
The Knowledge Engineering Review (2023), 38, e9, pp. 1–17
doi:10.1017/S0269888923000097

REVIEW

Reformulation techniques for automated planning:
a systematic review
Diaeddin Alarnaouti , George Baryannis , and Mauro Vallati

School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
Corresponding author: Mauro Vallati; Email: m.vallati@hud.ac.uk

Received: 14 June 2022; Revised: 22 November 2022; Accepted: 11 October 2023

Abstract
Automated planning is a prominent area of Artificial Intelligence and an important component for intelligent
autonomous agents. A cornerstone of domain-independent planning is the separation between planning logic, that is
the automated reasoning side, and the knowledge model, that encodes a formal representation of domain knowledge
needed to reason upon a given problem to synthesize a solution plan. Such a separation enables the use of reformu-
lation techniques, which transform how a model is represented in order to improve the efficiency of plan generation.
Over the past decades, significant research effort has been devoted to the design of reformulation techniques. In this
paper, we present a systematic review of the large body of work on reformulation techniques for classical planning,
aiming to provide a holistic view of the field and to foster future research in the area. As a tangible outcome, we
provide a qualitative comparison of the existing classes of techniques, that can help researchers gain an overview
of their strengths and weaknesses.

1. Introduction
Automated planning is a research discipline that addresses the problem of generating a totally or partially
ordered sequence of actions that transform the environment from some initial state to a desired goal state.
Within this discipline, domain-independent planning refers to those approaches that keep the knowledge
model, the domain knowledge related to the problem at hand, separate from planning logic, that enables
automated reasoning to generate plans. The development of domain-independent planners within the AI
Planning community facilitates the use of this ‘off-the-shelf’ technology for a wide range of applications,
including UAV maneuvering (Ramírez et al., 2018), space exploration (Ai-Chang et al., 2004), and train
dispatching (Cardellini et al., 2021). This is despite the complexity issues inherent in plan generation,
which are exacerbated by the separation of planner logic from domain knowledge. On the other hand,
this separation has the advantage that planning engines can be interchanged in a modular way, provided
that they accept the same language for describing planning problems and deliver the same type of plans.

This modular approach has fostered the development of planning engines, as well as the design
and exploitation of reformulation techniques. These refer to the ability to automatically re-formulate,
re-represent or tune the domain model and/or a problem description, while keeping to the same input
language, in order to increase the efficiency of a planning engine and expand the scope of problems
solved (Riddle et al., 2011). The aim is to make these techniques independent of domain and planner to
some degree (i.e. applicable to a range of domains and planning engine technology), and use them to
form a wrapper around a planner, improving its overall performance for the particular domain to which
it is applied.

Cite this article: D. Alarnaouti, G. Baryannis and M. Vallati. Reformulation techniques for automated planning: a systematic
review. The Knowledge Engineering Review 38(e9): 1–17. https://doi.org/10.1017/S0269888923000097

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097
https://orcid.org/0000-0002-2118-5812
https://orcid.org/0000-0002-8429-3570
mailto:m.vallati@hud.ac.uk
https://doi.org/10.1017/S0269888923000097
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888923000097&domain=pdf
https://doi.org/10.1017/S0269888923000097


2 D. Alarnaouti, G. Baryannis and M. Vallati

In the past few decades, a number of reformulation techniques have been introduced. This is particu-
larly true for classical planning which, despite its intrinsic simplicity, provides an ideal ground to study
and investigate planning techniques that can then be extended beyond a specific framework. For this rea-
son, classical planning has been studied for several decades and is still a focal point of research within
the automated planning community, as evidenced by the papers devoted to it in the flagship conference,
the International Conference on Automated Planning and Scheduling (ICAPS)1 and by the number of
papers focusing on knowledge engineering for classical planning that are accepted at the Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS).

In this paper, we systematically review the state of the art of reformulation techniques for classical
planning, with the aim of providing a holistic view of the field and answering the following research
questions:

• What reformulation techniques have been proposed in literature?
• How can they be applied on an indicative planning problem?
• What are the particular strengths and weaknesses of each individual reformulation technique?

The main purpose of this review is to provide a qualitative comparison of the existing reformulation
approaches, with the aim of helping experts and practitioners in identifying the most promising technique
to be used, and to highlight research gaps that can foster further research in the area. Note that empirical
analysis of the reviewed reformulation techniques is beyond the scope of this work due to the high
variability, among different papers, of considered benchmarks, planning engines, and software/hardware
infrastructure (Bocchese et al., 2018).

The remainder of this paper is organized as follows. Section 2 the necessary background on plan-
ning and reformulation, and we introduce an example domain model to be used as a running example
throughout the paper. Then, Section 3 describes the methodology used for this literature review.
Section 4 is the main part of the review, presenting the existing reformulation techniques and show-
ing how they can be implemented on the running example. We then compare the reviewed techniques in
Section 5, while in Section 6 we briefly discuss some reformulation techniques that target nonclassical
planning problems. Finally, we provide conclusions and suggested directions for future research in the
area of reformulation techniques for automated planning.

2. Background
This section is devoted to providing the required background in terms of automated classical planning,
the Gripper domain model used as a running example, and the notion of reformulation.

2.1. Classical planning
Classical planning is concerned with finding a (partially or totally ordered) sequence of actions trans-
forming the static, deterministic, and fully observable environment from the given initial state to a
desired goal state (Ghallab et al., 2004).

In the classical representation, a planning task consists of a planning domain model and a planning
problem, where the planning domain model describes the environment and defines planning operators
while the planning problem defines concrete objects, an initial state and a set of goals. The environ-
ment is described by predicates that are specified via a unique identifier and terms (variable symbols or
constants).

Formally, a planning task is a pair � = (Dom�, Prob�) where a planning domain model Dom� =
(P�, Ops�) is a pair consisting of a finite set of predicates P� and planning operators Ops�, and a

1The interested reader is referred to the ICAPS website: https://www.icaps-conference.org/

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://www.icaps-conference.org/
https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 3

planning problem Prob� = (Objs�, I�, G�) is a triple consisting of a finite set of objects Objs�, initial
state I�, and goal G�.

Let ats� be the set of all atoms that are formed from the predicates P� by applying all possible
substitution mappings from the predicate parameters (variable symbols) to the objects from Objs�. In
other words, an atom is an instance of a predicate (in this article, when we use the term instance, we
mean an instance that is fully ground). A state is a subset of ats�, and the initial state I� is a distinguished
state. The goal G� is a nonempty subset of ats�, and a goal state is any state that contains the goal G�.
Note that the semantics of state reflect the full observability of the environment; that is, for a state s,
atoms present in s are assumed to be true in s, while atoms not present in s are assumed to be false
in s.

Planning operators are ‘modifiers’ of the environment. They consist of preconditions, that is, what
must hold prior to an operator’s application, and effects, that is, what is changed after its application.
We distinguish between negative effects, that is, what becomes false, and positive effects, that is, what
becomes true after an operator’s application. Actions are instances of planning operators, that is, an
operator’s parameters, as well as corresponding variable symbols in its preconditions and effects, are
substituted by objects (constants). Planning operators capture general types of activities that can be
performed. While predicates can be instantiated to atoms to capture given relations between concrete
objects, planning operators can be instantiated to actions to capture given activities between concrete
objects.

