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Abstract
In this paper, we explore a non-cooperative optimal reinsurance problem incorporating likelihood ratio uncertainty,
aiming to minimize the worst-case risk of the total retained loss for the insurer. We establish a general relation
between the optimal reinsurance strategy under the reference probability measure and the strategy in the worst-case
scenario. This relation can further be generalized to insurance design problems quantified by tail risk measures. We
also characterize distortion risk measures for which the insurer’s optimal strategy remains the same in the worst-
case scenario. As an application, we determine the optimal policies for the worst-case scenario using an expectile
risk measure. Additionally, we propose and explore a cooperative problem, which can be viewed as a general risk
sharing problem between two agents in a comonotonic market. We determine the risk measure value and the optimal
reinsurance strategy in the worst-case scenario for the insurer and compare the results from the non-cooperative and
cooperative models.

1. Introduction
The study on reinsurance design was pioneered by Borch (1960). Since then, optimal reinsurance
problems have received significant attention in insurance and actuarial science. Typically, an optimal
reinsurance model is formulated as an optimization problem, with the aim of identifying indemnity
functions that satisfy specific optimization targets. In such optimization problems, the ways of quan-
tifying risk exposure level is one of the most crucial concerns, which is typically conducted under
the assumption that the distribution of the underlying loss variable is known or given. However, this
assumption is often unrealistic, as the actual loss distribution is generally unavailable in most practical
scenarios. Estimating distributions from available data is particularly challenging for catastrophic risks
due to limited data, making such estimates unreliable. Moreover, there is no universal consensus on
which loss distribution or model should be used in real-world applications. This uncertainty motivates
us to explore distributional model uncertainty in determining optimal reinsurance policies. The
selection of the uncertainty set of distributions is a central question in problems incorporating model
uncertainty. Two common approaches to constructing uncertainty sets are moment-based and distance-
based methods. Moment-based sets include distributions whose moments, such as mean and variance,
meet specific conditions. For instance, Ghaoui et al. (2003) study the worst-case Value-at-Risk (VaR)
in a portfolio optimization problem with only bounds on the mean and covariance matrix. Chen et al.
(2011) demonstrate that the worst-case Tail Value-at-Risk (TVaR) shares the same closed-form solution
as the worst-case VaR within a set of distributions with the same mean and covariance. These results are
extended by Li (2018) to law-invariant coherent risk measures. Liu et al. (2020) determine the worst-case
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law-invariant convex risk functionals for a risk with a given mean and a higher moment. A distance-
based uncertainty set incorporates measures that are close to the reference measure according to a
chosen distance. Embrechts et al. (2020) model the heterogeneous beliefs by different probability
measures. Liu et al. (2022) introduce uncertainty into risk sharing models, characterizing either by
the likelihood ratio between probability measures (i.e., the Radon–Nikodym derivative) or by the
Wasserstein metric between distributions. The study of uncertainty sets that combine moment and
Wasserstein distance constraints can be found in Bernard et al. (2024), which apply isotonic projections
to derive expressions for the distortion risk measure value and the distribution of random losses in worst-
case and best-case scenarios. The study of isotonic projections was introduced to the field of quantitative
finance by Rüschendorf and Vanduffel (2020). Following the research findings of Bernard et al. (2024),
Cai et al. (2024) use the same uncertainty set and further impose stop-loss and limited-loss functions
on the random variable, characterizing the worst-case distribution.

In the research area of insurance and actuarial science, optimal insurance and reinsurance design
problems under distributional uncertainty become more important nowadays. Hu et al. (2015) introduce
model uncertainty to the optimal reinsurance framework by considering the set of all distributions with
the same first two moments. Asimit et al. (2017) consider an uncertainty set including finite alternative
distributions and determine the optimal reinsurance strategies. Birghila and Pflug (2019) use Wasserstein
metric to define the uncertainty set and impose a premium constraints into the uncertainty model. In Liu
and Mao (2022), moments constraints are adopted, and the authors aim to minimize the worst-case
VaR of the insurer’s total risk exposure. Recently, Boonen and Jiang (2024) determine the optimal
insurance strategy when the insurer faces uncertainty about the underlying distribution and considers
all the distributions within a Wasserstein ball of a reference distribution.

In aforementioned models, the main focus is to determine the optimal reinsurance strategies in the
worst-case scenario, which is a common approach to address model uncertainty in robust risk man-
agement introduced by Scarf et al. (1957). However, it remains unclear how the optimal strategy in a
worst-case scenario differs from that in a regular scenario without the concern of model uncertainty.
In practice, the insurer needs to conduct multiple scenario tests including regular-case and worst-case
scenarios. Establishing a relation between the optimal solutions in different scenarios can effectively
support the insurer’s risk management in the following key aspects: (1) directly derive the optimal rein-
surance strategy in the worst-case scenario from the solution in the regular-case scenario, if such a
solution is already known; (2) assess the adequacy of the insurer’s reinsurance coverage in the worst-
case scenario; and (3) quantify the robustness of the insurer’s optimal strategies in different scenarios.
To address those concerns, we explore in this work an optimal reinsurance problem in the worst-case
scenario incorporating likelihood ratio uncertainty set, as introduced in Liu et al. (2022). The insurer
chooses a reference probability measure which can reflect the regular-case scenario in the best way and
determines her optimal reinsurance strategy. Any alternative probability measure in the uncertainty set
should agree with the reference one on events with zero probability. For non-zero probability random
events, the likelihood ratio between the reference and alternative measures should be bounded by a
predetermined tolerance level. For a law-invariant risk measure, which assigns the same risk value to
random variables with the same distribution, each probability measure in the uncertainty set leads to a
specific distribution of the underlying random loss, thereby affecting the risk exposure quantified by the
risk measure. The insurer’s objective is to minimize the total loss exposure in the worst-case scenario
by choosing the optimal reinsurance policy which is modified from the solution in the regular-case sce-
nario. To the best of our knowledge, our model is the first one solving the optimal reinsurance strategy
in the worst-case scenario using the likelihood ratio uncertainty set. Furthermore, contributions of our
results are four-folds. First, we establish the relation between solutions in the regular-case and worst-
case scenarios for any law-invariant monetary risk measure, which is of special interests to the insurer
when the robust risk measure in the worst-case scenario, such as robust expectile, has no closed-form
formulation. It is essential to highlight that this relation is not limited to problems involving likelihood
ratio uncertainty; it is applicable to any optimal reinsurance problem characterized by tail risk measures.
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For the general framework of tail risk measures, we refer to Liu and Wang (2021). Second, we demon-
strate that for certain distortion risk measures, such as TVaR, the optimal reinsurance strategy remains
the same in both the worst-case and regular-case scenarios. Such a characterization of risk measures is
desirable for insurers concerned with distributional model uncertainty. Third, we propose two concepts
of robustness in term of the solvency gaps and worst-case strategies, respectively, for the insurer, and
characterize the robustness for Range Value-at-Risk (RVaR) which covers regulatory risk measures VaR
and TVaR as special cases. Finally, we propose an alternative risk sharing model in which the reinsurer
is cooperative with the insurer in term of the model uncertainty and re-calculate premium in different
scenarios.

This paper is organized as follows. Section 2 presents the preliminaries. In Section 3, we examine
the relation between the optimal solution to a reinsurance design problem and its worst-case counterpart
under likelihood ratio uncertainty. We present the necessary and sufficient conditions under which the
two problems yield the same solution. The robustness of the solution is analyzed in this section. Building
on this relation, we present the robust solution to the optimal reinsurance problem quantified by the
expectile risk measure in Section 4. In Section 5, we explore the cooperative reinsurance problem with
likelihood ratio uncertainty and compare its results with those of its non-cooperative counterpart. Finally,
Section 6 provides the conclusion of the paper.

2. Preliminaries
2.1 Risk measure and tail risks
We work with an atomless probability space (�, F , P), where P is the reference probability measure.
Without specifying otherwise, all risks are quantified under the reference probability measure P. Let
Lq be the set of all random variables in (�, F , P) with finite q-th moment, q ∈ (0, ∞). Throughout,
for any random loss X, a positive value of X represents a financial loss, FX denotes the distribution
function of X, SX = 1 − FX is the survival function of X, and the (left-continuous) quantile function
is given by F−1

X (p) = inf{x ∈R : FX(x) � p} for p ∈ (0, 1). By convention, we define F−1
X (0) = ess inf(X)

and F−1
X (1) = ess sup(X) as the essential infimum and essential supremum of X, respectively. Let UX

be a uniform random variable on [0,1] such that F−1
X (UX) = X almost surely (a.s.). The existence of

such uniform random variable UX for any X is established, for example, in Lemma A.32 of Föllmer
and Schied (2016). Let X

d= Y if the random variables X and Y have the same distribution. For x, y ∈R,
x ∨ y = max{x, y}, x ∧ y = min{x, y}, and (x − y)+ = max{0, x − y}.

Let X be a convex cone of random variables containing L∞, and a risk measure ρ is a functional that
maps X to R. In this paper, we focus on law-invariant risk measures, meaning that ρ(X) depends solely
on the distribution of X. Mathematically, ρ has the law-invariant property if ρ(X) = ρ(Y) for all X, Y ∈X
such that X

d= Y . A large class of risk measures commonly used in insurance and finance literature is the
monetary risk measure, which is often employed to quantify the capital reserve.

Definition 1. (Monetary Risk Measure). A law-invariant risk measure ρ is defined as a monetary risk
measure if it satisfies the following two properties:

(A1) Monotonicity: ρ(X) � ρ(Y) if X � Y a.s., X, Y ∈X .
(A2) Translation-invariance: ρ(X − m) = ρ(X) − m for any m ∈R and X ∈X .

Comonotonic additivity is of particular importance for insurance pricing:

(A3) Comonotonic additivity: ρ(X + Y) = ρ(X) + ρ(Y) if X, Y ∈X are comonotonic.1

1Two random variables X and Y are comonotonic if there exists �0 ∈F with P(�0) = 1 and, for all ω, ω′ ∈ �0, it holds true
(X(ω) − X(ω′))(Y(ω) − Y(ω′)) � 0.
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The class of distortion risk measures, which satisfy comonotonic additivity, is commonly used in the
insurance literature. A distortion risk measure, denoted by ρg, is defined as:

ρg(X) =
∫ +∞

0

g(SX(x)) dx −
∫ 0

−∞
(1 − g(SX(x))) dx, X ∈X , (2.1)

where g : [0, 1] �→ [0, 1] is a non-decreasing function with g(0) = 0 and g(1) = 1, and g is called the
distortion function of ρg. We always assume that X is a set of random variables such that ρg(X) is finite.
Two well-known risk measures used in insurance regulation are the (left) Value-at-Risk (VaR) at a given
confidence level α ∈ (0, 1), defined as VaRα(X) = F−1

X (1 − α), and the Tail Value-at-Risk (TVaR) at a
given confidence level α ∈ (0, 1), which is defined as TVaRα(X) = 1

α

∫ α

0
VaRu(X) du for X ∈ L1. Both

VaRα and TVaRα are distortion risk measures induced by distortion functions 1(α,1](x) and min{x/α, 1},
0 � x � 1, respectively. Here, 1{·} is the indicator function.

