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ABSTRACT: This study examines generative design (GD) within mass personalization (MP) workflows, using
custom dental implant abutments as a case study. Selected for their complex functional requirements, a parametric
model developed in Rhino3D and Grasshopper, augmented with Wallacei for optimization, was compared to
conventional industrial CAD approaches. GD automates design iterations and handles multi-objective
optimizations, with performance improvements achieved by segmenting the parametric model. However, GD
requires precise parameterization, posing challenges for less experienced designers. While GD enhances iteration
efficiency and explores complex design spaces, its computational demands and limited adaptability to extensive
geometric variations reduce overall efficiency.
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1. Introduction
Mass Customization (MC) refers to a production paradigm where high-volume products are
configurable from predefined components or parameterized modules (Ogunsakin et al., 2021). MC
allows customers to customize standard products by choosing variations—such as color, size, or specific
design elements—within boundaries defined by manufacturers. In contrast, Mass Personalization (MP)
emphasizes tailoring products directly to an individual’s unique data, preferences, or usage
requirements, often captured via advanced data acquisition or real-time user input (Berry et al,
2013). Instead of selecting from predetermined modules, MP leverages adaptive designs to produce
highly personalized outputs. In healthcare applications, for example, MP ensures patient-specific
anatomical or functional requirements directly shape the product’s geometry and materials (Xia & He,
2020). Consequently, MP fundamentally redefines product architecture to closely match each user’s
physiological, ergonomic, or aesthetic needs. The transition from MC to MP involves sophisticated
digital workflows under the methodology termed Design for Mass Personalization (DfMP). Parametric
design systems enable significant adaptation of product geometry by embedding constraints,
optimization objectives, and individual user data into the design process. DfMP begins by directly
gathering customer feedback and inputs, identifying specific preferences and requirements that are
subsequently translated into parameters within a parametric model. Parametric models serve as
foundational templates (seed designs), simplifying personalization by allowing variations in dimensions,
shapes, and materials without altering core structures (Ozdemir & Cascini, 2020). However, manually
adjusting intricate parametric designs can be challenging, slow, and error-prone—particularly when end-
users are involved in the process (Anattasakul et al., 2023). In response, generative design (GD) builds
upon the adaptability of parametric models by systematically exploring and optimizing design
variations. Through iterative algorithms, GD enables the rapid generation, evaluation, and refinement of
solutions tailored to individual needs. By leveraging computational power to handle complex design
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spaces, GD has the potential to extend the capabilities of DfMP, offering a scalable and efficient
pathway to high levels of personalization (Papallo et al., 2023) .
This paper aims to explore the potential of GD in advancing MP, with a particular focus on enhancing
design workflows for MP. To achieve this, the study conducts an analysis of an industrial case: the
design of a custom dental abutment from the dental prosthetics industry. GD will be applied and
compared against conventional abutment design tools and procedures through established MP
characteristics.