A planning operator o = (name(o), pre(o), eff(o)) is specified such that name(o) =
op_name(x1, . . . , xk), where op_name is a unique identifier and x1, . . . , xk are all the variable
symbols (parameters) appearing in the operator, pre(o) is a set of predicates representing its precondi-
tion, and eff(o) represents its effects, divided into eff−(o) and eff+(o) (i.e. eff(o) = eff−(o) ∪ eff+(o)) that
are sets of predicates representing the operator’s negative and positive effects, respectively. Actions are
instances of planning operators that are formed by substituting objects, which are defined in a planning
problem, for operators’ parameters as well as for the corresponding variable symbols in operators’
preconditions and effects. An action a = (pre(a), eff−(a) ∪ eff+(a)) is applicable in a state s if and only
if pre(a) ⊆ s. Application of a in s, if possible, results in a state (s \ eff−(a)) ∪ eff+(a).

A solution of a planning task is a sequence of actions transforming the environment from the given
initial state to a goal state. A plan is a sequence of actions. A plan is a solution of a planning task �, a
solution plan of � in other words, if and only if a consecutive application of the actions from the plan
starting in the initial state of � results in the goal state of �.

The standardized language for describing classical planning tasks is PDDL (McDermott, 2000),
that was introduced in 1998 by the organizers of the first International Planning Competition2,
building on top of STRIPS (Fikes & Nilsson, 1971) and the Action Description Language (ADL)
(Pednault, 1987).

2.2. The Gripper domain
As a running example in this paper, we consider the well-known Gripper domain model, initially intro-
duced in the first International Planning Competition in 1998 by Jana Kohler (McDermott, 2000). This
domain was selected in this paper because of its simplicity and due to its suitability for being reformu-
lated. In a nutshell, the Gripper domain consists of a robot that has two grippers, and is tasked to moved
a number of balls between two rooms. The domain model includes three operators:

Move: to move the robot between rooms.
Pick: to use a gripper to pick up a ball.

Drop: to drop a ball that the robot is holding in one of its grippers.

2https://www.icaps-conference.org/competitions/.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://www.icaps-conference.org/competitions/
https://doi.org/10.1017/S0269888923000097


4 D. Alarnaouti, G. Baryannis and M. Vallati

Figure 1. The Gripper PDDL domain model.

Figure 2. An example Gripper planning problem that consists of 4 balls to be carried from rooma to
roomb.

Figure 1 shows the PDDL code of the domain model, including the relevant predicates and the three
mentioned operators. Figure 2 shows an example Gripper planning problem, where the robot has two
grippers and has to move four balls between the considered rooms. The initial state defines the initial
position of balls and robot, and the initial status of the grippers. The goal section specifies the desired
goal position of the 4 balls.

2.3. Reformulation in Domain-Independent planning
Taking a general perspective, reformulation is a term meaning a change to the way in which one thinks
about a problem, and it has been demonstrated to be a common practice employed also by people to
tackle challenging problems (Riddle et al., 2013). A theoretical framework for describing reformulation
schemes in automated planning has been presented by Chrpa et al. (2012). Early research in the area
of reformulation in AI started in the 1960s (Amarel, 1968), and reformulation has rapidly become a
major field of research. In the field of automated planning and, more general, of state-space search,
reformulation is intended as a change of representation. Different representations of the same problem
can result in different search spaces, and the use of reformulation techniques can allow to make a problem
more amenable for a considered planning engine by providing a search space that is easier to be explored
to find a goal state.

Focusing on automated planning, the domain-independent paradigm decouples reasoning from
knowledge representation. This supports the use of reformulation techniques which can re-formulate,
re-represent or tune the domain model and/or problem description, while keeping to the same input
language, in order to increase the efficiency of a planning engine and expand the scope of problems
solved. The idea is that these techniques are independent from application domain and planning engines

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 5

Figure 3. An overview of the use of a domain- and planner-independent reformulation technique.

(i.e. applicable to a range of domains and planning engine technology) and use them to form a wrapper
around a planner, improving its overall performance for the domain to which it is applied.

Figure 3 gives an overview of the use of reformulation wrapper to modify the representation of a
planning task in a domain- and planner-independent way that allows to reuse the same technique in any
domain and with any engine that supports the considered formal language. In this review, we focus on
classical planning reformulation approaches that aim at changing the representation of a planning task
within the same formal language, with the goal of making the task more amenable for a given (class of)
engines.

3. Review methodology
This section is devoted to presenting the methodology used for performing the literature review. To
ensure deeper understanding of the reformulation approaches that are applicable in domain-independent
classical planning, we applied a variation of the systematic literature review methodology as proposed
by Kitchenham and Charters (2017) for software engineering and previously applied for reviews of
AI-related literature (Baryannis et al., 2019).

3.1. Search strategy
The collection of literature concerning reformulation techniques in classical planning was performed
through automated search using Google Scholar, Scopus, and the University of Huddersfield library
search engine (Summon). Two levels of keyword terms were utilized. On the first level, we used a
disjunction (OR) of the following three keyword phrases: ‘classical planning reformulation’, ‘PDDL
reformulation’, and ‘domain-independent reformulation’. On the basis of the techniques identified using
the aforementioned keyword phrases, we provided a second level of keywords, to obtain all the rel-
evant works for each of them. This second-level search was with the following keywords linked to
one another by OR: ‘macro-operators’, ‘macro-actions’, ‘entanglements’, ‘actions elimination’, ‘bagged
representation, ‘action schema splitting’, and ‘model configuration’.

The previously mentioned libraries were used equally as results vary between them. The covered time
period is set from 1980 to January 2022. Notably, thanks to the introduction of the standardized PDDL
language and the first edition of the International Planning Competition in 1998, most of the relevant
work has been published after 2000.

To maximize coverage and completeness of the conducted search, two ancillary procedures were
included: (1) checking reference lists of select primary studies (often referred to as backward snow-
balling); and (2) identifying existing literature reviews on automated planning that may include
reformulation (more details in Section 3.3).

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


6 D. Alarnaouti, G. Baryannis and M. Vallati

3.2. Search scope
A series of inclusion and exclusion criteria frames the scope of this review, to ensure quality and rel-
evance of the selected works. First, studies must be peer-reviewed and written in English. Then, they
should contain a formal description of at least one reformulation technique for automated planning
models, accompanied with an empirical analysis of the usefulness of the proposed technique. Third, the
proposed reformulation technique must be domain-independent and must focus on classical planning.
Fourth, the reformulation must accept planning models as input and provide as output models that can
be processed by domain-independent classical planning engines. It should be noted that the last point
excludes some well-known approaches such as DISCOPLAN (Gerevini & Schubert, 1998) and TIM
(Fox & Long, 1998), that do not allow to include the extracted knowledge in planning models. While
the main focus of the review is on techniques for reformulating classical PDDL lifted models, here we
also include works proposed before the introduction of the language, and that propose techniques for
reformulating STRIPS (Fikes & Nilsson, 1971) models; for the purposes of this review these can be
considered to be similar in nature to PDDL ones.