Both VaRα and TVaRα are α-tail risk measures. In the framework of tail risk measures proposed by
Liu and Wang (2021), for a random variable X ∈X and p ∈ (0, 1],

Xp � F−1
X (1 − p + pUX)

represents the tail risk of X beyond its (1 − p)-quantile. One can easily check that P(Xp � x) = P(X �
x|UX � 1 − p) = (P(X � x) − (1 − p))+/p for x ∈R. Furthermore, for p ∈ (0, 1), a risk measure ρ is a
p-tail risk measure if ρ(X) = ρ(Y) for all X, Y ∈X satisfying Xp

d= Yp. Proposition 1 of Liu and Wang
(2021) uses the following equation to characterize a p-tail risk measure ρ through its unique generator,
denoted by ρ∗,

ρ(X) = ρ∗(Xp), X ∈X .

Conversely, for each generator ρ∗, the p-tail risk measure induced by ρ∗ is also unique.

2.2 Reinsurance design and likelihood ratio uncertainty set
In a reinsurance contract, the underlying risk X faced by the insurer is shared between the insurer
and the reinsurer. Given an indemnity function denoted by I , the risk I(X) is ceded to the reinsurer,
while RI(X) = X − I(X) is retained by the insurer. To avoid the issue of moral hazard, it is commonly
take I = {I : [0, ∞) → [0, ∞), I is non-decreasing and 0 � I(x) − I(y) � x − y for 0 � y � x} as the set
of all feasible indemnity functions. In exchange for transferring risk, the reinsurer charges a reinsur-
ance premium, denoted by π (I(X)). Thus, the insurer’s total loss becomes �(X; I) = RI(X) + π (I(X))
after entering the reinsurance contract I . In a regular case, when the distribution of X is given by P, the
optimal reinsurance design problem for the insurer using the risk measure ρ can be expressed as:

min
I∈I

ρ (RI(X) + π (I(X))) . (2.2)

Optimization problems developed from (2.2) have been intensively discussed in the literature. Obviously,
the choice of the risk measure ρ, the underlying risk X, and the reinsurance premium principle π play
crucial roles in (2.2). In this current work, we define the triplet (ρ, π , X) as a reinsurance setting and
subsequently consider the optimal reinsurance strategy for the insurer.

Assumption 1. The risk X is a non-negative random variable with a continuous support.

Assumption 2. Assume that ρ is a law-invariant monetary risk measure, and the premium principle is
given by π = (1 + θ )ρg, where θ � 0 is a safety loading, and ρg is a distortion risk measure induced by
a continuously differentiable distortion function g.
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The above two assumptions are commonly used in the literature on insurance/reinsurance design.
Note that π = (1 + θ )ρg encompasses popular premium principles, such as the expected-value premium
by setting ρg =E, and Wang’s premium by setting θ = 0.

Definition 2. (Regular-case strategy). Given a reinsurance setting (ρ, π , X), a regular-case strategy for
the insurer, denoted by I∗

[ρ,π ,X], is the optimal reinsurance solution to the problem (2.2) under the reference
probability measure P, that is,

I∗
[ρ,π ,X] ∈ arg minI∈I {ρ (RI(X) + π (I(X)))} . (2.3)

For a law-invariant risk measure ρ, the “true” distribution of X is required for quantification. The
distribution of X under P represents the regular-case scenario for the insurer. In robust risk management,
the insurer needs to quantify the distribution of X in the worst-case scenario as well. Mathematically,
we use the likelihood ratio to construct the uncertainty set of probability measures: given λ ∈ (0, 1],
define

Pλ = {Q : probability measure Q is absolutely continuous with respect to P and dQ/ dP� 1/λ}.
(2.4)

Here, λ represents the size of the uncertainty set. Because ρ is law-invariant, evaluating the insurer’s risk
measure under a probability measure Q ∈Pλ is equivalent to determining the distribution of X under Q.
For each Q ∈Pλ, let XQ be a random variable whose distribution under P is the same as the distribution
of X under Q. The existence of such XQ is guaranteed by taking (FQ

X )−1(UX) where FQ

X is the distribution
of X under Q and UX is a uniform random variable under P. Thus, the insurer’s risk exposure under Q
can be evaluated by using the distribution of XQ under P. For the insurer adopting ρ and Pλ to model
her uncertainty concerns, the robust risk measure induced by ρ and Pλ is defined as:

ρ̄Pλ (Y) = sup
Q∈Pλ

ρ(YQ), Y ∈X . (2.5)

By Proposition 2 of Liu et al. (2022), ρ̄Pλ is a λ-tail risk measure generated by ρ.

3. Non-cooperative reinsurance design in the worst-case scenario
In this section, we assume a given reinsurance setting (ρ, π , X) and uncertainty setPλ and propose a non-
cooperative reinsurance model for the insurer in the worst-case scenario. Specifically, we are going to
define the worst-case strategy for the insurer and investigate its relation with the regular-case strategy. In
the literature, it is a commonly accepted assumption for the problem (2.2), and therefore for the regular-
case strategy, that the insurer and the reinsurer use the same probability measure for risk quantification,
meaning a basic agreement on the probabilities of random events from both parties. We follow the same
assumption to define the optimization problem in the worst-case scenario to be comparable with problem
(2.2). Meanwhile, as the counter-party, the reinsurer does not collaborate with the insurer regarding
model uncertainty and determines the reinsurance premium under the reference probability measure P,
that is, π (Y) = π (YP) for all Y ∈X . On the other hand, the insurer adopts the uncertainty set Pλ. For any
alternative probability measure Q ∈Pλ, the insurer uses XQ to evaluate her total risk after implementing
a reinsurance policy I ∈ I, and her total risk exposure under Q becomes �(XQ; I) = RI(XQ) + π (I(X))
for I ∈ I. Thus, the insurer’s optimization problem in the worst-case scenario can be written as:

min
I∈I

sup
Q∈Pλ

ρ(RI(XQ) + π (I(X))). (3.1)

3.1 Optimal strategy in the worst-case scenario
To solve problem (3.1), we first establish a connection between its objective function and the robust risk
measure.
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Lemma 3.1. If f(x) is a deterministic function such that {x : f (x) � y} is a Borel set for any y ∈R, then
the distributions of f (XQ) and f (X)Q are the same under the reference measure P.

Proof. Arbitrarily take y ∈R. Let A = {x : f (x) � y}, which is a Borel set. The distribution of f (XQ)
under P is given by P(f (XQ) � y) = P(XQ ∈ A) =Q(X ∈ A), where the last equality follows from the
construction. In addition, the distribution of f (X)Q under P is P(f (X)Q � y) =Q(f (X) � y) =Q(X ∈ A) =
P(f (XQ) � y). Since y is taken arbitrarily, we conclude that f (XQ) follows the same distribution as f (X)Q
under P. �

It is easy to see that all indemnity functions and the associated retained loss functions satisfy the con-
ditions in Lemma 3.1. Therefore, two random variables RI(X)Q and RI(XQ) share the same distribution
under P. Since π (I(X)) is a constant for a given I and X, and ρ is law-invariant, Lemma 3.1 implies, for
Q ∈Pλ, ρ

(
RI(XQ) + π (I(X))

) = ρ
(
RI(X)Q + π (I(X))

)
. It follows that

sup
Q∈Pλ

ρ(RI(XQ) + π (I(X))) = sup
Q∈Pλ

ρ(RI(X)Q + π (I(X))) = ρPλ (RI(X) + π (I(X))),

and the problem (3.1) can be further written as:

min
I∈I

ρPλ(RI(X) + π (I(X))), (3.2)

where the robust risk measure ρPλ is adopted by the insurer. The optimal solution to problem (3.2)
represents the insurer’s optimal strategy in the worst-case scenario.

Definition 3. (Worst-case strategy). Given a reinsurance setting (ρ, π , X), a worst-case strategy with
respect to the uncertainty set Pλ, denoted by I∗

[ρPλ ,π ,X]
, is an optimal solution to problem (3.2), that is,

I∗
[ρPλ ,π ,X] ∈ arg minI∈IρPλ (RI(X) + π (I(X))). (3.3)

Theorem 3.1 below presents the first main result of this paper, where we characterize the worst-
case strategy I∗

[ρPλ ,π ,X]
by identifying how it differs from the regular-case strategy. To proceed, we first

introduce a modified premium principle:

π̄λ �
{

(1 + θ )g(λ)ρ ḡλ , if g(λ) > 0,

0, if g(λ) = 0,

where g satisfies Assumption 2, and ḡλ(t) = g(tλ)
g(λ)

, 0 � t � 1, is a well-defined distortion function when
g(λ) > 0.

Theorem 3.1. Let Assumptions 1 and 2 hold. Define Xλ,0 = Xλ − vλ, where vλ �VaRλ(X). Then, the
insurer’s worst-case strategy, which is the optimal solution to problem (3.2), is given by:

I∗
[ρPλ ,π ,X](x) =

{
(x − vλ + a∗)+ , x < vλ,

I∗
[ρ,π̄λ ,Xλ,0](x − vλ) + a∗, x � vλ,

(3.4)

where a∗ = inf{0 � a � vλ : g(SX(vλ − a)) � 1
1+θ

}, and I∗
[ρ,π̄λ ,Xλ,0] is the insurer’s regular-case strategy to

the following problem:

min
I∈I

ρ
(
RI(Xλ,0) + π̄λ(I(Xλ,0))

)
. (3.5)

Furthermore, if π = (1 + θ )E, then a∗ =
(

vλ − VaR 1
1+θ

(X)
)

+
and π̄λ = (1 + θ )λE.

Proof. The proof of Theorem 3.1 is presented in Appendix A. �
Since the robust risk measure ρPλ is a λ-tail risk measure generated by ρ, from Liu et al. (2022) we

know that the insurer’s worst-case scenario occurs under the worst-case probability measure Q∗ such
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that XQ∗
d= Xλ under P. Mathematically, Q∗ can be defined via its Radon–Nikodym derivative as follows:

dQ∗
dP = 1{UX>1−λ}

λ
. It is easy to see that Q∗ ∈Pλ, and XQ∗

d= Xλ under P because

P(XQ∗ > z) =Q∗(X > z) = P(X > z, UX > 1 − λ)

λ
= min{P(X > z), λ}

λ
= P(Xλ > z).

