3: As in Theorem 4, we proceed by induction on the number of jobs remaining to be
processed. When there is one job left, π∗ and πG will coincide and the bound holds.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 33

Now we modify the notation in Theorem 4 so that Jg refers to the jobs chosen by πG rather than πg .

V ∗
t (s) =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (S̃(s, A∗))]

≤
∑

j∈J∗
E[vj(t + σj)] + E[V ∗

t (Ŝ(s, A∗))]

≤
∑

g∈J∗
E[vg(t + σg)] + E[V ∗

t (Ŝ(s, A∗))].

The equality comes from the Bellman recursion. The first inequality comes from Lemma 1 and the second
inequality comes from the definition of πG.

In Theorem 4, we applied Lemma 4 to each processor. Here, we apply Lemma 5. As before, let i(g)
denote the job index that π∗ would schedule instead of job g that πG is scheduling.

E[V ∗
t (Ŝ(s, A∗))] ≤

∑
g∈Jg

(
E[vg(t + σg)]E

[
σmax − σi(g) + σg

σmin

])
+ E[V ∗

t (Ŝ(s, Ag))].

The fact that σi(g)/σmin ≥ 1 gives us that E[vg(t + σg)] ≤ E[vg(t + σg)]E[σi(g)/σmin]. Therefore, combining
the inequalities gives us that

V ∗
t (s) ≤

∑
g∈Jg

E[vg(t + σg)]E

[
σmax + σg

σmin

]
+ E[V ∗

t (Ŝ(s, Ag))].

Applying Lemma 3 gives us that

V ∗
t (s) ≤

∑
g∈Jg

E[vg(t + σg)]

(
1 + E

[
σmax + σg

σmin

])
+ E[V ∗

t (S̃(s, Ag))].

Now we need to apply some algebraic manipulations:

V ∗
t (s) ≤

∑
g∈Jg

E[vg(t + σg)]

(
1 + E

[
σmax + σg

σmin

])
+ E[V ∗

t (S̃(s, Ag))] (D.2)

≤ (1 + 2E[σmax/σmin])
∑

g∈Jg

E[vg(t + σg)] + E[V ∗
t (S̃(s, Ag))] (D.3)

≤ (1 + 2E[σmax/σmin])
∑

g∈Jg

E[vg(t + σg)] + E[(1 + 2E[σmax/σmin])V ∗
t (S̃(s, Ag))] (D.4)

≤ (1 + 2E[σmax/σmin])

⎛
⎝ ∑

g∈Jg

E[vg(t + σg)] + V ∗
t (S̃(s, Ag))]

⎞
⎠ (D.5)

= (1 + 2E[σmax/σmin])V G
t (s). (D.6)

The second inequality hold because σg ≤ σmax. We then apply the induction hypothesis and the Bellman
recursion to achieve the result. �

APPENDIX E: PROOF OF PROPOSITION 1

In this section, we consider πg and πG in the case of IID service times. We will again modify the proofs of
Lemma 4 and Theorem 4.

Lemma 6: Consider the notation in Lemma 4 but let g and i be arbitrary job indices. If σ1
d
= σ2

d
= · · · d

= σJ ,
then V ∗

t (si) = V ∗
t (sg).

Proof: Since σĩ
d
= σg̃ and vĩ(·) = vg̃(·) = 0, the si-system and the sg-system are stochastically equivalent.

Therefore, V ∗
t (si) = V ∗

t (sg). �

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

34 N. Master, C.W. Chan, and N. Bambos

Proof of Proposition 1: Under this scenario, Lemma 4 can be replaced by Lemma 6 in the proof of

Theorem 4. Hence, E[V ∗
t (Ŝ(s, A∗))] = E[V ∗

t (Ŝ(s, Ag))]. Instead of replicating the entire proof here, we
examine how (C.5), (C.6), and (C.7) change.

The only difference for (C.5) is that E[σj] = E[σi] for i, j which allows for a slight simplification.

V ∗
t (s) =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (S̃(s, A∗))] ≤

∑
g∈Jg

E[σi(g)]

E[σg]
E[vg(t + σg)] + E[V ∗

t (S̃(s, A∗))]

≤
∑

g∈Jg

E[vg(t + σg)] + E[V ∗
t (Ŝ(s, A∗))].