A search based on the keywords and the engines described in Section 3.1 yields several thousands of
results. By carefully and thoroughly applying all aforementioned criteria and ancillary search strategies,
and by considering also abstracts of the identified studies, 54 studies remain and are analyzed in the rest
of this paper. For the sake of readability, the selected studies are divided into different classes, presented
in Section 4, according to the reformulation approach that they present.

3.3. Related surveys
The main motivation behind this systematic review is the limited amount of works covering the field
of domain-independent reformulation for automated planning. The most relevant published work is a
survey of machine learning methods for automated planning (Jiménez et al., 2012) where a section
is dedicated to macro-actions. This survey covers only 4 studies that are also covered in this paper,
published between 1977 and 2007. The work of Long et al. (2002) provides a definition of reformulation
for automated planning and briefly discusses some ways in which it has been applied in the field, though
it also includes cases not within the scope of this review. To the best of our knowledge, this review is
the first attempt at systematically analyzing reformulation approaches for automated planning.

4. Reformulation techniques for classical planning
In this section we present the reviewed studies, classified according to the implemented reformulation
approach. For each approach, we also provide an example of applying the reformulation approach to the
Gripper domain.

4.1. Entanglements
The entanglements approach was firstly introduced in Chrpa and Barták (2009) and aims at removing
useless actions from a ground planning task, to reduce the branching factor of a task at hand. Such useless
actions are identified by analyzing the relationship between predicates of the problem, and operators.
In a nutshell, the idea is to change the representation of a planning task so that only potentially useful
actions can be grounded and considered during search.

In literature, two main classes of entanglements have been proposed: outer and inner. Outer entan-
glements (Chrpa & McCluskey, 2012; Chrpa et al., 2018) identify useless actions on the basis of their
relationships with predicates from the initial state or the goal state. Inner entanglements (Chrpa et al.,
2019) focus instead on the relation between pairs of actions. There are two types of inner entanglements:
entanglements by preceding, which defines the case where a certain predicate is required by an operator

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 7

Figure 4. An excerpt of the modified Gripper planning task when the pick operator is entangled by
init on the basis of the at predicate.

as a precondition, and entanglements by succeeding, which denotes the case where a particular operator
makes a predicate available as one of its effects.

According to the results presented in Chrpa et al. (2012), exactly finding entanglements is as hard as
solving the planning task itself. For this reason, most of the work in literature focuses on approximate
approaches for identifying entanglement relations. To exemplify how entanglements can reformulate a
given planning task, here we show how the Gripper domain can be modified by entanglements by init for
the operator pick. The basis of entanglement in this case for the particular encoding is that it is useful
to perform a pick action only on balls that are in the initial room. In any other occasion, the pick
action should not be considered. The relationship is therefore captured by the (at ?b ?r) predicate,
that indicates the position of a ball and is a precondition of the considered operator. To implement the
entanglement, a new predicate p′ (at-ent ?b ?r) should be created and added to the domain model,
having the same arguments of (at ?b ?r). The pick operator should be modified by adding p′ as a
precondition. In the initial state description of the problem, an additional p′ predicate should be created
for each existing (at ?b ?r). This is similar in nature to the auxiliary predicate added to preconditions
to account for unforeseen circumstances to address the qualification problem in service specifications
(Baryannis & Plexousakis, 2013; Baryannis et al., 2017) An excerpt of the modified domain and problem
models is presented in Figure 4.

4.2. Macro-operators
Macro-operators (macros) represent a well-known and well-studied technique for enhancing perfor-
mance of planning engines. In a nutshell, macros encapsulate sequences of (primitive) planning
operators. Macros are encoded as ordinary planning operators and, hence, they can be added into
planning domain models. Macros, informally speaking, provide shortcuts in the state space and, conse-
quently, planning engines can generate plans in a smaller number of steps. This comes at the cost of an
increased branching factor, since macros often have many more instances than primitive operators and
thus their use might introduce additional overheads as well as larger memory requirements.

The notion of macros can be traced back to 1970s and 1980s. REFLECT (Dawson & Siklossy, 1977)
builds macros from pairs of primitive operators that can be applied in sequence and share at least one
argument. Macro Problem Solver (Korf, 1985) is capable of learning macros for achieving particular
non-serializable subgoals (e.g. in Rubik’s cube). MORRIS (Minton, 1985) learns macro-operators from
parts of plans appearing frequently (S-macros) or being potentially useful despite having low priority (T-
macros). FM (McCluskey, 1987) learns sequences of operators frequently used together and combines
them in potentially long sequences called chunks. MACLEARN (Iba, 1985, 1989) is a heuristic approach
for learning re-usable macros for solving puzzle problems; the system includes three subcomponents that
are in charge of proposing promising macros and testing their usefulness for solving problems.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


8 D. Alarnaouti, G. Baryannis and M. Vallati

The first International Planning Competition, held in 1998, introduces PDDL that became the ‘de
facto’ standard language for planning models. The introduction of a language supported the design and
testing of approaches for the generation and identification of macros, that started to thrive. MacroFF
(Botea et al., 2005), based on the well-known FF planning engine (Hoffmann & Nebel, 2001), gener-
ates macros according to a number of predefined rules (e.g. the ‘locality rule’) that apply on adjacent
actions in training plans. MacroFF is capable of generating planner-independent macros, that can be
added to domain models as standard operators, or planner-specific macros for FF, that can be provided
as additional input to the planning engine. DHG (Armano et al., 2004) is able to learn macro-operators
from static domain analysis by exploring a graph of dependencies between operators. WIZARD
(Newton & Levine, 2007) is a framework that exploits genetic programming to create macros; starting
from the primitive operators of the domain model, WIZARD leverages genetic algorithms to combine
them into useful macros for a given planning engine. Chrpa (2010b) propose an approach for identifying
suitable macros by looking at action dependencies in generated plans. Dulac et al. (2013) propose to
exploit n-gram algorithm to analyze training plans to automatically learn macros.

DBMP/S (Hofmann et al., 2017) applies Map Reduce for learning macros from a large training plan
databases. More recently, the same authors propose an approach for generating macros for ADL domain
models, that includes PDDL features that are rarely supported by more traditional methods (Hofmann
et al., 2020). CAP (Asai & Fukunaga, 2015) exploits component abstraction, that allows to cluster
together similar objects (introduced by MacroFF), for generating sub-goal specific macros. In other
words, CAP divides complex planning problems into independent subproblems by abstracting the com-
ponents of the original problem. Then it finds subplans for each subproblem and connects the actions of
every subplan into a solo macro operator. BloMa (Chrpa & Siddiqui, 2015) leverages block deordering,
which rearranges plans into ‘blocks’ that can no longer be deordered (Siddiqui & Haslum, 2012), for
generating longer macros. In particular, BloMa generates a large pool of macros from ‘macroblocks’,
which are derived from ‘blocks’ by applying a set of rules. Chrpa & Vallati (2019) introduce the idea
of critical section macros, that are inspired by parallel computing critical sections; such macros aim
at capturing a whole activity that deals with a limited resource (or more limited resources). Finally,
Castellanos-Paez et al. (2021a,b) introduce ERA, an approach for extracting macros from plans that is
based on pattern mining; an important feature of ERA is its ability to identify macros even if the included
operators are not always adjacent in the considered plans.