Under Assumption 2, π = (1 + θ )ρg is given by a distortion risk measure, and thus the premium prin-
ciple π̄λ is also given by a distortion risk measure, induced by the modified distortion function ḡλ. For
example, the expected-value premium principle π (Y) = (1 + θ )E[Y] is commonly used in insurance lit-
erature. In this case, π̄λ(X) = (1 + θ )λE[X] is an expected-value premium principle with an adjusted
risk loading of (1 + θ )λ − 1. Following Theorem 3.1, if the insurer has a closed-form solution for the
regular-case strategy I∗

[ρ,π ,X] for a given reinsurance setting (ρ, π , X), then I∗
[ρ,π̄λ ,Xλ,0] can be easily deter-

mined using the distribution of the tail risk Xλ,0 and the modified premium principle π̄λ. The worst-case
strategy follows directly from (3.4).

For small loss amounts x � vλ, the worst-case strategy in (3.4) follows a stop-loss policy with a reten-
tion level vλ − a∗. Indeed, among all indemnity functions satisfying I(vλ) = a∗, the worst-case strategy
gives the smallest ceded loss on the loss range [0, vλ], which saves reinsurance premium for the insurer.
For large loss amounts x > vλ, the type of the worst-case strategy depends on ρ and π̄λ. As we will see
later, under different settings, the worst-case strategy can be full coverage policy, limited-loss policy, or
more complex structures.

Example 3.1. (RVaR-based worst-case strategy) In this example, we assume that the insurer adopts a
RVaR. Given a pair of confidence levels (p,q), 0 � q < p � 1,

RVaR(p,q)(Y) = 1

p − q

∫ p

q

VaRu(Y) du, Y ∈X , (3.6)

is a distortion risk measure induced by the distortion function g(t; p, q) =
(
1{t�q}

t−q
p−q

)
∧ 1, t ∈ [0, 1]. In

particular, TVaRp = RVaR(p,0) and VaRp can be considered a special case when p = q.
When the insurer adopts ρ = RVaR(p,q) and π = (1 + θ )E, the insurer’s RVaR-based optimization

problem in the regular-case scenario is given by:

min
I∈I

RVaR(p,q)(RI(X) + (1 + θ )E[I(X)]). (3.7)

It is easy to verify that the regular-case strategy, that is, the solution to problem (3.7), is given by:

I∗
[RVaR(p,q) ,(1+θ)E,X](x) =

⎧⎨
⎩

0, if p � 1
1+θ

,(
x − VaR 1

1+θ
(X))+ − (x − VaR q

1−(p−q)(1+θ )
(X)

)
+

, if p < 1
1+θ

.
(3.8)

Next, we consider the worst-case scenario, where the insurer’s problem is given by:

min
I∈I

sup
Q∈Pλ

RVaR(p,q)

(
RI(XQ) + (1 + θ )E[I(X)]

) = min
I∈I

RVaR
Pλ

(p,q) (RI(X) + (1 + θ )E[I(X)]) . (3.9)

We now verify that the optimal solution to problem (3.9) is

I∗
[RVaRPλ

(p,q) ,(1+θ)E,X]
(x) =

⎧⎨
⎩

0, if λp � 1
1+θ

,(
x − VaR 1

1+θ
(X)

)
+

−
(

x − VaR λq
1−(p−q)(1+θ )λ

(X)
)

+
, if λp < 1

1+θ
.

(3.10)

To this end, we first note that problem (3.5) in Theorem 3.1 becomes

min
I∈I

RVaR(p,q)

(
RI(Xλ,0) + (1 + θ )λE[I(Xλ,0)]

)
. (3.11)

Applying result (3.8) to solve problem (3.11), we obtain

I∗(x) =
⎧⎨
⎩

0, if λp � 1
1+θ

,(
x − VaR1∧ 1

(1+θ )λ
(Xλ,0)

)
+

−
(

x − VaR q
1−(p−q)(1+θ )λ

(Xλ,0)
)

+
, if λp < 1

1+θ
.

(3.12)
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Then, by Theorem 3.1, we have

I∗
[RVaRPλ

(p,q) ,(1+θ)E,X]
(x) =

{
(x − vλ + a∗)+ , x < vλ,

I∗(x − vλ) + a∗, x � vλ,

where a∗ =
(

vλ − VaR 1
1+θ

(X)
)

+
. If (1 + θ )λ� 1/p � 1, then a∗ = 0. Combining I∗(x) = 0, no-insurance

is again the optimal solution to the worst-case problem (3.9). If 1/p > (1 + θ )λ� 1, then a∗ = 0,
and I∗(x) = (x − VaR 1

1+θ
(X) + vλ)+ − (x − VaR λq

1−(p−q)(1+θ )λ
(X) + vλ)+. Thus, I∗

[RVaRPλ
(p,q) ,(1+θ)E,X]

(x) is given
by the second case in (3.10). If (1 + θ )λ < 1, then a∗ = vλ − VaR 1

1+θ
(X), and I∗(x) = x − (x −

VaR λq
1−(p−q)(1+θ )λ

(X) + vλ)+. The indemnity function in the second case of (3.10) is the optimal solution.

Remark 3.1 (Optimal strategy using a tail risk measure). The results of Theorem 3.1 can also be applied
to characterize the optimal solutions to problem (2.2) with a tail risk measure under P. Quantifying tail
risk has been a crucial consideration in modern risk management and insurance regulation. Tail risk
measures such as VaR and TVaR are often used in (2.2) to capture the tail behavior of total risk.

For a general λ-tail risk measure ρ, we denote its generator by ρ∗, that is, ρ(Y) = ρ∗(Yλ) for all Y ∈X .
Mathematically, the structure of problem (2.2) using ρ is equivalent to that of (3.2), as both employ a
λ-tail risk measure. Therefore, the optimal solution to problem (2.2) under P can also be expressed
by (3.4):

I∗
[ρ,π ,X](x) =

{
(x − vλ + a∗)+ , for x < vλ,

I∗
[ρ∗ ,π̄λ ,Xλ,0](x − vλ) + a∗, for x � vλ,

(3.13)

where a∗ = inf{0 � a � vλ : g(SX(vλ − a)) � 1
1+θ

} and

I∗
[ρ∗ ,π̄λ ,Xλ,0] ∈ arg minI∈Iρ∗ (

RI(Xλ,0) + π̄λ(I(Xλ,0))
)

.

The expression (3.13) breaks down the optimal solution I∗
[ρ,π ,X] into the “left tail,” which focuses

on small losses, and the “right tail,” which addresses large losses. This decomposition helps the insurer
capture the best strategy regarding different loss amounts. To illustrate this, consider a simple case where
ρ = VaRλ. Under Assumption 1, ρ = VaRλ = VaR+

λ
� inf{x ∈R : FX(x) > p}. By Liu and Wang (2021),

VaR+
λ

is a λ-tail risk measure generated by the essential infimum, that is, VaR+
λ

(Y) = ess inf(Yλ) for
Y ∈X . Therefore, I∗

[ess inf,π̄λ ,Xλ,0] is a solution to minI∈I ess inf
(
RI(Xλ,0) + π̄λ(I(Xλ,0))

) = minI∈I π̄λ(I(Xλ,0)).
Intuitively, VaRλ does not account for losses that exceed the quantile level 1 − λ. From this “risk tail”
optimization problem, it becomes evident that the optimal strategy for “right tail” losses is no-insurance,
that is, I∗

[ess inf,π̄λ ,Xλ,0] = 0. Then (3.13) gives that I∗
[VaRλ ,π ,X](x) = (x − vλ + a∗)+ − (x − vλ)+ .

3.2 Comparison of regular-case and worst-case strategies
Following the general relation between the regular-case and worst-case strategies characterized in
Theorem 3.1, a natural question is whether two strategies being the same. Intuitively, since the dis-
tributions of the underlying loss X differ between the regular-case and worst-case scenarios, the insurer
may need to adopt different strategies. However, as we will see in the following VaR-based and TVaR-
based problems, the two optimal strategies can either be identical or differ. Take an uncertainty set Pλ

and a confidence level p ∈ (0, 1), and assume π = (1 + θ )E with p(1 + θ )λ < 1.

• (VaR-based worst-case problem.) The VaR-based problem minI∈I VaRp (RI(X) + (1 + θ )E[I(X)])
has been well studied in the literature, see for example Cheung et al. (2014), and it has solution

I∗
[VaRp ,(1+θ)E,X](x) =

(
x − VaR 1

1+θ
(X)

)
+

− (
x − VaRp(X)

)
+ . (3.14)
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The VaR-based worst-case problem is expressed as minI∈I VaR
Pλ

p (RI(X) + (1 + θ )E[I(X)]). Note
that VaR can be derived from RVaR by taking p = q ∈ (0, 1). Substituting p = q into (3.10), we
find that the worst-case strategy is

I∗
[VaRPλ

α ,(1+θ)E,X]
(x) =

(
x − VaR 1

1+θ
(X)

)
+

− (
x − VaRpλ(X)

)
+ . (3.15)

Obviously, the regular-case strategy (3.14) is smaller than the worst-case strategy (3.15). In other
words, the regular-case strategy does not provide sufficient protection in the worst-case scenario
for the insurer.

• (TVaR-based worst-case problem.) The TVaR-based optimization problem is formulated as
minI∈I TVaRp (RI(X) + (1 + θ )E[I(X)]) with solution I∗

[TVaRp ,(1+θ)E,X](x) =
(

x − VaR 1
1+θ

(X)
)

+
. The

TVaR-based worst-case problem is minI∈I TVaR
Pλ

p (RI(X) + (1 + θ )E[I(X)]). Note that, for p ∈
(0, 1), RVaR(p,0) = TVaRp. We can apply (3.10) with q = 0 to verify that

I∗
[TVaRPλ

p ,(1+θ)E,X]
(x) =

(
x − VaR 1

1+θ
(X)

)
+

= I∗
[TVaRp ,(1+θ)E,X](x), (3.16)

that is, if the insurer adopts TVaR, the regular-case strategy remains optimal in the worst-case
scenario, and the insurer does not need to change her strategy in difference scenarios.

We can see from the above examples, comparing the regular-case and worst-case strategies under a
given risk measure ρ reveals any potential shortcomings of the regular-case strategy in the worst-case
scenario. Conversely, a conservative insurer may prefer a risk measure that results in the same strategies
in both regular- and worst-case scenarios.

For a general risk measure ρ, neither the regular-case strategy nor the worst-case strategy has a
mathematically tractable closed-form expression. To facilitate comparison between the two strategies
in this section, we further assume that ρ = ρh is a distortion risk measure induced by h, and that the
expected-value premium principle is adopted. The problem (2.2) can be rewritten as:

min
I∈I

{
ρh(RI(X)) + (1 + θ )E[I(X)]

}
, for some θ � 0, (3.17)

and its corresponding worst-case problem becomes

min
I∈I

sup
Q∈Pλ

ρh
(
RI(XQ) + (1 + θ )E[I(X)]

) = min
I∈I

{
ρh

Pλ

(RI(X)) + (1 + θ )E[I(X)]
}

. (3.18)

The following proposition characterizes the distortion function h such that the regular-case and worst-
case strategies are identical.