(E.1)

Now, with improvement to Lemma 4 in Lemma 6, (C.6) is reduced significantly

∑
g∈Jg

E[vg(t + σg)] + E[V ∗
t (Ŝ(s, A∗))] =

∑
g∈Jg

E[vg(t + σg)] + E[V ∗
t (Ŝ(s, Ag))]. (E.2)

Finally, utilizing Lemma 3 and completing/generating rewards for the myopic jobs gives:

∑
g∈Jg

E[vg(t + σg)] + E[V ∗
t (Ŝ(s, Ag))] ≤ 2

∑
g∈Jg

E[vg(t + σg)] + E[V ∗
t (S̃(s, Ag))]

≤ 2
∑

g∈Jg

E[vg(t + σg)] + 2E[V ∗
g (S̃(s, Ag))]

= 2V g
t (s).

(E.3)

�

APPENDIX F: PROOF OF THEOREM 5

The performance guarantee for πEDF only holds for IID service times. Since we already have Lemma 6 (the
version of Lemma 4 modified for IID service times), we now just need to modify the proof of Theorem 4.

Proof of Theorem 5: Again, the proof is by induction the number of jobs with non-zero value that are
remaining to be scheduled. When there is a single job, π∗ and πEDF are the same and so the bound holds.

Now we need to modify the induction step of Theorem 4. The Bellman recursion and Lemma 1 give us
the following:

V ∗
t (s) =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (S̃(s, A∗))] ≤

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (Ŝ(s, A∗))].

Let AEDF be the schedule chosen by πEDF and let JEDF be the set of jobs in AEDF. Lemma 6 gives us
that E[V ∗

t (Ŝ(s, A∗))] = E[V ∗
t (Ŝ(s, AEDF))]. Hence,

V ∗
t (s) ≤

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (Ŝ(s, A∗))] =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (Ŝ(s, AEDF))].

As before, the set of free machines creates a bijection between J∗ and JEDF. For each e ∈ JEDF we can
map a unique i(e) ∈ J∗. Using this bijection along with Lemma 3 gives us the following:

V ∗
t (s) =

∑
j∈J∗

E[vj(t + σj)] + E[V ∗
t (Ŝ(s, AEDF))]

≤
∑

j∈J∗
E[vj(t + σj)] +

∑
e∈JEDF

E[ve(t + σe)] + E[V ∗
t (S̃(s, AEDF))]

=
∑

e∈JEDF

E
[
ve(t + σe) + vi(e)(t + σi(e))

]
+ E[V ∗

t (S̃(s, AEDF))].

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

MYOPIC SCHEDULING OF JOBS WITH DECAYING VALUE 35

Now we use the fact that E[vi(e)(t + σi(e))] ≤ M and the fact that E[ve(t + σe)] ≥ m:

V ∗
t (s) =

∑
e∈JEDF

E
[
ve(t + σe) + vi(e)(t + σi(e))

]
+ E[V ∗

t (S̃(s, AEDF))]

≤
∑

e∈JEDF

(E [ve(t + σe)] + M) + E[V ∗
t (S̃(s, AEDF))]

≤
∑

e∈JEDF

(
E [ve(t + σe)] + M

E[ve(t + σe)]

m

)
+ E[V ∗

t (S̃(s, AEDF))]

≤ (1 + M/m)
∑

e∈JEDF

E [ve(t + σe)] + E[V ∗
t (S̃(s, AEDF))].

As in the proofs of Theorems 4 and 3, we can conclude by applying the induction hypothesis. �

To prove Corollary 1, we simply need to specialize Theorem 5 to the case of step-wise decay functions:

Proof of Corollary 1: In this case, E[vj(t + σj)] = P(t + σj ≤ dj) = F (dj − t). Therefore, M ≤ 1 and
m ≥ pmin. �

APPENDIX G: PROOF OF PROPOSITION 2

Since x
→ c
x

is a convex function on x > 0 for any c > 0, Jensen’s inequality gives us that

E

[
σmax

σmin

∣∣∣∣ σmax

]
≥ σmax

E[σmin|σmax]
.