A different line of work looks into exploiting the notion of entanglements to identify promising
macros. Chrpa (2010a) focuses on combining both macro-operators and entanglements in order to
get the benefit behind each of them, as macros can reduce the size of the search space whereas the
usage of entanglements is capable of reducing the branching factor which may occur because of the
generated instances of macros. Chrpa et al. (2013) propose an automated approach that combine two
primitive operators that are linked by inner entanglement relationships, and leverages on such relation-
ships to eliminate one or both of the primitive operators from the domain model. MUM (Chrpa et al.,
2014) is a learning system that exploits outer entanglements as heuristics in the process of generating
macros. Macros generated by MUM have a limited number of instances, specifically, the number of
macro instances has to be in the same order of magnitude as the number of primitive operator instances.
OMA (Chrpa et al., 2015b) is capable of generating macros online, that is without the need for offline
training, by considering entanglement relations between operators of the domain model. Notably, there
is also a line of work that considers the problem of identifying the best (set of) macros to be used,
given an initial pool of candidates. Alhossaini & Beck (2013) select problem-specific macros from
a given pool of macros (hand-coded or generated by another technique) using a specifically trained
predictor. ASAP (Vallati et al., 2013) uses a set of provided training plans to identify the best combina-
tion of planning engine and macro set (also considering entanglements) to be used on a given domain.
PbP (Gerevini et al., 2014) uses statistical tests to identify the most promising portfolio of planning
engines and macro-actions to be used for solving challenging planning instance. Finally, MeVo (Vallati
et al., 2020), given a large pool of macros, can evolve over time the best set of macros to be used by a
planning engine for solving a continuous stream of problems from a considered domain. This features

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 9

Figure 5. An example macro-operator that encapsulates the sequence of operators pick(?obj ?from
?gripper), move(?from ?to), drop(?obj ?to ?gripper). For the sake of clarity, we use the same name for
matched variables between operators.

allows MeVo to overcome the issue of having training instances that are not representative of the testing
ones.

Technically speaking, the way in which a macro-operator is generated by assembling two operators
is straightforward and quite similar to the way composition works in the case of services (Baryannis &
Plexousakis, 2014). Considering two operators ai and aj, the resulting macro encapsulating their
execution in sequence can be generated as follows:

pre
(
ai,j

) = Pre (ai) ∪ (
Pre

(
aj

) \eff + (ai)
)

eff − (
ai,j

) = (
eff − (ai) ∪ eff − (

aj

)) \eff + (
aj

)

eff + (
ai,j

) = (
eff + (ai) ∪ eff + (

aj

)) \eff − (
aj

)

More than two operators can be encapsulated in a single macro by iteratively repeating the described
process. Figure 5 shows the macro-operator pick-move-drop for the Gripper domain model. It has
been generated by composing the primitive operators pick, move, and drop, with the idea of providing
a single operator that can represent a whole movement of a ball from its initial position to its goal
position. It can be added to the original domain model, and planning engines will take it into account
when solving a given planning task. Notably, the resulting plans may include the macro operator and
therefore, to be valid with regard to the original domain model, will need to be parsed.

4.3. Operators elimination
Operators elimination aims at reducing the branching factor by removing from the domain model those
operators whose effects can be achieved by executing a sequence of other operators. In a nutshell, the
main point is to minimize the size of the model by identifying operators that can be considered redundant.
It should of course be noted that it may not always be possible to remove operators from a domain model.
Haslum and Jonsson (2000) introduce a technique for performing operators elimination, by formally
defining the notions of a redundant operator and of a minimal set of operators, also proposing a greedy
algorithm to identify the minimal set of operators for a given domain model.

Operators elimination may be of limited impact when used on its own, particularly in the case of
highly engineered domain models. However, it can be particularly helpful when performed after another
reformulation approach. For instance, Chrpa and Barták (2009) discuss operators elimination after the
exploitation of entanglements, and there has been a large body of work investigating the elimination
of primitive operators that are encapsulated into macros (e.g. Chrpa, 2010b; Alhossaini & Beck, 2013;
Chrpa & Vallati, 2019).

Considering the Gripper domain, in the original model shown in Figure 1 there are no operators that
are redundant and can be removed. However, if the domain model is extended by adding the macro shown
in Figure 5, then both pick and drop operators can be removed without compromising solvability of

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


10 D. Alarnaouti, G. Baryannis and M. Vallati

Figure 6. An excerpt of the Gripper domain and problem models reformulated using bagged represen-
tation for objects of the type ball.

problems sharing the structure of the one shown in Figure 2—that is where the goal is not for the robot
to hold a ball in its gripper.

4.4. Bagged representation
In domain models encoded in PDDL, it is usually the case that each object is uniquely identified, even
if it is not important to distinguish between objects. In the presence of large sets of objects, this can lead
to an explosion of the combinatorial problem, that needs to take into account the specific information of
each individual object. The bagged representation reformulation addresses the above criticism: in cases
where only the number of objects is relevant, and it is not important to have the ability to distinguish
between objects, they can be represented as ‘bags’ of identical objects. The main advantage is to reduce
the branching factor, by basically pruning states that are identical but for the specific object.

Bagged representation was first introduced in 2013 (Riddle et al., 2013) and then further extended
by providing an in-depth analysis of its impact on well-known benchmarks and automated techniques
to perform the reformulation (Riddle et al., 2015b,c,a, 2016).

When it comes to reformulating the Gripper domain model, objects of type ball are an excellent
candidate to be represented using bagged representation. It is important to know their number in every
room, but it is not important to know which specific ball is where. Figure 6 presents an excerpt of
the reformulated domain and problem models. Objects of type ball are removed and are substituted
by counters. The predicate count is used to record the number of balls in a room. Predicate more is
used to link together the different possible values of a counter. This is required because in classical
planning there is no notion of numeric elements, so this allows to use Boolean predicates such as more
as counters. The reformulated operator pick is also shown in Figure 6, with the main change being that
it now updates the counter of the room where it is applied. The drop operator (not shown in the figure)
is modified in a similar way. Finally, the problem model is reformulated by removing the ball objects,
appropriately setting the initial values of the counters for the considered rooms, and expressing the goal
in terms of the number of balls that need to be in the final room.

4.5. Action schema splitting
The presence of operators with a large number of parameters can be problematic for the grounding step
of domain-independent planning engines, as they usually have to instantiate all possible actions before

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 11

Figure 7. Action Schema Splitting applied to the macro operator shown in Figure 5, and resulting in
two operators.

filtering out those that are irrelevant. The number of ground actions grows exponentially with the number
of parameters and the number of objects of the problem to solve. In order to address this issue, the idea
of action schema splitting (Areces et al., 2014) is to split large operators into smaller ones (with regard
to the number of parameters). The main aim is to break the exponential growth by dividing parameters
between different operators. While the idea is intuitively easy, its exploitation has a number of hidden
issues to be taken into account. When an operator is broken into two smaller operators, the order in
which these two operators are executed becomes important, as is to consider whether their execution
can be interleaved with different operators—that can change the state of the world in some unexpected
ways.