Proposition 3.2. Let Assumption 1 hold. Assume π = (1 + θ )E for some θ � 0, and ρ = ρh is a
distortion risk measure induced by a continuously differentiable distortion function h. Define

h̃(p) =
{

h(p/λ), 0 � p < λ,

1, λ� p � 1.
(3.19)

The following statements hold.

(a) Problems (3.17) and (3.18) have at least one common optimal solution for a given λ ∈ (0, 1) if
and only if there exists p0 ∈ [0, 1

1+θ
] such that h(p) � (1 + θ )p for p ∈ [0, p0] and h̃(p) � (1 + θ )p

for p ∈ [p0, 1].
(b) Problems (3.17) and (3.18) have at least one common optimal solution for any λ ∈ (0, 1) if and

only if h(p) � (1 + θ )p for p ∈ [0, 1
1+θ

].

Proof. The proof of Proposition 3.2 is presented in Appendix A. �
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In Proposition 3.2, the insurer’s risk measure ρh is not necessarily coherent. If the insurer selects
a concave h, which makes ρh a coherent distortion risk measure, the results of Proposition 3.2 can be
stated more precisely.

Corollary 3.3. Let Assumption 1 hold. Assume π = (1 + θ )E for some θ � 0, and ρ = ρh is a coher-
ent distortion risk measure induced by a continuously differentiable concave distortion function h. The
following statements hold.

(a) Problems (3.17) and (3.18) have at least one common optimal solution for a given λ ∈ (0, 1) if
and only if one of the two conditions holds: (i) ρh is a 1

1+θ
-tail risk measure; (ii) h′(0) � λ(1 + θ ).

(b) Problems (3.17) and (3.18) have at least one common optimal solution for all λ ∈ (0, 1) if and
only if ρh is a 1

1+θ
-tail risk measure.

Remark 3.2 Following assumptions required in Corollary 3.3, we can identify the type of reinsurance
policy in cases (a) and (b). Suppose that ρh is a 1

1+θ
-tail risk measure. By Theorem F.1 in Liu and Wang

(2021), h(t) = 1 for t ∈ [p, 1]. Since h is concave, the solution to both problems (3.17) and (3.18) is the
stop-loss policy (x − VaR 1

1+θ
(X))+. In this case, the insurer focuses on the tail risk and already chooses

full coverage on it in the regular-case strategy. Therefore, the regular-case strategy remains to be the
optimal in the worst-case scenario. On the other hand, if h′(0) � λ(1 + θ ), together with the concavity
of h, we can verify that h̃(t) � (1 + θ )t for t ∈ [0, 1]. Therefore, the optimal solution to (3.17) and (3.18) is
no-insurance, meaning that all reinsurance policies are overpriced for the insurer even in the worst-case
scenario.

3.3 Robustness of the reinsurance setting using RVaR
For an uncertainty set Pλ, the value of λ determines its size in the sense that a smaller λ results in a
more severe worst-case scenario, as it is selected from a larger Pλ. Since the worst-case strategy does
not necessarily align with the regular-case strategy, the change in optimal strategies is critical for the
insurer from a risk management perspective. If the change in the worst-case strategy is continuous in
some sense with respect to λ, the insurer would only need to make small adjustments to the current
optimal strategy as the worst-case scenario worsens. In such cases, the reinsurance setting is robust with
respect to the worst-case strategy.

It is widely accepted that a monetary risk measure ρ can be used for capital calculation, and ρ(RI(X) +
π (I(X))) represents the total capital required by the insurer after entering the reinsurance contract I .
In the regular-case scenario, let R∗

[ρ,π ,X](x) = x − I∗
[ρ,π ,X](x). Then, the risk measure value ρ(R∗

[ρ,π ,X](X) +
π (I∗

[ρ,π ,X](X))), using the regular-case strategy I∗
[ρ,π ,X] defined in (2.3), is the perceived risk value for the

insurer. However, if the worst-case scenario occurs, the insurer adopting the regular-case strategy will
experience the actual risk value ρPλ (R∗

[ρ,π ,X](X) + π (I∗
[ρ,π ,X](X))). The difference


Pλ

sg � ρPλ (R∗
[ρ,π ,X](X) + π (I∗

[ρ,π ,X](X)))︸ ︷︷ ︸
actual risk

− ρ(R∗
[ρ,π ,X](X) + π (I∗

[ρ,π ,X](X)))︸ ︷︷ ︸
perceived risk

(3.20)

= ρPλ (R∗
[ρ,π ,X](X)) − ρ(R∗

[ρ,π ,X](X))

is the solvency gap for the insurer when the worst-case scenario occurs. Although the premium cancels
out in this expression, it affects the optimal strategies and, consequently, the solvency gap. When λ

approaches 1, the insurer may expect the solvency gap to be small enough, implying that the reinsurance
setting is robust concerning the solvency gap. For a general discussions on solvency gap and risk measure
robustness, we refer to Embrechts et al. (2022).

Definition 4. Consider a reinsurance setting (ρ, π , X) that satisfies Assumption 1.

1. (ρ, π , X) is robust with respect to the solvency gap, as defined in (3.20), if limλ→1 
Pλ
sg = 0;
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2. (ρ, π , X) is robust with respect to the worst-case strategy for Pλ0 if, for any δ > 0, there exists a
neighborhood �0 of λ0 such that whenever λ, γ ∈ �0 ∩ (0, 1], there exist I∗

[ρ̄Pλ ,π ,X]
and I∗

[ρ̄Pγ ,π ,X]
satisfying ∣∣∣I∗

[ρ̄Pλ ,π ,X](x) − I∗
[ρ̄Pγ ,π ,X]

(x)
∣∣∣� δ, for all x ∈ [0, ess sup X).

In insurance regulation, VaR and TVaR are two of the most important risk measures. RVaR can be
seen as a family of risk measures that bridge VaR and TVaR. Therefore, we focus on the optimiza-
tion problem using RVaR and present the following proposition to characterize the robustness of the
reinsurance setting (ρ = RVaR, π = (1 + θ )E, X).

Proposition 3.4 Let Assumption 1 hold and θ � 0.

(a) The reinsurance setting (RVaR(p,q), (1 + θ )E, X) is robust with respect to the solvency gap for
all 0 < p < 1 and 0 � q � p.

(b) If q �= 0, the reinsurance setting (RVaR(p,q), (1 + θ )E, X) is robust with respect to worst-case
strategy of Pλ0 for all λ0 ∈ (0, 1]. If q = 0, then RVaR(p,0) = TVaRp, and the reinsurance setting
(TVaRp, (1 + θ )E, X) is robust with respect to the worst-case strategy of Pλ0 at λ0 = 1 and for
all λ0 ∈ (0, 1) with λ0 �= 1

p(1+θ)
.

Proof. We first consider robustness with respect to worst-case strategies. Assume q �= 0 and λ0 ∈
(0, 1]. We rely on (3.10) to determine the worst-case strategy I∗

λ
= I∗

[RVaRPλ
(p,q) ,(1+θ)E,X]

for each λ ∈ (0, 1].

(i) If (1 + θ )λ0p > 1, there exists a neighborhood �0 of λ0 such that (1 + θ )λp > 1 for all
λ ∈ �0 ∩ (0, 1]. Then I∗

λ
(x) = 0, x � 0, for all λ ∈ �0 ∩ (0, 1]. Clearly, the reinsurance setting

(RVaR(p,q), (1 + θ )E, X) is robust with respect to the worst-case strategy of Pλ0 .
(ii) If (1 + θ )λ0p = 1, then for x � 0,

I∗
λ
(x) =

⎧⎨
⎩0, if λ� λ0,

(x − VaR 1
1+θ

(X))+ − (x − VaR λq
1−λ(p−q)(1+θ )

(X))+, if λ < λ0.

Under Assumption 1, limλ→λ0 VaR λq
1−λ(p−q)(1+θ )

(X) = VaR λ0q
1−λ0(p−q)(1+θ )

(X) = VaRpλ0 (X) and
limλ→λ0 VaRpλ(X) = VaRpλ0 (X). For any neighborhood �0 ⊆ (0, 1) of λ0, and λ, γ ∈ �0,
we have

sup
x�0

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣� max
{
VaR λq

1−λ(p−q)(1+θ )
(X) − VaR 1

1+θ
(X), VaR γ q

1−γ (p−q)(1+θ )
(X) − VaR 1

1+θ
(X)

}
= max

{
VaR λq

1−λ(p−q)(1+θ )
(X), VaR γ q

1−γ (p−q)(1+θ )
(X)

}
− VaRpλ0 (X)

→ 0, |�0| → 0.

Therefore, for any δ > 0, we can choose �0 small enough such that supx�0

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣� δ.
(iii) If (1 + θ )λ0p < 1, there exists a neighborhood �0 of λ0 such that (1 + θ )λp < 1 for all λ ∈

�0 ∩ (0, 1]. In this case, the same argument as in (ii) applies.

Combining these three cases, for any λ0 ∈ (0, 1), the reinsurance setting (RVaR(p,q), (1 + θ )E, X) is
robust with respect to the worst-case strategy of Pλ0 .

Next, assume q = 0. In this case, RVaR(p,q) = TVaRp for some 0 < p < 1. Take λ0 ∈ (0, 1].

(iv) If λ0 �= 1
(1+θ)p

, then the same arguments in cases (i) and (iii) apply. Therefore, the reinsurance
setting (TVaRp, (1 + θ )E, X) is robust with respect to the worst-case strategy of Pλ0 .
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(v) If λ0 = 1 = 1
(1+θ)p

, then Pλ0 = {P}, and I∗
λ0

can be any feasible contract. In particular, we can
choose I∗

λ0
(x) = (x − VaR 1

1+θ
(X))+. For any λ < λ0, we have (1 + θ )pλ < 1 and I∗

λ
(x) = (x −

VaR 1
1+θ

(X))+ = I∗
λ0

(x) for x � 0.
(vi) If λ0 = 1

(1+θ)p
∈ (0, 1), take λ < λ0. Then (1 + θ )pλ < 1, and I∗

λ
(x) = (x − VaR 1

1+θ
(X))+ for x � 0

is the unique worst-case strategy. Meanwhile, take γ > λ0. Then (1 + θ )pγ > 1, and I∗
γ
= 0 is

the unique worst-case strategy. For any neighborhood �0 of λ0, there exists λ, γ ∈ �0 such
that λ < λ0 < γ . Thus, for any x > VaR 1

1+θ
(X), we have |I∗

λ
(x) − I∗

γ
(x)| = x − VaR 1

1+θ
(X) > 0.