2. Related work
Early approaches to Mass Personalization (MP) centered on modularity—assembling products from
predefined components to generate various configurations efficiently (Berry et al., 2013). However,
modularity inherently limits adaptability, prompting the move toward parametric design methods that
allow continuous adjustments in product geometry (Ozdemir et al., 2022). Parametric tools ensure
that modifications to one parameter propagate consistently across all related features, minimizing
errors and preserving design integrity. Critically, these approaches rely on advanced computer-aided
design (CAD) systems that define constraints, manage interdependencies, and automate updates to
handle complex personalization requirements (S. Li et al., 2020). Nonetheless, CAD solutions must
evolve further to address the full range of MP characteristics, which can be grouped into four
categories (Kosec et al., 2024) : design generation, design manipulation, design validation and design
iteration.
Design generation involves creating an initial parametric model and managing constraints—selecting
or defining non-customizable and customizable segments of the design, generating designs
automatically from input data, or reusing prior models to improve efficiency (Bai et al., 2021).
Design manipulation focuses on refining and adjusting models, using parametric manipulation to
modify key parameters under predefined constraints, and advanced geometric manipulation tools (e.g.,
control points or free-form shaping) to accommodate specialized personalization needs (Micevska &
Kandikjan, 2016). Design validation ensures the evolving design remains functionally and
aesthetically viable, particularly under multi-constraint conditions (H. Li et al., 2024). Finally,
design iteration supports continuous refinement through incremental updates and structured
workflows, enabling co-creation with end users and seamlessly incorporating their feedback
(Zheng et al., 2017). Although parametric design streamlines certain personalization tasks and
iteration, it can struggle with unconventional geometries or multiple simultaneous objectives (Maruo
et al., 2023). Various design approaches can streamline iterative workflows and reduce manual
overhead of design tasks—from knowledge-based engineering (H. Li et al., 2024) and rule-based
parametric systems (Costa et al., 2019) to graph-based modelling (Harding & Shepherd, 2017), shape
grammars (Azadi & Nourian, 2021; Barros et al., 2015) and generative design (GD)—all aimed at
reducing manual effort and accelerating design exploration (Krish, 2011). GD stands out by using
optimization algorithms to navigate extensive solution spaces. Rather than relying solely on preset
rules, GD iteratively refines candidate designs against multiple functional, aesthetic, and user-specific
targets (Clay et al., 2024; Kim et al., 2014). Its multi-objective optimization capability is particularly
well-suited to the requirements of MP (Trautmann, 2021), where diverse individual needs must be
accommodated without sacrificing feasibility By systematically evaluating and refining design
variations, GD enriches traditional parametric approaches, offering more adaptive and tailored
outcomes.
Generative design methods typically fall into two broad categories: implicit and explicit (Jiang et al.,
2022). Implicit methods, often used in topology optimization or morphological transformations, rely on
iterative shape or density updates without a predefined parametric structure, resulting in highly
optimized but sometimes harder-to-control geometries (Krish, 2011). Explicit methods, by contrast,
define geometry and constraints through deterministic parametric relationships before applying
generative algorithms, producing more predictable outputs while preserving functional requirements
(Kim et al., 2014). The general procedure of using explicit generative design methods starts by creating
an initial design model with starting values for key dimensions (Janssen, 2006) where maximum and
minimum ranges for these dimensions are also defined. Together, the initial model and the defined
design space form the genotype. The generative design tool then generates random values within the
solution space, producing new phenotypes. Each phenotype is evaluated against predefined criteria -
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objective, leading to the selection of solutions for further refinement through iterative generative design
or manual optimization using parametric design (Harding & Shepherd, 2017) .
Building on the principles of parametric design and seed design used in MP, generative design
integrates advanced computational techniques to enhance flexibility and efficiency in creating
personalized solutions. The connection between generative design and seed design lies in their shared
focus on establishing adaptable frameworks that serve as starting points for customization. While
parametric seed designs define a structured design space with adjustable parameters, generative design
expands this approach with the exploration of a broader solution space. In MP, the initial seed design
provides a foundation for generating variations that align with individual customer requirements
(Ozdemir et al., 2022). Generative design leverages this adaptable framework to navigate complex,
multi-objective constraints. By incorporating explicit generative design methods, where parameters
and constraints are predefined, the process ensures controlled and predictable outcomes. Instead of
requiring designers or end-users to manually adjust parameters or interpret intricate constraints, the
system autonomously explores and optimizes solutions within the predefined design space Thus, by
lowering the expertise barrier, generative design democratizes access to advanced customization
techniques, enabling broader adoption across industries. GD has been applied to personalized products
across multiple domains, leveraging its ability to optimize designs for individual needs. In the medical
field, generative design has been used to create customized orthoses and prosthetics. For instance,
Cirello et al. (2024) developed a workflow integrating generative design with additive manufacturing
to produce custom wrist orthoses tailored to patient anatomy. GD has enabled architects to design
personalized spaces or components, such as parametric facades and adaptive furniture. Costa et al.
(2019) demonstrated the use of GD in creating tableware collections, translating design rules into
parametric models for unique, personalized products. However, many GD applications focus on
algorithmic capabilities or specialized tools rather than holistic MP scenarios (Trautmann, 2021). This
paper aims to address that gap by examining how GD can advance MP workflows, with particular
attention to the design complexities of personalized products. A custom dental abutment case study
illustrates the benefits and challenges of applying explicit generative design to high-precision, user-
specific domains.