Considering the example Gripper domain model, in the original version of the model there is no
operator that is suitable to be split using the described methodology. However, action schema splitting
can be understood also as the ‘opposite’ of macro-operators, and in fact, it can also be used to find refor-
mulations of models by first encapsulating primitive operators into macros and then splitting them in
different ways. For this reason, to exemplify the use of this technique, we consider the macro encapsu-
lating pick, move, drop operators shown in Figure 5 and we split it into two operators, pick-move
and drop. Figure 7 shows the resulting operators. It is worth highlighting that the example also shows a
drawback of the action schema splitting technique, that is the fact that the resulting operators may have
the same number of parameters as the initial large operator.

4.6. Domain model configuration
It is well known that the way in which elements of planning models are ordered can have an impact on
the performance of domain-independent planning engines (Howe & Dahlman, 2002). In this context, the
term elements can refer to operators, pre- and post-conditions, predicate definitions, etc. for the domain
models; objects, initial, and goal state predicates listing for problem definitions.

The idea behind domain model configuration is to identify an ordering of elements that can improve
the performance of a considered domain-independent planning engine. Vallati et al. (2015) introduce
an approach that leverages on algorithm configuration techniques to identify a suitable configuration
of a domain model to improve the performance of a planning engine. The work has been subsequently
extended (Vallati et al., 2021) to consider also cases where macro-operators have to be added to the
domain model. Vallati et al. (2017) describe a method for the online reordering of domain models
by means of dedicated heuristics, based on aspects such as the number of preconditions, number of
effects, etc. In a different line of work, Vallati and Serina (2018) explore the configuration of plan-
ning problem models, by considering a structure called Planning Encoding Graph (PEG) (Serina, 2010)
to produce information that helps in creating the basis on which the reordering of elements should
be done. In a nutshell, the PEG can provide information about how important some objects of the

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


12 D. Alarnaouti, G. Baryannis and M. Vallati

Table 1. Qualitative comparison of the main strengths and weaknesses of the reviewed reformulation
techniques.

Reformulation approach Benefits Drawbacks
Macro-Operators - Reduce depth (reduce the

transitions needed to reach
goal states)

- Increase branching factor
- Increase of the ground size

Entanglements - Reduce the branching factor - Potentially incomplete
Actions Elimination - Reduce the branching factor - Rarely applicable

- Potentially incomplete
Bagged Representation - Reduce the branching factor - Only applicable when having

indistinguishable numerable
objects

Action Schema Splitting - Reduce the ground size of the
problem

- Potential increase of the
branching factor

Domain Model Configuration - Ease the exploration of the
search space

- Can have limited impact if
planners re-order elements
internally

- Potential reduction of
performance if wrong
ordering is used

problem are based on their involvement in predicates of both initial and goal descriptions. This knowl-
edge can then be exploited in the ordering of the predicates, according to the objects that they deal
with.

Considering the guidelines in Vallati et al. (2015), there are no unpromising operators that we may
prefer to put last in the Gripper domain model. However, following the introduced notion of direction-
ality, we may change the ordering of operators to pick, move, drop. In this way, the ordering of
operators follow the expected typical ordering of corresponding actions in solution plans that has been
demonstrated to be useful for a range of planning engines.

5. Qualitative comparison
Having completed an overview of the existing literature on domain- and planner-independent reformu-
lation for classical planning, we are now able to qualitatively compare the considered techniques. In
fact, we will now focus on the advantages and disadvantages of the reviewed techniques, with the aim of
providing useful guidelines for planning experts and practitioners in the process of selecting a promis-
ing technique to be used to improve planning performance on a domain of interest. Table 1 gives an
overview of the reviewed reformulation techniques in terms of their main advantages and the major
potential drawbacks.

As indicated in Table 1, most reformulation techniques aim at making the exploration of the search
space easier by reducing the branching factor, reducing the number of steps needed to reach a goal
state, or reducing the ground size of the problem to be solved. However, every technique has potential
drawbacks to be weighed in when deciding whether to exploit it. Drawbacks range from the serious
potential loss of completeness to a more shallow limited impact on performance in the worst case. The
use of macros can boost the performance of a planning engine by reducing the number of steps needed
to reach a goal state, at the cost of a potentially significant increase in terms of the branching factor and
a larger ground problem. Entanglements aim at reducing the branching factor and the ground size of a
problem by eliminating unpromising actions, but in doing so can remove some or all of the paths to goal
states. In a similar fashion, action elimination directly reduces the ground size by eliminating operators

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 13

deemed to be useless, but on its own it is rarely applicable to well-formed domain models. Further,
if applied in an ‘aggressive’ way, this may undermine completeness. Bagged representation provides
an elegant way to reduce branching factor by removing the differences between objects, but it is again
a technique that is rarely applicable on its own. Action schema splitting aims at reducing the ground
size of a problem by splitting complex operators, but this comes at the cost of increasing the branching
factor. Finally, configuring a domain model can help improve the performance of planning engines by
listing the most important planning elements first, but if used inappropriately it can also lead to adverse
effects.

It should be noted, however, that in many cases it is possible to combine different techniques to max-
imize performance boost and mitigate drawbacks of individual techniques (Vallati & Kitchin, 2020). As
mentioned in previous sections, macros are frequently combined with other reformulation techniques.
For instance, they have been used with entanglements (Chrpa et al., 2014), with action elimination
(Chrpa & Vallati, 2022), or with domain model configuration (Vallati et al., 2021). While domain
model configuration can be straightforwardly combined with any other reformulation technique, the
combination of macros and entanglements can lead to significant performance improvements, as entan-
glements are tackling the main drawback that is associated with the use of macros, that is the branching
factor.

The main take-home messages that can be diluted by the performed systematic review of the literature,
can be summarized as follows.

• The majority of existing literature is dedicated to techniques for generating macros, while com-
paratively limited effort has been devoted to investigating alternative or different reformulation
techniques. Admittedly, the planning community should aim at expanding the spectrum of refor-
mulation techniques as much as possible, to foster their combination and the possibility to use
them fruitfully in large and challenging domain models—where they are needed the most.

• A substantial number of existing reformulation techniques aims at addressing issues that are
typical of planning engines that reason on the basis of a ground representation. This focus is
historically motivated, as domain-independent planning engines traditionally ground the lifted
PDDL representation. However, as engines capable of reasoning with lifted or partially ground
representation are gaining momentum (see for instance Corrêa et al., 2020; Horčík & Fišer,
2021), reformulations that are effective also on lifted models can and should be investigated
more convincingly.

• On a similar note as the previous point, there is a lack of reformulations that look into exploit-
ing the potential synergies with planning approaches that are based on compiling the planning
problem into an equivalent SAT or ASP problem to be solved. Given the fact that reformula-
tions for such languages have been proposed (see for instance Dodaro et al., 2022), there may
be changes in PDDL models that can result in performance boost in the resulting compiled
instances.