Therefore, (TVaRp, (1 + θ )E, X) is not robust with respect to the worst-case strategy of Pλ0 .

The robustness of (RVaR(p,q), (1 + θ )E, X) with respect to the solvency gap can be directly obtained
by substituting the regular-case strategy into the expression in (3.20) and is therefore omitted here. �

4. Optimal reinsurance design with the worst-case expectile
In this section, we apply the results from Section 3 to solve an optimal reinsurance design problem
using an expectile risk measure, which has recently gained attention in statistics and actuarial science.
Among the two most widely used regulatory risk measures, VaR is often criticized for not satisfying sub-
additivity, which makes it non-coherent. In contrast, while TVaR is coherent, it is not elicitable, a key
property for model comparison and validation. Expectiles, however, can be both coherent and elicitable.
For further discussion on the properties of risk measures, including coherence and elicitability, we refer
to Bellini et al. (2014), Ziegel (2016), Liu et al. (2022), Fissler et al. (2024), and references therein.

Definition 5. (Expectile). The expectile risk measure at a confidence level α ∈ (0, 1) is defined as:

Eα(Y) � arg min
m∈R

{
αE

[
(Y − m)2

+
] + (1 − α)E

[
(m − Y)2

+
]}

, Y ∈ L2.

In Cai and Weng (2016), it has been shown that

Eα(Y) =E[Y] + βE [(Y − Eα(Y))+] with β = 2α − 1

1 − α
, (4.1)

and that Eα(Y) is the unique constant satisfying this equation. As demonstrated in Ziegel (2016), Eα is a
coherent risk measure for α � 1/2. Therefore, we assume α � 1/2, which is equivalent to β � 0.

With the expectile risk measure, the insurer’s problem (2.2) becomes minI∈I Eα (RI(X) + π (I(X))),
which was studied in Cai and Weng (2016) with a budget constraint and mild assumptions on the pre-
mium principle π . In the present work, we focus on the expected-value premium principle, that is,
π = (1 + θ )E, and write the expectile-based optimization problem (2.2) as:

min
I∈I

Eα (RI(X) + (1 + θ )E [I(X)]) , where α � 1

2
. (4.2)

Furthermore, we propose the worst-case version of this problem as:

min
I∈I

sup
Q∈Pλ

Eα

(
RI(XQ) + (1 + θ )E [I(X)]

) = min
I∈I

ĒPλ

α (RI(X) + (1 + θ )E [I(X)]) , (4.3)

where ĒPλ
α

represents the robust risk measure induced by Eα. To solve (4.3), we first generalize the result
of the optimal reinsurance policies of (4.2) in Cai and Weng (2016), in which θ is assumed to be strictly
positive, to the more general case of θ �−1.

Lemma 4.1. Under the reinsurance setting (Eα, (1 + θ )E, X) with α � 1/2 and −1 � θ � 0, the regular-
case strategy is the full reinsurance, that is, I∗

[Eα ,(1+θ)E,X](x) = x, x � 0.

Proof. The proof of this lemma is presented in Appendix A. �
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Using Lemma 4.1 and Theorem 3.2 of Cai and Weng (2016), the insurer can apply Theorem 3.1
to solve the problem (4.3) and determine the worst-case strategy. Let vα = VaRα(X) for α ∈ [0, 1],
d0

λ
= v 1+β

β(1+θ ) − λ
β

− vλ, and d̃λ be the root of G(d) for a given λ ∈ (0, 1], where

G(d) = d − 1

λ
E[(X − vλ)+] − β

λ
E[(X − d − vλ)+], d ∈ (0, ∞). (4.4)

Furthermore, let d∗
λ
= d0

λ
∧ d̃λ, and let m∗

λ
be the solution to K(d∗

λ
, m) = d∗

λ
, where

K(d, m) = 1

λ
E[(X − vλ)+] − 1

λ
E[(X − d − vλ)+] + 1 + β

λ
E[(X − m − vλ)+], m � d. (4.5)

Theorem 4.1 Let Assumption 1 hold. Under the reinsurance setting (Eα, (1 + θ )E, X) with α � 1/2 and
θ > 0, the solution to the expectile-based worst-case problem (4.3) can be formulated as:

I∗
[ĒPλ

α ,(1+θ)E,X]
(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if 1+β

1+θ
� λ� 1,

(x − d∗
λ
− vλ)+ − (x − m∗

λ
− vλ)+, if 1

1+θ
< λ < 1+β

1+θ
,

(x − v 1
1+θ

)+, if 0 < λ� 1
1+θ

.

(4.6)

Proof. By Theorem 3.1, we begin by solving the following problem:

min
I∈I

Eα(RI(Xλ,0) + (1 + θ ′)E[I(Xλ,0)]), (4.7)

where Xλ,0 = Xλ − vλ and θ ′ = (1 + θ )λ − 1 ∈ ( − 1, θ ]. When θ ′ � 0, by Lemma 4.1, the optimal indem-
nity function is given by I∗

[Eα ,(1+θ ′)E,Xλ,0)](x) = x. When θ ′ > 0, according to Theorem 3.2 of Cai and Weng
(2016), the problem (4.7) can be solved by a one-layer indemnity function Id,m(x) = (x − d)+ − (x − m)+,
where 0 � d = ER

Id,m
(Xλ,0) � m � v0, and ER

Id,m
(Xλ,0) is the α-expectile of RId,m (Xλ,0) = Xλ,0 − Id,m(Xλ,0).

Using (4.1), we have

ER
Id,m

(Xλ,0) =E[RId,m (Xλ,0)] + βE[(RId,m (Xλ,0) − ER
Id,m

(Xλ,0))+]

=E[RId,m (Xλ,0)] + βE[(Xλ,0 − m)+]

= 1

λ
E[(X − vλ)+] − 1

λ
E[(X − d − vλ)+] + 1 + β

λ
E[(X − m − vλ)+] = K(d, m).

The last equality holds because SXλ,0 (x) = SX (x+vλ)
λ

. For a given d, the value of m can be determined by the
equation d = ER

Id,m
(Xλ,0), or equivalently, by d = K(d, m). Thus, m = m(d) can be considered as a function

of d. Define D = {d:0 � d � m(d) �∞ such that K(d, m(d)) = d}. Cai and Weng (2016) demonstrates
that D �= ∅ and m = m(d) is strictly decreasing with respect to d over the domain D = [0, d̃λ], where d̃λ

is the unique root of the function G(d) � d − K(d, d) over (0, ∞), which can be reformulated as in (4.4).
For a given λ, it is easy to gain from d = K(d, m) that m(0) = v0 − vλ and m(d̃λ) = d̃λ.

Define d0
λ
= v 1+β

β(1+θ ) − λ
β

− vλ. When θ ′ > 0, from Example 4.1 of Cai and Weng (2016), we have the
following: (i) If θ ′ � β, that is, λ� 1+β

1+θ
, then d∗

λ
= d̃λ, m∗

λ
= m(d̃λ) = d̃λ and thus, I∗

[Eα ,(1+θ ′)E,Xλ,0](x) = 0.
(ii) If θ ′ < β, that is, 1

1+θ
< λ < 1+β

1+θ
, then d∗

λ
= d0

λ
∧ d̃λ and m∗

λ
obtained by solving K(d∗

λ
, m) = d∗

λ
, we

have I∗
[Eα ,(1+θ ′)E,Xλ,0](x) = (x − d∗

λ
)+ − (x − m∗

λ
)+.

By Theorem 3.1, we have

I∗
[ĒPλ

α ,(1+θ)E,X]
(x) =

{
(x − vλ + a∗)+ , x < vλ,

I∗
[Eα ,(1+θ ′)E,Xλ,0](x − vλ) + a∗, x � vλ,

(4.8)

where a∗ =
(

vλ − v 1
1+θ

)
+
. Then, we have

(i) If λ� 1+β

1+θ
, then I∗

[Eα ,(1+θ ′)E,Xλ,0](x) = 0, a∗ = 0, and thus, I∗
[ĒPλ

α ,(1+θ)E,X]
(x) = 0.
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(ii) If 1
1+θ

< λ < 1+β

1+θ
, it follows that I∗

[Eα ,(1+θ ′)E,Xλ,0](x) = (x − d∗
λ
)+ − (x − m∗

λ
)+, a∗ = 0, and

I∗
[ĒPλ

α ,(1+θ)E,X]
(x) = (x − d∗

λ
− vλ)+ − (x − m∗

λ
− vλ)+.

(iii) If λ� 1
1+θ

, then I∗
[Eα ,(1+θ ′)E,Xλ,0](x) = x, a∗ = vλ − v 1

1+θ
, and I∗

[ĒPλ
α ,(1+θ)E,X]

(x) = (x − v 1
1+θ

)+.

Then, we obtain the optimal indemnity function I∗
[ĒPλ

α ,(1+θ)E,X]
, as formulated in the theorem. �

In the following proposition, we discuss the robustness of the reinsurance setting (Eα, (1 + θ )E, X)
with respect to the worst-case strategy for Pλ0 .

Proposition 4.2. Let Assumption 1 hold. For a given λ0 ∈ (0, 1] and λ0 �= 1
1+θ

, the reinsurance setting
(Eα, (1 + θ )E, X) with α � 1

2
and θ > 0 remains robust with respect to the worst-case strategy for Pλ0 .

Proof. Let I∗
λ
� I∗

[ĒPλ
α ,(1+θ)E,X]

for simplicity. By Implicit Function Theorem, we have that d̃λ is a con-

tinuous function of λ. Assumption 1 ensures that d0
λ

is continuous with respect to λ. Thus, d∗
λ
= d̃λ ∧ d0

λ

and m(d∗
λ
) exhibit continuity concerning λ ∈ (0, 1].

(i) When λ0 ∈ ( 1+β

1+θ
, 1], by (4.6), there exists a small neighbor �0 of λ0 such that I∗

λ
= 0 for λ ∈ �0.

(ii) When λ0 = 1+β

1+θ
, we have d0

λ0
= v0 − vλ0 and G(d0

λ0
) = v0 − TVaRλ0 (X) � 0. Since G(d̃λ0 ) = 0

and G(d) is an increasing function of d, we have d̃λ0 � d0
λ0

. Thus, d∗
λ0

= d̃λ0 ∧ d0
λ0

= d̃λ0 and
m∗

λ0
= m(d∗

λ0
) = d̃λ0 . By (4.6), for any neighborhood �0 ⊆ ( 1

1+θ
, 1) of λ0, and λ, γ ∈ �0, we have

supx�0

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣� max
{
m(d∗

λ
) − d∗

λ
, m(d∗

γ
) − d∗

γ

} → 0 as |�0| → 0.
(iii) When λ0 ∈ ( 1

1+θ
, 1+β

1+θ
), for any neighborhood �0 ⊆ ( 1

1+θ
, 1+β

1+θ
) of λ0 and λ, γ ∈ �0, by (4.6) we

have supx�0

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣� |(m∗
λ
− d∗

λ
) − (m∗

γ
− d∗

γ
)| → 0 as |�0| → 0.

