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NONZERO SYMMETRY CLASSES
OF SMALLEST DIMENSION

G. H. CHAN AND M. H. LIM

1. Introduction. Let U be a k-dimensional vector space over the
complex numbers. Let @™ U denote the mth tensor power of U where
m = 2. For each permutation ¢ in the symmetric group S,,, there exists
a linear mapping P(s) on @™ U such that

P(o)(xl® .. ® xm) = Xo-1(1) ® .o ® Xo=1(m)

forall x1,...,%x,in U.

Let G be a subgroup of S,, and \ an irreducible (complex) character on
G. The symmetrizer

76N = 2T A @Pe)
G| 72

is a projection of @™ U. Its range is denoted by Uy*(G) or simply
U,(G) and is called the symmetry class of tensors corresponding to
G and M.

The problem of characterizing all groups G and irreducible characters
A and G for which Uy(G) = 0 was considered in [10], [27] and [7, 8]. The
main result of this paper characterizes those U, (G) with dimension equal
to N(1) when m = 2k (Theorem 13). Its proof relies on the results con-
cerning (k)-groups studied by the first author [4, 5, 6]. It was proved in
[9] that for m = 2k — 2, dim Uy(G) = 1 if and only if m = &k, G = S,
and X\ is the sign character e.

2. Some preliminaries. Let T, , be the set of all functions from
M=1{1,2,...,m}into K = {1,2,...,k}. Letey,...,e bea basis of
U. Then

® .
{ea = ezx(l) ® e ® ea(m) e 6 Pm,k}

is a basis of @™ U. It follows that {e,* = 7'(G, \)e,® :a € T, ;) spans
UL (G).

We define an equivalence relation on T, ; as follows: For «, 8 € Ty, 4,
a = B (mod G) if and only if there existsa ¢ € G such thatas = 8. Let Abe
the system of distinct representatives for the equivalence relation formed
by taking the element in each equivalence class which is first in lexi-
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cographic order. For each @ € T, let G, be the stabilizer subgroup of «,
ie., Go = {0 € G:ao = a}. Then it is well-known that ¢,* = 0 if and
only if

> Ao) = 0.

A}

Let
A = {a C Ate* # 0}.

Then it was proved in [24] that

(1) UG) = 2 (e 10 € G),
acA
the sum being direct.
For each a € A, the subspace {(e,,*:0 € G) is called the orbital subspace
of Uy(G) corresponding to a. In [13], Freese proved that
A(1)

(2) dim {ea* 10 € G) = T2 D A (o).
G| 723,

Thus if U,(G) # 0 then dim Uy (G) = N(1). It is known [17, p. 79] that

() dim 1,6 = 2 H Y A @r
G| 72
where dim U = k and ¢(s) denotes the number of cycles in the disjoint
cycle decomposition of ¢ (including cycles of length 1).
A character x of G is called a (k)-character of G if, for each « € T, ,

we have

Z x (o) = 0.

TEG,
If x is a (k)-character of G then G, # {1} for all « € T,,; and this is
precisely another version of the definition of (k)-group [6]. Clearly
U, (G) = 0if and only if X is a (k)-character where dim U = k.

Let G, and G: be permutation groups on M = {1,...,m} and
N = {1,..., n} respectively. Each permutation of the wreath product
G = G1 ! Go can be uniquely expressed in the form (g;, ..., g,: h)

where g; € Gy, h € Go. If \; is a linear character on G, 7 = 1, 2, the
mapping \ defined by

Mg ooy & h) = M(g1) - M(g) N (h)

is a linear character on Gy { Gzand isdenoted by \; ¢ No. In [28, Theorem 2],
Williamson proved that

(4) dim U\(G1Q G2) = dim [(Uy, (G1))x, (G2)].

Let H be a normal subgroup of G of index 2. Let X be an irreducible
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character of G. Then the irreducible character N’ on G such that

N(s) = N(o), s H
N(e) = =No), o ¢ H

is called the associated character of . If X\ = N/, we say that \ is self-
associated.