• A potentially interesting area to explore is the reformulation of problem models. Existing tech-
niques tend to have a strong focus on the domain model, to be widely applicable on problems
from the same domain. However, as planning is more and more used in real-world applications,
the complexity of problems is increasing as well. Further, in some domains like urban traffic
control (McCluskey & Vallati, 2017) or energy network balancing (Piacentini et al., 2013), large
parts of the problem models remain the same between problems (i.e. the network description);
so it would we worth exploring if problem models can benefit from a targeted reformulation.

• We recognize that further work is needed to improve the usability of planning techniques in real-
world applications, as the main focus of existing reformulation techniques is still on classical
planning. However, as demonstrated by a number of recent works, in many cases classical
planning reformulation approaches can be extended to, or provide inspiration for, nonclassical
systems.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


14 D. Alarnaouti, G. Baryannis and M. Vallati

6. Beyond classical planning
In this review, we focused on reformulation techniques for classical planning. However, it is worth men-
tioning that there is also a (limited) body of work looking at reformulation for problems beyond classical
planning. In this section we provide an overview, by no means complete, of some of the reformulation
approaches introduced for planning problems beyond classical. On the one hand, nonclassical planning
models include additional language features that can complicate the reformulation process. Examples
of languages that have the expressive power to represent nonclassical prolems include PDDL 2 (Fox &
Long, 2003) and PDDL 3 (Gerevini et al., 2009), for numeric, temporal planning and for encoding pref-
erences; PDDL + (Fox & Long, 2006) for mixed discrete-continuous problems, PPDDL (Younes &
Littman, 2004) and RDDL (Sanner, 2010) for probabilistic planning, and MA-PDDL (Kovács, 2012)
for multi-agent problems. On the other hand, it can be argued that nonclassical planning is needed in
most real-world applications, and it is therefore imperative to investigate techniques and approaches to
boost planning performance in such circumstances.

A line of research that looks into extending reformulation techniques for classical planning to more
expressive cases is that of Chrpa et al. (2015a), which investigates the use of entanglements in numeric
planning problems. Specifically, the authors extend the notion of outer entanglements to allow them to
handle numeric variables. Similarly, Scala (2014) extended macros to be used in the presence of numeric
fluents. Finally, Franco et al. (2019) present a technique to reduce the ground size of PDDL+ planning
problems by reducing the arity of sparse predicates, drawing a parallel to bagged representation for
classical planning.

A different line of research focuses instead on translating a planning model from an original input
language, to a different less-expressive one. The main advantage of this approach is increasing the
number of planning engines that are able to reason upon the planning problem and leverage existing
robust technologies devised for solving more restricted cases. Examples of this class of reformulation
approaches include (Percassi et al., 2021), that translates PDDL+ problems into PDDL2.1 ones, (Taig &
Brafman, 2013; Grastien & Scala, 2020) that provides approaches for translating of conformant planning
problems into classical problems, the re-representation of uncertainty in conformant planning problems
(Palacios & Geffner, 2009), the translation of complex temporal aspects in PDDL2.1 (Cooper et al.,
2010), and the removal from PDDL3 of soft trajectory constraints (Percassi & Gerevini, 2019).

7. Conclusion
Reformulation represents a well-known class of approaches for improving the performance of domain-
independent planning systems. The main idea is to re-represent a given planning problem in a way that
allows to increase the efficiency of a selected planning engine to be used to solve the considered prob-
lem or class of problems. In this paper, we reviewed the state of the art of reformulation approaches for
classical planning. We first presented in detail the different techniques and then took the opportunity to
provide a qualitative comparison of their expected benefits and drawbacks, with the aim of providing
some useful guidelines to select the most appropriate reformulation to be used for a considered prob-
lem. Notably, the provided comparison helps also in highlighting potentially fruitful combinations of
reformulation techniques. Finally, to emphasize the importance of reformulation for planning models
beyond classical, we briefly presented well-known work in the area.

Acknowledgement. Mauro Vallati is supported by the UKRI Future Leaders Fellowship [grant number MR/T041196/1].

References
Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Hsu, J.-J., Jonsson, A., Kanefsky, B., Morris, P., Rajan, K., Yglesias, J., et al.

2004. Mapgen: mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE Intelligent Systems
19(1), 8–12.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 15

Alhossaini, M. & Beck, J. C. 2013. Instance-specific remodelling of planning domains by adding macros and removing operators.
In Tenth Symposium of Abstraction, Reformulation, and Approximation.

Amarel, S. 1968. On representations of problems of reasoning about actions. Machine Intelligence.
Areces, C. E., Bustos, F., Dominguez, M. & Hoffmann, J. 2014. Optimizing planning domains by automatic action schema

splitting. In Twenty-Fourth International Conference on Automated Planning and Scheduling.
Armano, G., Cherchi, G. & Vargiu, E. 2004. Automatic generation of macro-operators from static domain analysis. In Proceedings

of the 16th European Conference on Artificial Intelligence, 955–956.
Asai, M. & Fukunaga, A. 2015. Solving large-scale planning problems by decomposition and macro generation. In Proceedings

of the International Conference on Automated Planning and Scheduling, 25, 16–24.
Baryannis, G., Kritikos, K. & Plexousakis, D. 2017. A specification-based QoS-aware design framework for service-based appli-

cations. Service Oriented Computing and Applications 11(3), 301–314. ISSN 1863-2394. doi: 10.1007/s11761-017-0210-4.
Baryannis, G. & Plexousakis, D. 2013. WSSL: a fluent calculus-based language for web service specifications. In 25th

International Conference on Advanced Information Systems Engineering (CAiSE 2013), Salinesi, C., Norrie, M. C. & Pastor,
Ó. (eds), Lecture Notes in Computer Science 7908, 256–271. Springer Berlin Heidelberg. ISBN 978-3-642-38708-1. doi:
10.1007/978-3-642-38709-8_17.

Baryannis, G. & Plexousakis, D. 2014. Fluent calculus-based semantic web service composition and verification using WSSL.
In 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013), co-located with ICSOC 2013,
Lomuscio, A., et al. (eds), Lecture Notes in Computer Science 8377, 256–270. Springer International Publishing Switzerland.
doi: 10.1007/978-3-319-06859-6_23.

Baryannis, G., Validi, S., Dani, S. & Antoniou, G. 2019. Supply chain risk management and artificial intelligence:
state of the art and future research directions. International Journal of Production Research 57(7), 2179–2202. doi:
10.1080/00207543.2018.1530476.

Bocchese, A. F., Fawcett, C., Vallati, M., Gerevini, A. E. & Hoos, H. H. 2018. Performance robustness of AI planners in the 2014
international planning competition. AI Community 31(6), 445–463.

Botea, A., Enzenberger, M., Müller, M. & Schaeffer, J. 2005. Macro-ff: improving ai planning with automatically learned macro-
operators. Journal of Artificial Intelligence Research 24, 581–621.

Cardellini, M., Maratea, M., Vallati, M., Boleto, G. & Oneto, L. 2021. In-station train dispatching: a PDDL+ planning approach.
In Proceedings of the International Conference on Automated Planning and Scheduling, 450–458.