(iv) When λ0 = 1
1+θ

, let λ → λ0, we have d0
λ
→ 0, d∗

λ
= d0

λ
∧ d̃λ → 0, and thus, m∗

λ
→ v0 − vλ0 . If

v0 < ∞, for any neighborhood �0 of λ, take λ, γ ∈ �0. By (4.6), we have
supx�0

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣� max{v0 − vλ0 − m∗
λ
+ d∗

λ
, v0 − vλ0 − m∗

γ
+ d∗

γ
} → 0 as |�0| → 0.

Conversely, if v0 = ∞, then for any δ > 0 and any neighborhood �0 of λ0, there exists λ, γ ∈ �0

and λ < λ0 < γ such that for x > m∗
γ
+ δ, we have

∣∣I∗
λ
(x) − I∗

γ
(x)

∣∣ > x − vλ0 − m∗
γ
+ d∗

γ
> δ.

This implies that (Eα, (1 + θ )E, X) is not robust with respect to the worst-case strategy of Pλ0

by Definition 4.
(v) When λ0 ∈ (0, 1

1+θ
), there exists a neighborhood �0 of λ0 such that I∗

λ
= (x − v 1

1+θ
)+ for λ ∈ �0.

Therefore, when λ0 ∈ (0, 1] and λ0 �= 1
1+θ

, for any δ > 0, there exists a sufficiently small �0 such that
supx�0 |I∗

λ
(x) − I∗

γ
(x)|� δ. This implies that (Eα, (1 + θ )E, X) is robust with respect to the worst-case

strategy of Pλ0 by Definition 4. �
Example 4.1 (Expectile-based reinsurance design with Pareto distribution). Assume that X follows a
type II Pareto distribution with shape parameter ζ and scale parameter η, that is, X ∼ Pa(ζ , η), with
the survival function SX(x) =

(
η

x+η

)ζ

, where x � 0. We adopt the parameter settings: ζ = 3, η = 2, and

θ = 3. Then VaRp(X) = ηp−1/ζ − η, E[X] = η

ζ−1
< ∞, and E[X ∧ x] = η

ζ−1
− ηζ

(ζ−1)(x+η)ζ−1 for x � 0.

Figure 1 illustrates the optimal retention levels d∗
λ
+ vλ and m∗

λ
+ vλ for the worst-case strategy

I∗
[ĒPλ

α ,(1+θ)E,X]
as outlined in Theorem 4.1. The shaded blue area indicates the portion of the loss ceded

to the reinsurer. When λ� 1
1+θ

= 0.25, the blue line representing d∗
λ
+ vλ aligns with v 1

1+θ
, and the red

line representing m∗
λ
+ vλ extends to infinity. In this scenario, the worst-case strategy simplifies to the

stop-loss function described in Theorem 4.1. From Figure 1, it is evident that as the the uncertainty set
expands, the insurer cedes more of the medium-sized losses to the reinsurer. Both retention levels change
smoothly with respect to λ, supporting the result in Proposition 4.2, which asserts that the reinsurance
setting is robust concerning the worst-case strategy of Pλ.
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Figure 1. Optimal ceded loss with respect to λ when X ∼Pa(ζ , η). The parameters are
ζ = 3, η = 2, β = 2, θ = 3.

5. Cooperative reinsurance design with likelihood ratio uncertainty
In the non-cooperative problem (3.1), the reinsurance premium is calculated under the reference prob-
ability measure and can be considered constant in the insurer’s objective function, regardless of the
probability measure used by the insurer. In this section, we discuss a cooperative model in which both
the insurer and the reinsurer consider the distributional model uncertainty in the reinsurance design pro-
cedure while they share a common belief regarding the probability measure in different scenarios. In
other words, although the insurer and the reinsurer have concerns of uncertainty, they remain to behave
cooperatively whenever an alternative measureQ ∈Pλ is given. Such cooperative formulation is adopted
for reinsurance design problem in Liu and Mao (2022). We again assume that the uncertainty set of prob-
ability measures is given by (2.4) for a given λ ∈ (0, 1]. Thus, the insurer’s optimization problem in the
worst-case scenario can be written as:

min
I∈I

sup
Q∈Pλ

ρ
(
RI(XQ) + π

(
I(XQ)

))
. (5.1)

It is worth noting that problem (5.1) can be viewed as a comonotonic risk sharing problem between
market participants in the worst-case scenario. To see this, since ρ is translation-invariant, we have
ρ

(
RI(XQ) + π

(
I(XQ)

)) = ρ
(
RI(XQ)

) + π
(
I(XQ)

)
, where the insurer and reinsurer share the total loss

X under the probability measure Q. They use the risk measures ρ and π , respectively, to quantify their
own risk exposure. Thus, problem (5.1) provides the optimal risk sharing strategy for the insurer and
reinsurer in the worst-case scenario. Furthermore, we can easily derive a lower bound for problem (5.1):

min
I∈I

sup
Q∈Pλ

ρ
(
RI(XQ) + π

(
I(XQ)

))
� sup

Q∈Pλ

min
I∈I

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)}
. (5.2)

For an arbitrary monetary risk measure ρ, neither problem on the left nor the right side of (5.2) may
be mathematically tractable. To clarify this further, in the remainder of this section, we assume that the
insurer uses a distortion risk measure ρ = ρh to quantify her risk exposure. We then demonstrate that
the inequality in (5.2) holds as an equality and then characterize the optimal reinsurance strategy in the
worst-case scenario.
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Theorem 5.1. Let Assumptions 1 and 2 hold, and assume that ρ = ρh is induced by a continuously
differentiable distortion function h. Then, the minimum of the cooperative problem (5.1) is

ρh∧[(1+θ)g](Xλ), (5.3)

which is achieved by the optimal reinsurance contract I∗(x) = ∫ x

0
(I∗)′(y) dy, y � 0, with

(I∗)′(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if h(P(Xλ > x)) < (1 + θ )g(P(Xλ > x)),

1, if h(P(Xλ > x)) > (1 + θ )g(P(Xλ > x)),

η(x), o/w,

(5.4)

with any function η : [0, ∞) → [0, 1].

Furthermore, the minimum of the cooperative problem (5.1) is always greater than that of the non-
cooperative problem problem (3.1), that is,

min
I∈I

sup
Q∈Pλ

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)}
� min

I∈I
sup
Q∈Pλ

{
ρ

(
RI(XQ)

) + π (I(X))
}

. (5.5)

Proof. Note that h ∧ [(1 + θ )g] = min{h, (1 + θ )g} is a non-decreasing and continuous func-
tion with (h ∧ [(1 + θ )g])(0) = 0 and (h ∧ [(1 + θ )g])(1) = 1. Therefore, h ∧ [(1 + θ )g] is a valid
distortion function. For any Q ∈Pλ, if ρ = ρh and π = (1 + θ )ρg, it is well known that
minI∈I

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)} = ρh∧[(1+θ)g](XQ). Therefore, (5.1) can be rewritten as:

min
I∈I

sup
Q∈Pλ

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)}
� sup

Q∈Pλ

min
I∈I

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)}
= sup

Q∈Pλ

ρh∧[(1+θ)g](XQ) = ρh∧[(1+θ)g](Xλ). (5.6)

On the other hand, from the proof of Proposition 2 in Liu et al. (2022), for any Q ∈Pλ and any random
variable Y , we have Q(Y � y) � P(Yλ � y) for all y ∈R. This implies that

P(I(XQ) � x) = P(I(X)Q � x) =Q(I(X) � x) � P(I(X)λ � x) = P(I(Xλ) � x), x � 0.

By the law-invariance and monotonicity of ρg, we have ρg(I(XQ)) � ρg(I(Xλ)). Similarly, we can verify
that ρh(RI(XQ)) � ρh(RI(Xλ)). Then it follows that, for any I ∈ I,

sup
Q∈Pλ

{
ρh

(
RI(XQ)

) + (1 + θ )ρg
(
I(XQ)

)}
� ρh (RI(Xλ)) + (1 + θ )ρg (I(Xλ)) .

Consequently,

min
I∈I

sup
Q∈Pλ

{
ρ

(
RI(XQ)

) + π
(
I(XQ)

)}
� min

I∈I

{
ρh (RI(Xλ)) + (1 + θ )ρg (I(Xλ))

} = ρh∧[(1+θ)g](Xλ), (5.7)

where the optimal indemnity such that the last equality holds is defined by (5.4). Inequalities (5.6) and
(5.7) together imply (5.3), and I∗ is the optimal reinsurance contract.

Next, we show (5.5). If h and g are distortion functions, it is straightforward to verify that
h ∧ [(1 + θ )g] is also a distortion function. For function f ∈ {h, g, h ∧ [(1 + θ )g]}, define

f̄ (t) =
{

f (t/λ), 0 � t < λ,

1, λ� t � 1.

Under Assumption 2, the problem (3.1) can be transformed into

min
I∈I

{
sup
Q∈Pλ

ρ(RI(XQ) + π (I(X)))

}
= min

I∈I

{
ρ h̄(RI(X)) + (1 + θ )ρg(I(X))

}
= ρ h̄∧[(1+θ)g](X).

Thus,

ρh∧[(1+θ)g](Xλ) = ρh∧[(1+θ)g]
Pλ

(X) = ρh∧[(1+θ)g](X) = ρ h̄∧[(1+θ)ḡ](X) � ρ h̄∧[(1+θ)g](X). (5.8)
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Table 1. ρ =RVaR(p,q).

ρh∧(1+θ)g(Xλ) ρ̄Pλ (�(X;I∗
[ρPλ ,π ,X]

))

(1 + θ )p > 1 λ < 1
(1+θ)p

2∗RVaR(λp,λq)(X) 1
λ(p−q)

∫ c2

λq
vu du + (1 + θ )

∫ 1
1+θ

c2
vu du

λ� 1
(1+θ)p

RVaR(λp,λq)(X)

(1 + θ )p � 1 1
λ(p−q)

∫ c1

λq
vu du + 1+θ

λ

∫ λ
1+θ

c1
vu du 1

λ(p−q)

∫ c2

λq
vu du + (1 + θ )

∫ 1
1+θ

c2
vu du

The parameter c1 = λq
1−(1+θ )(p−q) and c2 = λq

1−λ(1+θ )(p−q) .

Figure 2. For λ ∈ (0, 1] ρ1 = ρh∧(1+θ)g(Xλ) and ρ2 = ρ̄Pλ (�(X;I∗
[ρPλ ,π ,X]

)), where ζ = 3, η = 2, θ = 0.2,
and α = 0.05.