3. Methods
The primary objective of this study is to evaluate the suitability of generative design for mass
personalization workflows, with a focus on its application in designing custom dental implant
abutments (further in text: abutment). By leveraging generative algorithms, the study aims to
evaluate whether this approach can meet the functional and morphological requirements of the
product and whether this approach adheres to the characteristics of MP. The research was conducted
on a specific case involving a patient requiring an abutment. An abutment is a dental implant
component that connects the implant embedded in the jawbone to the visible prosthetic restoration,
such as a crown, bridge, or denture. The abutment is composed of three segments, each having
unique requirements: the implant connection segment, the transgingival segment, and the prosthesis
connection segment (Figure 1). The implant connection segment is designed to align precisely with
the implant geometry, ensuring stability and a primary sealing surface, often referred to as “passive
fit.” The transgingival segment adapts to the surrounding oral tissue, replicating the natural
emergence profile of a tooth, ensuring secondary sealing surface. The prosthesis connection segment
is customized to match the specific shape and size of a tooth, distance to opposite jaw and distance to
neighbouring teeth.
The parametric model of the abutment was developed using Rhino3D and Grasshopper, chosen for their
ability to design models using NURBS curves and due to their visual programming capabilities. The use
of NURBS curves enables creation of complex geometries, while the visual programming capabilities of
Grasshopper streamline the design process by enabling rapid adjustments to parameters and real-time
visualization of changes. The initial parameter ranges and model geometry were informed by a baseline
design created in Exocad Rijeka 3.1, a widely used commercial dental CAD tool, performed by dental
technician. This baseline provided a practical reference for evaluating the performance and accuracy of
the generative design approach, ensuring alignment with industry standards and real-world application
requirements.
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While forming the structure of a parametric model the abutment was divided into previously mentioned
functional segments to address specific anatomical and prosthetic requirements. Therefore, the
parametric model was structured into three segments: one non-customizable segment and two
customizable segments. The non-customizable segment included the implant connection interface, while
customizable segments comprised the transgingival segment and the prosthetic connection (Figure 1). As
design input (alongside with baseline design), a high-resolution 3D scan of the patient’s jaw was used.
The scanned data captured critical anatomical features, such as surrounding implant tissue and implant
positioning. Following design parameters found in Exocad, 9 design parameters were extracted. These
parameters included the diameter of the implant connection segment (ICD), the positional coordinates of
the mesial (M), distal (D), buccal (B), and oral (O) control points for the gingival profile, the width of the
crown-fit shoulder (SW), and the height (CH), taper (CT), and angulation (CA) of the prosthetic
connection segment (Figure 1).

These parameters were defined to allow precise control over the customizable segments and ensure that
adjustments adhered to the functional constraints of the abutment. To establish a robust and adaptable
parametric model, the interdependencies between the design parameters were analysed using a design
structure matrix (DSM). This analysis provided a detailed understanding of the relationships between
parameters, enabling the identification of groups of parameters that could be iterated or optimized during
the GD process. By embedding dependencies and constraints into the model, parameter adjustments were
ensured to propagate consistently throughout the design without compromising geometrical coherence or
functional integrity. For the customizable segments of the dental abutment, modifiable parameters were
implemented to facilitate patient-specific customization. These parameters, coupled with constraints
derived from the DSM analysis, enabled the model to handle iterative modifications effectively during
GD. The resulting parametric model incorporated adjustable parameters and provided a clear
visualization of design interdependencies, ensuring a robust foundation for the GD process. This
preparation allowed the GD algorithm to explore and refine design variations efficiently, maintaining
alignment with both functional requirements and specific needs of a customer. GD was implemented
using Grasshopper, enhanced with the Wallacei plugin for multi-objective optimization. To set up the
GD process with the Wallacei plugin, key components such as input parameters, objectives, and
algorithmic settings (including generation size and generation count) were defined to enable effective
exploration and optimization of the design space. The previously identified input parameters were
utilized as the basis for generative design in both the transgingival and prosthetic connection segments
(Figure 1). Additionally, a range of possible values was assigned to each parameter to guide the
algorithm’s exploration and ensure the generation of viable design variations tailored to the specific
requirements of each segment. Initially, ranges were set at ±3mm from a baseline design value. The
objectives were then tailored to meet patient-specific requirements and ensure the functional and
aesthetic suitability of the dental abutment. These included:

• Minimizing the distances between 4 gingival profile points: The algorithm aimed to minimize the
discrepancy between four key points on the gingival profile and their corresponding points on the

Figure 1. Custom dental implant abutment
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patient’s 3D scan, while keeping the gingival profile 1,5mm below the tissue to comply with the
aesthetic requirements

• Occlusal contact compliance: aim is to meet occlusal contact requirements, meaning minimal
distance from the opposing jaw is 1,5mm

• Prosthetic connections segment positioning: the goal is to position the prosthetic segment between
adjacent teeth to secure enough space for the prosthetic crown