Castellanos-Paez, S., Rombourg, R. & Lalanda, P. 2021a. ERA: Extracting planning macro-operators from adjacent and non-
adjacent sequences. In Pacific Rim Knowledge Acquisition Workshop, 30–45. Springer.

Castellanos-Paez, S., Rombourg, R. & Lalanda, P. 2021b. On the relevance of extracting macro-operators with non-adjacent
actions: does it matter? In 13th International Conference on Agents and Artificial Intelligence.

Chrpa, L. 2010a. Combining learning techniques for classical planning: Macro-operators and entanglements. In 2010 22nd IEEE
International Conference on Tools with Artificial Intelligence, 2, 79–86. IEEE.

Chrpa, L. 2010b. Generation of macro-operators via investigation of action dependencies in plans. The Knowledge Engineering
Review 25(3), 281–297.

Chrpa, L. and Barták, R. 2009. Reformulating planning problems by eliminating unpromising actions. In Eighth Symposium on
Abstraction, Reformulation, and Approximation.

Chrpa, L. and McCluskey, T. L. 2012. On exploiting structures of classical planning problems: Generalizing entanglements. In
ECAI, 240–245.

Chrpa, L., McCluskey, T. L. & Osborne, H. 2012. Reformulating planning problems: a theoretical point of view. In 25th
International Florida Artificial Intelligence Research Society Conference, 14–19.

Chrpa, L., Scala, E. & Vallati, M. 2015a. Towards a reformulation based approach for efficient numeric planning: numeric outer
entanglements. In Eighth Annual Symposium on Combinatorial Search.

Chrpa, L. and Siddiqui, F. H. 2015. Exploiting block deordering for improving planners efficiency. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

Chrpa, L. and Vallati, M. 2019. Improving domain-independent planning via critical section macro-operators. In Proceedings of
the AAAI Conference on Artificial Intelligence, 7546–7553.

Chrpa, L. and Vallati, M. 2022. Planning with critical section macros: theory and practice. Journal of Artificial Intelligence
Research.

Chrpa, L., Vallati, M., McCluskey, T. L. and Kitchin, D. 2013. Generating macro-operators by exploiting inner entanglements. In
Tenth Symposium of Abstraction, Reformulation, and Approximation.

Chrpa, L., Vallati, M. & McCluskey, T. L. 2014. Mum: a technique for maximising the utility of macro-operators by constrained
generation and use. In Twenty-Fourth International Conference on Automated Planning and Scheduling.

Chrpa, L., Vallati, M. & McCluskey, T. L. 2015b. On the online generation of effective macro-operators. In Twenty-Fourth
International Joint Conference on Artificial Intelligence.

Chrpa, L., Vallati, M. & McCluskey, T. L. 2018. Outer entanglements: a general heuristic technique for improving the efficiency
of planning algorithms. Journal of Experimental & Theoretical Artificial Intelligence 30(6), 831–856.

Chrpa, L., Vallati, M. & McCluskey, T. L. 2019. Inner entanglements: narrowing the search in classical planning by problem
reformulation. Computational Intelligence 35(2), 395–429.

Cooper, M. C., Maris, F. & Régnier, P. 2010. Compilation of a high-level temporal planning language into PDDL 2.1. In 2010
22nd IEEE International Conference on Tools with Artificial Intelligence, 181–188.

Corrêa, A. B., Pommerening, F., Helmert, M. & Frances, G. 2020. Lifted successor generation using query optimization
techniques. In Proceedings of the International Conference on Automated Planning and Scheduling, 30, 80–89.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1007/s11761-017-0210-4
https://doi.org/10.1007/978-3-642-38709-8_17
https://doi.org/10.1007/978-3-319-06859-6_23
https://doi.org/10.1080/00207543.2018.1530476
https://doi.org/10.1017/S0269888923000097


16 D. Alarnaouti, G. Baryannis and M. Vallati

Dawson, C. & Siklossy, L. 1977. The role of preprocessing in problem solving systems: “an ounce of reflection is worth a pound
of backtracking”. In Proceedings of the 5th International Joint Conference on Artificial Intelligence-Volume 1, 465–471.

Dodaro, C., Maratea, M. & Vallati, M. 2022. On the configuration of more and less expressive logic programs. In Theory and
Practice of Logic Programming, 1–29. doi: 10.1017/S1471068422000096.

Dulac, A., Pellier, D., Fiorino, H. & Janiszek, D. 2013. Learning useful macro-actions for planning with n-grams. In 2013 IEEE
25th International Conference on Tools with Artificial Intelligence, 803–810.

Fikes, R. E. & Nilsson, N. J. 1971. Strips: a new approach to the application of theorem proving to problem solving. Artificial
Intelligence 2(3–4), 189–208.

Fox, M. & Long, D. 1998. The automatic inference of state invariants in TIM. Journal of Artificial Intelligence Research 9,
367–421.

Fox, M. & Long, D. 2003. PDDL2.1: an extension to PDDL for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20, 61–124.

Fox, M. & Long, D. 2006. Modelling mixed discrete-continuous domains for planning. Journal of Artificial Intelligence Research
27, 235–297.

Franco, S., Vallati, M., Lindsay, A. & McCluskey, T. L. 2019. Improving planning performance in PDDL+ domains via automated
predicate reformulation. In Computational Science - ICCS 491–498.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A. & Dimopoulos, Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners. Artificial Intelligence 173(5–6), 619–668.

Gerevini, A., Saetti, A. & Vallati, M. 2014. Planning through automatic portfolio configuration: the pbp approach. Journal of
Artificial Intelligence Research 50, 639–696.

Gerevini, A. & Schubert, L. 1998. Inferring state constraints for domain-independent planning. In Proceedings of the American
Artificial Intelligence Conference, AAAI/IAAI, 905–912.

Ghallab, M., Nau, D. & Traverso, P. 2004. Automated Planning: Theory and Practice. Elsevier.
Grastien, A. & Scala, E. 2020. CPCES: a planning framework to solve conformant planning problems through a counterexample

guided refinement. Artificial Intelligence 284, 103271.
Haslum, P. & Jonsson, P. 2000. Planning with reduced operator sets. In AIPS, 150–158.
Hoffmann, J. & Nebel, B. 2001. The ff planning system: fast plan generation through heuristic search. Journal of Artificial

Intelligence Research 14, 253–302.
Hofmann, T., Niemueller, T. & Lakemeyer, G. 2017. Initial results on generating macro actions from a plan database for planning

on autonomous mobile robots. In Twenty-Seventh International Conference on Automated Planning and Scheduling.
Hofmann, T., Niemueller, T. & Lakemeyer, G. 2020. Macro operator synthesis for adl domains. In ECAI 2020, 761–768. IOS

Press.
Horcčk, R. and Fišer, D. 2021. Endomorphisms of lifted planning problems. In Proceedings of the International Conference on

Automated Planning and Scheduling, 31, 174–183.
Howe, A. E. and Dahlman, E. 2002. A critical assessment of benchmark comparison in planning. Journal of Artificial Intelligence

Research 17, 1–33.
Iba, G. A. 1985. Learning by discovering macros in puzzle solving. In Proceedings of the 9th International Joint Conference on