The first equality holds because ρ̄Pλ is a λ-tail risk measure generated by ρ, the second equality holds
because ρ f

Pλ is a distortion risk measure with distortion function f̄ , and the last inequality holds because
ḡ � g. The inequality (5.5) follows from (5.8). �
Example 5.1 (Comparison of Problem (3.1) and Problem (5.1) with Pareto distribution). Assume that
X follows the type II Pareto distribution, that is, X ∼Pa(ζ , η) with the survival function SX(x) =

(
η

x+η

)ζ

,
x > 0. Let π = (1 + θ )E with θ � 0. Table 1 provide a theoretical comparison of the objective func-
tional values ρh∧(1+θ)g(Xλ) and ρ̄Pλ (�(X;I∗

[ρPλ ,π ,X]
)) for ρh =RVaR(p,q). For two special cases when ρh =

VaRα, TVaRα, the comparison of the value functions of Problems (3.1) and (5.1) for different sizes of
the uncertainty set are displayed in Figures 2 and 3.

6. Conclusion
In this paper, we investigate insurance design problems that seek to minimize the worst-case risk of
the insurer’s total loss, accounting for model uncertainty. The worst-case problem involves maximiza-
tion over probability measures derived from the likelihood ratio uncertainty set. We establish a relation
between the optimal strategy in the regular-case strategy, which disregards model uncertainty, and the
optimal strategy in the worst-case scenario, which incorporates model uncertainty. Specifically, when
the insurer is aware of the regular-case strategy, our results provide a framework for determining the
corresponding worst-case strategy in a non-cooperative setting. In a more general context, this relation
is applicable to optimal reinsurance models quantified by tail risk measures. Our findings are applicable
to a wide range of problems. We focus particularly on the model quantified by the expectile risk measure,
where we derive optimal policies for the worst-case problem. We also provide a sufficient and necessary
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Figure 3. For λ ∈ (0, 1], ρ1 = ρh∧(1+θ)g(Xλ) and ρ2 = ρ̄Pλ (�(X;I∗
[ρPλ ,π ,X]

)), where ζ = 3, η = 2, θ = 4, and
α = 0.2.

condition for the problem quantified by a distortion risk measure to have common optimal solutions with
its robust counterpart. The robustness of the problem is discussed. In addition, we investigate the corre-
sponding cooperative problem and determine the optimal indemnity function. Our results demonstrate
that the value function in the cooperative model exceeds that of the non-cooperative model.

In addition, it is interesting to discuss the reinsurer’s risk quantification in the optimization prob-
lems. In practice, the insurer and the reinsurer can have heterogeneous beliefs and, therefore, do not
agree on the underlying probability measures. For the studies of standard optimal reinsurance design
problems along this direction, we refer to Boonen and Ghossoub (2019), Chi (2019), Ghossoub (2019),
and references therein. Furthermore, the reinsurer may raise her own uncertainty concern. For exam-
ple, the reinsurer can determine the reinsurance premium in the worst-case scenario, say π↑(I(X)) =
supF∈S π (I(XF)), where S is the reinsurer’s uncertainty set. Here, S is not necessarily align with the
insurer’s uncertainty set, and S can be induced by, for examples, φ-divergence, Wasserstein metrics, or
moments constraints. In an alternative formulation, we can propose equilibrium problems for the insurer
and the reinsurer when they adopt their own uncertainty sets. These challenging questions require future
work.
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A. Appendix

Proof of Theorem 3.1. For any I ∈ I, ρPλ (RI(X)) = ρ(RI(X)λ) because ρPλ is a λ-tail risk measure
generated by ρ. Under Assumption 1, the insurer’s objective function in (3.2) can be expressed as:

ρPλ (�(X; I)) = ρPλ (RI(X)) + π (I(X)) = ρ(RI(X)λ) + π ((I(X) − I(vλ))+ + I(X) ∧ I(vλ))

= ρ(RI(X)λ − RI(vλ)) + π ((I(X) − I(vλ))+) + RI(vλ) + π (I(X) ∧ I(vλ)). (A1)

It is easy to see that

min
I∈I

ρPλ (�(X; I)) = min
0�a�vλ

{
min

I∈I,I(vλ)=a
ρPλ (�(X; I))

}
(A2)

� min
0�a�vλ

{
min

I∈I,I(vλ)=a
{ρ(RI(X)λ − RI(vλ)) + π ((I(X) − I(vλ))+)}

+ min
I∈I,I(vλ)=a

{RI(vλ) + π (I(X) ∧ I(vλ))}
}

.

For any 0 � a � vλ, define

min
I∈I,I(vλ)=a

{RI(vλ) + π (I(X) ∧ I(vλ))} , (A3)

min
I∈I,I(vλ)=a

{ρ(RI(X)λ − RI(vλ)) + π ((I(X) − I(vλ))+)} . (A4)
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If I∗
a ∈ I with I∗

a (vλ) = a is a solution to both problems (A3) and (A4), then I∗
a is a solution to

minI∈I,I(vλ)=a ρPλ (�(X; I)) in (A2), and the infinitely dimensional problem (3.2) is reduced to a 1-
dimensional problem min0�a�vλ

ρPλ(�(X;I∗
a )). Heuristically, the problem minI∈I,I(vλ)=a ρPλ (�(X; I)) can

be decomposed into the sub-optimization problem (A3) focusing on “small-loss part” of X (left-tail)
and the sub-optimization problem (A4) focusing on “large-loss part” of X (right-tail).

We first consider the sub-problem (A4). Note that the function (I(x) − I(vλ))+ is non-decreasing in x.
Therefore, VaRt((I(X) − I(vλ))+) = (I(VaRt(X)) − I(vλ))+ for any t ∈ (0, 1). It follows that

1

1 + θ
π ((I(X) − I(vλ))+) =

∫ ∞

0

g (P((I(X) − I(vλ))+ > t)) dt =
∫ 1

0

VaRt((I(X) − I(vλ))+)g′(t) dt

=
∫ 1

0

(I(VaRt(X)) − I(vλ))+ g′(t) dt =
∫ λ

0

(I(VaRt(X)) − I(vλ)) g′(t) dt

=
∫ 1

0

(I(VaRλu(X)) − I(vλ)) g′(uλ)λ du =
∫ 1

0

(I(VaRu(Xλ)) − I(vλ)) g′(uλ)λ du,

where the last equality comes from the fact that, when p ∈ (0, 1), VaRt(Xp) = VaRpt(X). If g(λ) = 0,
then g(p) = 0 and g′(p) = 0 for all p ∈ (0, λ). It follows that π ((I(X) − I(vλ))+) = 0. If g(λ) > 0, by the
continuity of g, g′(p) > 0 for p in a neighborhood of λ and then

1

1 + θ
π ((I(X) − I(vλ))+) = g(λ)

∫ 1

0

(I(VaRu(Xλ)) − I(vλ)) ḡ′
λ
(u) du = g(λ)ρ ḡλ (I(Xλ) − I(vλ)) .

Meanwhile, since VaRt(Xp) = VaRpt(X), t, p ∈ (0, 1), and RI is a non-decreasing function, we have
VaRt(R(X)p) = VaRtp(R(X)) = R(VaRtp(X)) = R(VaRt(Xp)) = VaRt(R(Xp)) for t, p ∈ (0, 1). Therefore,
R(X)λ and R(Xλ) have the same distribution. Using the above expression, we can rewrite the objective
function in the problem (A4) as:

ρ(RI(X)λ − RI(vλ)) + π ((I(X) − I(vλ))+) = ρ (RI(Xλ) − RI(vλ)) + (1 + θ )g(λ)ρ ḡλ (I(Xλ) − I(vλ))

= ρ
(
R̄I(Xλ,0)

) + (1 + θ )g(λ)ρ ḡλ
(
Ī(Xλ,0)

)
,

where R̄I(y) � RI(y + vλ) − RI(vλ) and Ī(y) � I(y + vλ) − I(vλ) for all y � 0. It is easy to see that, Ī ∈ I
for any I ∈ I, and conversely, for any Ī ∈ I, there always exists I ∈ I such that I(x) = Ī(x − vλ) + I(vλ) for
x � vλ. Therefore, if I∗ is a solution to the problem (A4) with I∗(vλ) = a, then Ī∗(x) = I∗(x + vλ) − a is a
solution to the problem (3.5); if Ī∗ = I∗

[ρ,π̄λ ,Xλ,0] is a solution to the problem (3.5), then any I ∈ I satisfying
I(x) = Ī∗(x − vλ) + a for x � xλ and I(vλ) = a is a solution of the problem (A4).

Next, we consider the sub-problem (A3). Take a ∈ [0, vλ] and I ∈ I with I(vλ) = a. Consider f ∈ I
and its retained loss function given below, respectively,

f (x) =
{

(x − RI(vλ))+ , x � vλ,

I(x), x > vλ,
and Rf (x) = x − f (x) =

{
x ∧ RI(vλ), x � vλ,

RI(x), x > vλ.

It is easy to see that Rf (vλ) = RI(vλ) = vλ − a, and f (x) � I(x) for all x � 0. Since π is comonotonic, we
have Rf (vλ) + π (f (X) ∧ f (vλ)) � RI(vλ) + π (I(X) ∧ I(vλ)). It says that I is suboptimal to f in the problem
(A3), and thus, f is an optimal solution.

In short, for any a ∈ [0, vλ], the function

Ia(x) �
{

(x − vλ + a)+ , x < vλ,

I∗[ρ, π̄λ, Xλ,0](x − vλ) + a, x � vλ,
(A5)

satisfies Ia(vλ) = a, Ia(x) = I∗[ρ, π̄λ, Xλ,0](x − vλ) + a for x � vλ, and Ia(x) � I(x) for all x < vλ and I ∈
I with I(vλ) = a. Therefore, Ia is an optimal solution to problems (A3) and (A4) simultaneously.
Furthermore, Ia is an optimal solution to the inner problem of (A2).
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Finally, we determine the optimal a to the outer problem in (A2). For each a ∈ [0, vλ],

ρPλ (�(X; Ia)) = ρ(RIa (X)λ − RIa (vλ)) + RIa (vλ) + π (Ia(X))

= ρ(Xλ,0 − I∗
[ρ,π̄λ ,Xλ,0](Xλ,0)) + vλ − a + (1 + θ )

∫ vλ

vλ−a

g(SX(x)) dx + C,

where ρ(Xλ,0 − I∗[ρ, π̄λ, Xλ,0](Xλ,0)) and constant C = (1 + θ )
∫ ∞

vλ
g(SX(x))I∗′

[ρ, π̄λ, Xλ,0](x − vλ) dx do
not dependent on the value of a. Minimizing (A2) is equivalent to the problem

min
0�a�vλ

{
−a + (1 + θ )

∫ vλ

vλ−a

g(SX(x)) dx

}
, (A6)

which has a minimizer at a∗ = inf{0 � a � vλ:g(SX(vλ − a)) � 1
1+θ

}. �
Proof of Proposition 3.2. Take F = FX and S = SX . The objective function in the problem (3.17) is

L1 = ∫ ∞
0

[(1 + θ )S(x) − h(S(x))] I ′(x) dx + ρh(X). By the similar argument in Boonen et al. (2021), the
solutions to the problem (3.17) are

I∗(x) � I∗[ρ, (1 + θ )E, X](x) =
∫ x

0

ξ ∗(y) dy, (A7)

where ξ ∗(y) = 1 if (1 + θ )S(y) < h(S(y)), ξ ∗(y) = 0 if (1 + θ )S(y) > h(S(y)), and ξ ∗(y) = ξ1(y) can be any
function within the range [0,1] if (1 + θ )S(y) = h(S(y)).