• Minimizing crown shoulder width: the algorithm aimed to minimize the shoulder width to
increase prosthetic connection surface

Regarding the algorithm settings, the generation size and generation count were initially set to 50,
resulting in a total of 2500 iterations. This configuration was chosen to balance computational efficiency
and the time required to reach a solution. The selected settings aim to minimize the time needed for the
algorithm to converge while maintaining sufficient exploration of the design space. However, these
values are expected to change and will be adjusted as part of the design procedure depending on the
complexity of the case, the number of input parameters, and the defined objectives.
This GD workflow and design output was then evaluated against criteria established in previous research
and explained in section 2 (Related Work). Due to the page limitation of this paper the evaluation was
focused on design generation and design manipulation criteria only (Table 1). Additionally, the GD
procedure was compared to the conventional design process and the capabilities of the Exocad.

4. Results
In the initial attempt, the generative design process was conducted by simultaneously optimizing all
parameters and objectives across both segments—the transgingival and the prosthetic connection. This
setup included 7 objectives and 9 input parameters, run simultaneously. With initially set parameters
(parameter range ±3mm, 50 generation size and 50 generation count) the algorithm failed to converge to
a viable solution.

Extending the iterations to 400,000 resulted in partial convergence (Figure 2, A), with only distal
gingival profile point converging to the objective. However, this approach proved inefficient, as the
solution generation process alone required 45 minutes. To address this issue, the generative design was
divided into two separate workflows—one for the transgingival segment and another for the prosthetic
connection segment. This segmentation significantly improved the algorithm’s performance, with
convergence achieved for both segments within 2,500 iterations and in less than 5 minutes (Figure 2, B).
Initially, the parameter ranges were set broadly, with a range of ±3 mm. Under these conditions,

Table 1. Evaluation criteria

C1) Design generation
C1.1) ability to generate initial design automatically using input data and constraints
C1.2) ability to integrate individual user data into design process
C1.3) ability to change design constraints during design procedure

C2) Design manipulation
C2.1) support for manual parametric manipulation and customization of design
C2.2) ability of iterative design
C2.3) advanced geometry manipulation techniques

Figure 2. Generated outputs
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convergence occurred after 4 minutes, but not all objectives were fully satisfied. While transgingival
profile was adapted according to the scan, the profile was not fully submerged under the tissue level, as
set by the objective. Since the goal was to increase efficiency, subsequently, the parameter ranges were
narrowed to ±2 mm from the baseline design, maintaining the same number of generations. This
adjustment improved the results, achieving better alignment with the defined objectives. A final
reduction in parameter ranges was then implemented to ±1,5 mm, further enhancing the objective
outcomes. By narrowing the range, the algorithm was able to achieve convergence within 2 minutes and
with greater accuracy, meeting all design requirements within the set constraints (Figure 3). These
findings underscore the importance of carefully calibrating parameter ranges and segmenting objectives
to optimize the generative design workflow.
The table below provides a detailed comparison of the two design approaches based on the previously
established evaluation criteria, offering insights into their performance and alignment with MP
principles. Additionally, Figure 3 illustrates the final abutments generated using both approaches,
highlighting the differences in design outcomes and showcasing the effectiveness of each method.

In comparing the final geometries (Figure 3), the generative design (GD) approach generated an
abutment very similar to one designed by the conventional ExoCAD workflow, particularly in terms of
tissue adaptation, occlusal clearance, and functional fit. While each method starts with a parametric
model, GD’s automated iteration ultimately arrived at solutions closely mirroring ExoCAD’s manually
refined outputs.

Table 2. Results of evaluation

Conventional procedure (ExoCAD) Generative Design
C1) Design generation

C1.1) initial design is generated using input data such as oral
scans, predefined design parameters, autodetected
tissue profile, shape of the restoration, tooth position,
implant placement, etc.

initial design is generated by the user, and user
defined parameters and constrains,

C1.2) 3D scans, CBCT, 3D models, photographs,
automatically detected functional surfaces

3D scans, 3D models

C1.3) restricted ability to change constraints during design
process

constraints of the designed model can be fully
changed by the user

C2) Design manipulation
C2.1) Each segment can be manually changed using

parameters
Each segment can be manually changed using
parameters

C2.2) Iterations of the design are performed manually by the
designer

Iterations of the design are performed
automatically by the generative algorithm

C2.3) Has the option to create additional control points on
the design to manually change the design

Has the ability to create additional control
point but cannot be used for generative
design