Artificial Intelligence - Volume 1, 640–642.
Iba, G. A. 1989. A heuristic approach to the discovery of macro-operators. Machine Learning 3(4), 285–317.
Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F. & Borrajo, D. 2012. A review of machine learning for automated

planning. The Knowledge Engineering Review 27(4), 433–467.
Kitchenham, B. & Charters, S. 2017. Guidelines for performing systematic literature reviews in software engineering. Technical

Report EBSE-2007-01, EBSE Technical Report.
Korf, R. E. 1985. Macro-operators: a weak method for learning. Artificial Intelligence 26(1), 35–77.
Kovács, D. L. 2012. A multi-agent extension of PDDL3.1. In Proceedings of the 3rd Workshop on the International Planning

Competition (IPC), ICAPS-2012, Atibaia, Sao Paulo, Brazil, 19–27.
Long, D., Fox, M. & Hamdi, M. 2002. Reformulation in planning. In International Symposium on Abstraction, Reformulation,

and Approximation, 18–32.
McCluskey, T. L. 1987. Combining weak learning heuristics in general problem solvers. In Proceedings of the 10th International

Joint Conference on Artificial Intelligence - Volume 1, IJCAI’87, San Francisco, CA, USA, 331–333. Morgan Kaufmann
Publishers Inc.

McCluskey, T. L. & Vallati, M. 2017. Embedding automated planning within urban traffic management operations. In Proceedings
of the Twenty-Seventh International Conference on Automated Planning and Scheduling, ICAPS, 391–399. AAAI Press.

McDermott, D. M. 2000. The 1998 AI planning systems competition. AI Magazine 21(2), 35–35.
Minton, S. 1985. Selectively generalizing plans for problem-solving. In IJCAI, 596–599. Citeseer.
Newton, M. H. & Levine, J. 2007. Wizard: suggesting macro-actions comprehensively. In Proceedings of the Doctoral Consortium

held at ICAPS, 7.
Palacios, H. & Geffner, H. 2009. Compiling uncertainty away in conformant planning problems with bounded width. Journal of

Artificial Intelligence Research 35, 623–675.
Pednault, E. P. 1987. Formulating multiagent, dynamic-world problems in the classical planning framework. In Reasoning About

Actions & Plans, 47–82. Elsevier.
Percassi, F. & Gerevini, A. E. 2019. On compiling away PDDL3 soft trajectory constraints without using automata. In Proceedings

of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS, 320–328.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000096
https://doi.org/10.1017/S0269888923000097


The Knowledge Engineering Review 17

Percassi, F., Scala, E. & Vallati, M. 2021. Translations from discretised PDDL+ to numeric planning. In Proceedings of the
International Conference on Automated Planning and Scheduling, 31, 252–261.

Piacentini, C., Alimisis, V., Fox, M. & Long, D. 2013. Combining a temporal planner with an external solver for the power
balancing problem in an electricity network. In Proceedings of the Twenty-Third International Conference on Automated
Planning and Scheduling, ICAPS. AAAI.

Ramrez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R., Scala, E. & Zamani, M. 2018. Integrated hybrid
planning and programmed control for real time UAV maneuvering. In Proceedings of AAMAS, 1318–1326.

Riddle, P., Barley, M. & Franco, S. 2013. Problem reformulation as meta-level search. In Proceedings of the Conference on
Advances in Cognitive Systems.

Riddle, P., Barley, M., Franco, S. & Douglas, J. 2015a. Automated transformation of PDDL representations. In International
Symposium on Combinatorial Search.

Riddle, P., Barley, M., Franco, S. & Douglas, J. 2015b. Bagged representations in PDDL. In 4th Workshop on the International
Planning Competition, 17–23.

Riddle, P., Barley, M., Franco, S. & Douglas, J. 2015c. Analysis of bagged representations in PDDL. In Workshop on Heuristics
and Search for Domain-independent Planning, 17–23.

Riddle, P., Douglas, J., Barley, M. & Franco, S. 2016. Improving performance by reformulating PDDL into a bagged repre-
sentation. In Proceedings of the 8th Workshop on Heuristic Search for Domain-independent Planning (HSDIP@ ICAPS),
28–36.

Riddle, P. J., Holte, R. C. & Barley, M. W. 2011. Does representation matter in the planning competition? In Ninth Symposium of
Abstraction, Reformulation, and Approximation.

Sanner, S. 2010. Relational dynamic influence diagram language (rddl): language description. Unpublished ms. Australian
National University 32, 27.

Scala, E. 2014. Plan repair for resource constrained tasks via numeric macro actions. In Proceedings of the Twenty-Fourth
International Conferenc on International Conference on Automated Planning and Scheduling, ICAPS’14, 280–288. AAAI
Press. ISBN 9781577356608.

Serina, I. 2010. Kernel functions for case-based planning. Artificial Intelligence 174(16–17), 1369–1406.
Siddiqui, F. H. & Haslum, P. 2012. Block-structured plan deordering. In Australasian Joint Conference on Artificial Intelligence,

803–814.
Taig, R. & Brafman, R. I. 2013. Compiling conformant probabilistic planning problems into classical planning. In Twenty-Third

International Conference on Automated Planning and Scheduling.
Vallati, M., Chrpa, L. & Kitchin, D. 2013. An automatic algorithm selection approach for planning. In 2013 IEEE 25th

International Conference on Tools with Artificial Intelligence, 1–8. IEEE.
Vallati, M., Chrpa, L. & McCluskey, T. 2017. Improving a planner’s performance through online heuristic configuration of domain

models. In Proceedings of the 10th International Symposium on Combinatorial Search (SoCS 2017), 171–172.
Vallati, M., Chrpa, L., McCluskey, T. L. & Hutter, F. 2021. On the importance of domain model configuration for automated

planning engines. Journal of Automated Reasoning 65(6), 727–773.
Vallati, M., Chrpa, L. & Serina, I. 2020. Mevo: a framework for effective macro sets evolution. Journal of Experimental &

Theoretical Artificial Intelligence 32(4), 685–703.
Vallati, M., Hutter, F., Chrpa, L. & McCluskey, T. L. 2015. On the effective configuration of planning domain models. In Twenty-

Fourth International Joint Conference on Artificial Intelligence.
Vallati, M. & Kitchin, D. 2020. Knowledge Engineering Tools and Techniques for AI Planning. Springer.
Vallati, M. & Serina, I. 2018. A general approach for configuring PDDL problem models. In Twenty-Eighth International

Conference on Automated Planning and Scheduling.
Younes, H. L. & Littman, M. L. 2004. PPDDL1.0: an extension to PDDL for expressing planning domains with probabilistic

effects. Technical Report CMU-CS-04-162, 2, 99.

https://doi.org/10.1017/S0269888923000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000097

	Introduction
	Background
	Classical planning
	The Gripper domain
	Reformulation in Domain-Independent planning
	Review methodology
	Search strategy
	Search scope
	Related surveys
	Reformulation techniques for classical planning
	Entanglements
	Macro-operators
	Operators elimination
	Bagged representation
	Action schema splitting
	Domain model configuration
	Qualitative comparison
	Beyond classical planning
	Conclusion