Since x
→ minj xj is concave for x ∈ R
J , Jensen’s inequality tells us that E[σmin|σmax] ≤ minj E[σj |σmax].

In addition, σmax puts an upper bound on σj so E[σj |σmax] ≤ E[σj]. Therefore,

E

[
σmax

σmin

∣∣∣∣ σmax

]
≥ σmax

minj E[σj]
.

The law of iterated expectation gives us that

E

[
σmax

σmin

]
≥ E[σmax]

minj E[σj]
= Δ.

Since σmax ≥ σmin, we can conclude that

1 + 2E

[
σmax

σmin

]
≥ 2 + E

[
σmax

σmin

]
≥ 2 + Δ.

To show that 1 + M/m ≥ 2, we simply note that M ≥ m so M/m ≥ 1.

APPENDIX H: DISCRETIZING THE LOGNORMAL DISTRIBUTION

Given parameters �, m, s, and a standard normal random variable Z, σ is lognormal if

σ = � + em+sZ . (H.1)

We will assume that σ is measured in minutes. The cumulative distribution function of σ is

F (x; �, m, s) =

{
0, x ≤ �,
1
2

(
1 + erf

(
ln(x−�)−m

s
√

2

))
, x > �,

(H.2)

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

36 N. Master, C.W. Chan, and N. Bambos

where erf(·) is the error function

erf(x) =
2√
π

∫ x

0
e−t2dt. (H.3)

Assume we use a discretization of δ with T time slots. Then we can then take the unnormalized PMF of
our discretized lognormal random variable as

p̃ln(t; �, m, s) = F (tδ; �, m, s) − F ((t − 1)δ; �, m, s) (H.4)

and the PMF is then given by

pln(t; �, m, s) =
p̃ln(t; �, m, s)∑T

t′=1 p̃ln(t′; �, m, s)
. (H.5)

APPENDIX I: RANDOMLY GENERATING PATIENT HEALTH DECAY FUNCTIONS

There are several ways of randomly generating continuous piecewise linear value decay functions. For exam-
ple, we could take IID samples from a Uniform[0, 1] distribution, sort the samples in decreasing order, and
then linearly interpolate between these samples. However, by the law of large numbers, for a large number
of samples, this procedure will yield a function that is roughly t
→ (1 − t/T). As a result, because T = 144,
if we näıvely draw T samples and perform this procedure, the value decay functions will be roughly the
same. Because we are trying to model a mass casualty incident with significant heterogeneity, we need a
more sophisticated method.

To randomly generate a piecewise linear v(t), we first randomly sample v(0) from Uniform[0, 1]. Let u
be another IID sample from Uniform[0, 1]. We then define v(3) = max {v(0) − (3/T)u, 0}. We can similarly
generate values for v(6), v(9), etc. and then linearly interpolate between these points. This will generate a
function that decreases continuously and in a piecewise linear fashion.

We justify this method of randomly generating value decay functions by qualitatively comparing our
results to the results from Sacco et al. [37]. We randomly generate every third value rather than every
value so that the resulting value decay function is “smoother.” A piecewise linear function is essentially
intervals of linear functions that have been “glued” together. We notice that the decay in Sacco et al. [37]
has relatively few of these intervals. The functions that we randomly generate are qualitatively similar in
that they have at most T/3 of these intervals. Furthermore, note that we use 10min time intervals. Sacco
et al. [37] used 30 min intervals (i.e., 3 time units in our model) so our method is in line with the medical
literature.

https://doi.org/10.1017/S0269964816000474 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000474

	1 Introduction
	1.1 Literature Review

	2 Model Formulation
	2.1 System Dynamics and Dynamic Programming Formulation
	2.2 Preliminary Mathematical Results

	3 Heuristic Policies and Performance Guarantees
	4 Performance Evaluation
	4.1 General Numerical Experiments
	4.1.1 Small-Scale Problems: Comparisons to Optimal.
	4.1.2 Large-Scale Problems: Comparing the Heuristics to Each Other.
	4.1.3 Rules-of-Thumb.

	4.2 Patient Scheduling in a Disaster Scenario

	5 Conclusion
	APPENDIX A: PRELIMINARY MATHEMATICAL DEFINITIONS AND RESULTS
	A.1 Definitions
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2