Since ρh
Pλ is a λ-tail risk measure generated by ρh, we know that ρPλ = ρ h̃ is again a distortion

risk measure with distortion function h̃. Similarly, the problem (3.18) has the objective function L2 =∫ ∞
0

[
(1 + θ )S(x) − h̃(S(x))

]
I ′(x) dx + ρ h̃(X), and optimal solutions

Ĩ∗(x) � I∗[ρPλ , (1 + θ )E, X](x) =
∫ x

0

ξ̃ ∗(y) dy, (A8)

where ξ̃ ∗(y) = 1 if (1 + θ )S(y) < h̃(S(y)), ξ̃ ∗(y) = 0 if (1 + θ )S(y) > h̃(S(y)), and ξ̃ ∗(y) = ξ2(y) can be any
function within the range [0,1] if (1 + θ )S(y) = h̃(S(y)).

Let A � {p ∈ (0, 1) : (1 + θ )p < h(p)}, E � {p ∈ (0, 1) : (1 + θ )p = h(p)}, B � {p ∈ (0, 1
1+θ

) : (1 +
θ )p > h(p)}, Ã � {p ∈ (0, 1) : (1 + θ )p < h̃(p)}, Ẽ � {p ∈ (0, 1) : (1 + θ )p = h̃(p)}, B̃ � {p ∈ (0, 1

1+θ
) :

(1 + θ )p > h̃(p)}. Because h̃(p) � h(p), we have A ⊂ Ã and B̃ ⊂ B.
We first prove that the problems (3.17) and (3.18) have at least one common optimal solution for

a given λ ∈ (0, 1) if and only if Ã ⊂ A ∪ E. If Ã � A ∪ E, let D = Ã/(A ∪ E) and denote the indicator
function as 1{·}. It then follows that Ĩ∗(x) = ∫ x

0
1{S(y)∈Ã} dy + ∫ x

0
ξ2(y)1{S(y)∈Ẽ} dy �

∫ x

0
1{S(y)∈Ã} dy. Because

of the continuity of h̃(p), there exists 0 < a < b such that (S(b), S(a)) ⊂ D and Ĩ∗(b) �
∫ b

0
1{S(y)∈D} dy +∫ b

0
1{S(y)∈A∪E} dy � b − a + I∗(b) > I∗(b) meaning that the problems (3.17) and (3.18) have no common

optimal solutions when Ã � A ∪ E, which leads to a contradiction. On the other hand, suppose that
Ã ⊂ A ∪ E, we can always equate (A7) and (A8) by adjusting the values of ξ1(y) and ξ2(y). Specifically,
let ξ1(y) = 1 when S(y) ∈ Ã/A, ξ2(y) = 0 when S(y) ∈ B/B̃, and ξ1(y) = ξ2(y) otherwise. Thus, Ã ⊂ A ∪ E
is a necessary and sufficient condition for the problems (3.17) and (3.18) having at least one common
optimal solution for a given λ ∈ (0, 1).

(a) “⇐” In this part, we will prove that condition (i) or (ii) implies Ã ⊂ A ∪ E. (i) If h(p) � (1 + θ )p
for p ∈ (0, p0] and h̃(p) � (1 + θ )p for p ∈ [p0, 1), where p0 ∈ (0, 1

1+θ
], we have Ã ⊂ (0, p0] ⊂

A ∪ E. (ii) If h̃(p) � (1 + θ )p for p ∈ [0, 1], then Ã =∅⊂ A ∪ E. Thus, the problems (3.17) and
(3.18) have at least one common optimal solution for a given λ ∈ (0, 1).
“⇒” The following part proves that h(p) and h̃(p) are classified into (i) or (ii) under con-
dition Ã ⊂ A ∪ E. If Ã �=∅, due to the continuity of h̃(p), there exist pu, pd ∈ [0, 1

1+θ
] such

that h̃(pu) = (1 + θ )pu, h̃(pd) = (1 + θ )pd, and h̃(p) > (1 + θ )p for p ∈ (pd, pu). We first assume
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pd > 0. If h(pd) < h̃(pd), the continuity of h(p) and h̃(p) implies that there exists δ > 0 such
that (pd, pd + δ) ⊂ Ã and (pd, pd + δ) � A ∪ E, which contradicts the premise Ã ⊂ A ∪ E. Thus,
we have h(pd) = h̃(pd) = h( pd

λ
). Because h(p) is a continuous and increasing function, h(p)

should be a constant for p ∈ [pd, pd
λ

]. Then there exists δ′ > 0 such that (pd, pd + δ′) ⊂ Ã and
(pd, pd + δ′) � A ∪ E, which also leads to a contradiction. Hence, we have pd = 0, which means
that Ã is a connected set with an infimum 0. Let p0 � sup Ã. Then Ã = (0, p0), h̃(p0) = (1 + θ )p0,
and p0 � 1

1+θ
. Since Ã ⊂ A ∪ E, we must have h(p) � (1 + θ )p for p ∈ (0, p0] and h̃(p) � (1 + θ )p

for p ∈ [p0, 1), which is Case (i). If Ã =∅ for p ∈ [0, 1], it then follows that h̃(p) � (1 + θ )p,
which is Case (ii).

(b) “⇐” If h(p) � (1 + θ )p for p ∈ (0, 1
1+θ

], h̃(p) � h(p) implies Ã ⊂ A ∪ E = (0, 1
1+θ

] for λ ∈ (0, 1).
“⇒” Assume that the problems (3.17) and (3.18) have at least one common optimal solution for
any λ ∈ (0, 1). If B �= ∅, there exist pa ∈ (0, 1

1+θ
) such that h(pa) < (1 + θ )pa. Let λ < pa, it then

follows that h(pa) < (1 + θ )pa < h̃(λ) = 1, which contradicts Ã ⊂ A ∪ E. Thus, B = ∅, which
means h(p) � (1 + θ )p for p ∈ (0, 1

1+θ
]. �

Proof of Lemma 4.1. For simplicity, write LI(X) � Eα(RI(X) + (1 + θ )E [I(X)] ) and let ER
I denote

the α-expectile of R(X) = X − I(X) for I ∈ I. Define a two-layer function ha,b,m(x) = x − (x − a)+ +
(x − b)+ − (x − m)+ with parameters 0 � a � b � m �∞ and I1 = {ha,b,m ∈ I:0 � a � b = a + ER

ha,b,m
�

m �∞}. By the similar argument in Theorem 3.1 of Cai and Weng (2016), for −1 � θ � 0, we have
minI∈I LI(X) = minI∈I1 LI(X).

Arbitrarily take and fix ha,b,m ∈ I1. Define a one-layer function Id,k(x) = (x − d)+ − (x − k)+ with
0 � d � ER

ha,b,m
, k = m + d − ER

ha,b,m
, and d � k, such that RId,k (m) = Rha,b,m (m) = ER

ha,b,m
and RId,k (x) = Rha,b,m (x)

when x > m. Therefore, for any pair (d,k), we have

E
[(

RId,k (X) − ER
ha,b,m

(X)
)

+

]
=E

[(
Rha,b,m (X) − ER

ha,b,m
(X)

)
+

]
. (A9)

Note that RId,k (x) � Rha,b,m (x) when d = 0 and RId,k (x) � Rha,b,m (x) when d = ER
ha,b,m

. Because E[RId,k (X)] is
a continuous function of d, there must exists 0 � d̃ � ER

ha,b,m
such that E[RId̃,k

(X)] =E[Rha,b,m (X)]. Thus,
with π = (1 + θ )E, we have π (Id̃,k(X)) = π (ha,b,m(X)). In addition, since

E[RId̃,k
(X)] + βE[(RId̃,k

(X) − ER
ha,b,m

(X))+] =E[Rha,b,m (X)] + βE[(Rha,b,m (X) − ER
ha,b,m

(X))+] = ER
ha,b,m

(X),

by (4.1), we have ER
Id̃,k

(X) = ER
ha,b,m

(X). Therefore, LId̃,k
(X) = ER

Id̃,k
(X) + π (Id̃,k(X)) = ER

ha,b,m
(X) +

π (ha,b,m(X)) = LIha,b,m
(X). Because ha,b,m is arbitrarily taken, minI∈I1 LI(X) = minI∈I2 LI(X).

For Id,k ∈ I2, define m such that RId,k (m) = ER
Id,k

(X). Then we can get m � k and m = k − d + ER
Id,k

. The
parameter m can be viewed as an implicit function of the other two parameters d and k. Because ER

Id,k
(X) =

E[RId,k (X)] + βE[(RId,k (X) − ER
Id,k

(X))+] =E[RId,k (X)] + βE[(X − m)+], we can get

∂m

∂d
= −1 + ∂

∂d
ER

Id,k
(X) = −1 + ∂

∂d

{
E[RId,k (X)] + βE[(X − m)+]

} = −1 + SX(d) − βSX(m)
∂m

∂d
∂m

∂k
= 1 + ∂

∂k
ER

Id,k
(X) = 1 + ∂

∂k

{
E[RId,k (X)] + βE[(X − m)+]

} = 1 − SX(k) − βSX(m)
∂m

∂k

which give ∂m
∂d

= −FX (d)
1+βSX (m)

< 0 and ∂m
∂k

= FX (k)
1+βSX (m)

> 0. Furthermore,

LId,k (X) = ER
Id,k

(X) + (1 + θ )E[Id,k(X)] = m − k + d + (1 + θ )
∫ k

d

SX(t) dt.

Since −1 � θ � 0, we have ∂

∂d
LId,k (X) = ∂m

∂d
+ 1 − (1 + θ )SX(d) = βSX (m)FX (d)

1+βSX (m)
− θSX(d) � 0, and

∂

∂k
LId,k (X) = ∂m

∂k
− 1 + (1 + θ )SX(k) = −βSX (m)FX (k)

1+βSX (m)
+ θSX(k) � 0, which means LId,k (X) increases with

respect to d while decreases with respect to k. Then LId,m (X) reaches its minimum at d = 0 and k = m,
indicating ER

Id,k
= 0 and I∗

[Eα ,(1+θ)E,X](x) = x for x � 0. This completes the proof. �
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