Figure 3. Final abutment designed in industrial CAD tool - Exocad (left) and using generative
design (right)
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5. Discussion
During the initial design generation, several differences become apparent between the conventional
design approach using industrial design tools and the GD approach, particularly in the steps involving
the definition of the basic shape and constraints. In the conventional design approach, the initial
abutment design is performed using predefined parametric options integrated into the software. Input
data, such as jaw scans, auto-detected tissue profiles, and the shape of the intended prosthetics, are
used to define the abutment’s initial design. This indicates that the tool incorporates built-in algorithms
that partially automate the design process, although the exact mechanisms remain unclear due to a lack
of detailed documentation from the manufacturer. The goal of this automation is to accelerate the
design process and minimize the need for designer intervention to enable co-design requirement —
aligning with the principles of MP (Ozdemir et al., 2022) —it is effective only under ideal conditions,
such as optimal implant placement, clearly defined tissue boundaries, and sufficient space for the
prosthetic connection segment. In less-than-ideal scenarios, the auto-generated initial model often fails
to meet the contextual requirements, necessitating manual adjustments by the designer. Furthermore,
the parameters available to the user are predefined and rigid, limiting the extent to which the design
can be customized or controlled. Once the design process begins, the user cannot modify the parameter
definitions or ranges, meaning that required design changes often necessitate a complete reset of the
initial parametric model. This process undermines efficiency, particularly in cases requiring
significant iterations or adaptations (Cirello et al., 2024). In contrast, the GD approach demands that
the initial model be fully defined by the designer, granting complete oversight of the parameter
definition process. The designer determines which parameters will be adjustable and has the flexibility
to expand the parameter set as needed. This “open” approach allows for greater adaptability, enabling
the model to accommodate a wider range of scenarios and requirements. However, it also places a
higher demand on the designer’s skills, requiring expertise in defining interdependencies between
parameters, interpreting requirements, and translating them into a parametric framework. Despite its
complexity, this approach provides significant advantages. The GD model can be continuously
improved, with its parameters and constraints refined to better address specific use cases. This
adaptability ensures that the model remains relevant and effective across diverse applications,
ultimately aligning more closely with the goals of MP by allowing greater customization and precision
in the design process.
Another distinction between the conventional MP approach and GD lies in how constraints are handled.
In conventional DfMP approach, parametric models often encompass a broad range of constraints to
accommodate a wide variety of use cases (Bai et al., 2021). The designer is responsible for ensuring that
any changes made within these ranges align with the specific context for which the design is intended.
This flexibility allows the designer to adapt the model to different scenarios manually. However, in GD,
this approach is reversed. Generative algorithms require a narrower range of parameter values to achieve
faster convergence toward optimal solutions. Broad parameter ranges can slow down the algorithm or
lead to less precise results (Figure 2, A, B, C). Thus, in GD, it becomes critical for the designer to narrow
down these ranges and define tighter constraints before initiating the algorithm (Figure 2, D).
Furthermore, the designer must enable flexibility in modifying constraints at the start of the generative
process, as this step requires careful calibration to balance exploration with precision.
Regarding the design manipulation criteria, it is evident that both approaches involve dividing the
design into several segments. Two primary reasons justify this segmentation. The first stems from the
principles of MP, which emphasize dividing the design into distinct segments to enable designers to
focus on each part independently. Functionally, each segment has specific requirements: the gingival
segment must align precisely with patient tissue contours to ensure comfort and health, while the
prosthetic segment must support the crown and maintain occlusal compatibility. This separation
ensures that the unique functional demands of each segment are addressed effectively (Ozdemir &
Cascini, 2020). In the context of GD, segmentation serves an additional purpose: addressing the
current technical limitations of generative algorithms. Although generative algorithms are capable of
managing multiple objectives, their efficiency decreases as the number of objectives increases (Krish,
2011). Managing a smaller set of objectives enables the algorithm to perform more robustly, ensuring
faster convergence to acceptable results as can be seen by the results. For this reason, in this study, GD
was applied separately to the gingival segment and the prosthetic segment. The gingival segment was
prioritized because of its critical role in maintaining patient health, ensuring a proper fit with the tissue,
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and influencing the overall functionality of the abutment and the shape of the prosthetic connection
segment directly depends on the gingival segment. Segmenting and focusing on individual design
components allowed the algorithm to achieve efficient and functionally viable results while
maintaining the flexibility necessary for efficient personalization. This approach demonstrated how
segmentation not only facilitates adherence to MP principles but also optimizes the performance of GD
in complex design scenarios.
Within design manipulation, the design iteration criteria highlight the key differences between the
conventional approach and GD. In the conventional method, designers manually adapt and refine
models by adjusting parameters and control points iteratively. This process requires significant time
and effort, with every adjustment demanding the designer return to previous steps to modify
parameters and refine the design. GD, on the other hand, automates much of this iterative process.
Once the designer defines the initial rules, constraints, and parameter ranges, the algorithm takes
over, exploring and refining the design independently within the defined objectives and parameter
ranges. This automation streamlines the design process by significantly reducing the manual
workload and ensuring faster convergence toward viable solutions (Kim et al., 2014). While GD
automates iterations, it does not exclude user input. Manual parameter adjustments made by the user
can serve as new phenotypes, further accelerating the algorithm’s convergence toward improved
solutions. Unlike traditional workflows, GD dynamically adapts to changes in objectives. For
instance, if reference points on a digital scan are modified—such as adjusting the emergence profile
or redefining contact points with the opposing jaw—the algorithm generates new iterations to align
with the updated objectives. This integration of validation criteria within the iterative process
enhances the workflow’s reliability. By embedding checks for constraint violations, realistic
placement simulations, and user-specific requirements, GD ensures that the final product meets both
functional demands and user preferences (Trautmann, 2021). This iterative and validation-driven
approach enables the creation of highly accurate and personalized designs efficiently, aligning
seamlessly with the principles of MP.
This study highlighted one technical challenge in applying explicit GD methods to personalized
products. Specifically, limitations arise from the algorithm’s ability to handle large number of
objectives effectively. Documentation of the algorithm used, a maximum of three objectives is
recommended for optimal performance (Belluomo et al., 2024; Kim et al., 2014; Krish, 2011). This
constraint directly impacts the manipulation of the model’s geometry, leading to significant
simplifications compared to conventional design approaches used in dental CAD tools or in general
engineering parametric CAD tools. In conventional dental CAD workflows, tools allow the addition
of numerous control points to define features such as the gingival profile. This capability is essential
for addressing the unique anatomy of individual patients. However, in the context of GD, such
flexibility is constrained. Explicit GD methods require a fixed number of controllable parameters (in
this case, control points for the curve describing the gingival profile and prosthetic segment),
resulting in reduced adaptability to irregular anatomical shapes (H. Li et al., 2020). For instance, in
this study, the prosthetic segment’s shape had to be simplified significantly compared to what is
achievable in dental CAD tools (Figure 3). Conventional dental CAD tools allow independent
shaping of the prosthetic segment, enabling the addition of control points as needed. They also offer
advanced features, such as manual free forming of the apex of the prosthetic segment to the opposing
tooth or with the occlusal surface of the opposing jaw. While it is technically possible to add
additional control points to the model after the GD process, these points or design features cannot be
utilized within the generative algorithm itself. Instead, they would require manual user intervention,
as the generative algorithm does not automatically reprocess inputs and objectives to accommodate
newly introduced parameters (Starodubcev et al., 2023). This limitation reduces the flexibility of
explicit GD methods in handling complex geometries, which is a crucial requirement in personalized
product design.

6. Conclusion
This study underscores the potential and limitations of explicit GD methods in MP. While the proposed
approach effectively automates the iterative design process and balances multiple objectives, it struggles
to accommodate the high level of customization required for personalized products, such as dental
abutments. GD, in its current form implemented in this study, cannot fully replace conventional
parametric design approaches for MP but serves as a valuable tool for automating and streamlining
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specific aspects of the design process. To enhance the applicability of GD in MP, future research should
focus on further refining the design parameters and rules within features. By defining more robust
interdependencies and constraints, the adaptability and precision of generative algorithms can be
improved, enabling them to better address the diverse requirements of personalized products. A critical
question that arose from this research is whether explicit GD is the right approach for MP. Given that the
objectives in such contexts are often well-defined, the exploratory nature of GD may seem redundant.
However, GD’s ability to manage multiple objectives and self-validate geometry makes it valuable for
optimizing solutions that satisfy all constraints simultaneously. This capability is particularly beneficial
for ensuring that all functional, aesthetic, and manufacturing requirements are met in an integrated
manner. Based on the findings of this study, GD should not be viewed as a standalone solution for MP.
Instead, it should be integrated as a mechanism to automate specific aspects of the design process, such as
iterative refinement and multi-objective optimization.
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