For each irreducible character x of H and a # € G\H, we can define
an irreducible character x of H as follows:

% (o) = x(77tomr)

for all ¢ € H. Note that g is independent of the choice of = and is called
the conjugate character of x. x is called self-conjugate if x = x. The
relation between associated characters of G and the conjugate characters
of H is given in the following theorem [1].

THEOREM 1. (a) If x and X' are associated 1rreducible characters of G
and x # x', then x|g = X'|g is a« self-conjugate irreducible character of H.
Conversely, every self-conjugate irreducible of H is the restriction of a pair
of associated wrreducible characters of G.

(b) If x s a self-ussociated trreducible character of G then x|g = N + X
where N and X are irreducible conjugate characters of H. Conversely, the sum
of a pair of distinct conjugate irreducible characters of H is the restriction of
a self-associated irreducible character of G.

The last line of the following theorem follows from Lemma 5 in [24],
while the rest of the theorem is a special case of Theorems 3 and 4 in
[20]. We remark that the theorem could also be proved easily by using
formula (3).

THEOREM 2. Let G be a subgroup of S,, and H « normal subgroup of G
of index 2.

(@) If N s a self-conjugate trreducible character of H induced by the
associated trreducible characters x and x' of G, then

UA(H) = UX<G) @ Ux’(G)-

(b) If N and X is a pair of conjugate irreducible characters of H such that
x|z = N 4 X where x is a self-associated irreducible character of G, then

Uy(G) = Ux(H) ® Ux(H)
and
dim U\(H) = dim Ux(H).

We now describe irreducible characters on the wreath product
G = S, 1S, Consider G as a permutation group on {1, 2, ..., 2xn} with
the complete block system N, = {1,...,#n}, No = {n +1,...,2n}. We
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shall write every permutation in S, Sy as oo where o1 € Sy,
o2 € Sy, and m € S,. Let A and p be two irreducible characters correspon-
ding to irreducible representations Dy and D, of Sy, and Sy, respectively.
Then the character \ # p corresponding to the outer tensor product
D, # D, defined by

(Dk #Dp) (0102) = D)\(Ul) ® Dp(dz)

where o, € Sy,, o2 € Sy, is an irreducible character of the product
Sxi Sy, (see [11], [15]). In fact

()‘ # P) (0102) = )\(61)9(62).

If X ## p, then the induced character (A # p)¢ is an irreducible character
of G =S, SQ./IQ\j p, then we first extend Dy # Dy to an irreducible
representation Dy # Dy of S, ¢ S: as follows: for each gioom € S, 0 Sy, if

Di\(01) = (ailjl)

Dy(o2) = (bi,s)

Dy # Dy(0102) = (@ijiisj0)

we put
N
Dy # Dr(a10om) = (@ irsp0y0i2ineyy)-

Now for each irreducible character x of Sy corresponding to irreducible
representation D, of S, we can define a representation D, of S, { Ss as
follows:

D, (o109m) = Dy(m).

Then the inner tensor product Dy # D\ ® D, is an irreducible representa-
tion of S, ¢ .S, and its corresponding character is the character A  x. We
shall need the following result (see [15]) concerning the irreducible
characters of wreath product .S, { Sz in the next section.

THEOREM 3. Every irreducible character of the wreath product G =
Sy 0 Se ts either equal to (N # p)% or N x where \, p are distinct irreducible
characters of S, and x is an irreducible character of Ss.

THEOREM 4. Let G, and G, be permutation groups on {1,...,m} and
{m + 1, ..., m + t} respectively. Let \; and \, be irreducible characters of
Gy and Gy respectively. If N = A # N\o 1s the 1rreducible character on the
product G, - G corresponding to the outer tensor product representation, then

dim U)\"H-l(Gl Gz) = dim U)\I(Gl) -dim U)\Q(GQ).
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Proof. In view of (3),

dim U)\<G1 . Gg) = TG';—@T ; ()\1 #)\2) (0’102)]86(“”)

A1) A2 (1) c(o1)+c(o2)
=M A sy (00 :
G 1Ga] o2z, Ne0he(on)

(380 ) (40 i)

1€G1 726G
= dim U)\I(Gl) - dim U)\;. (GQ)

When A, \s are linear, Theorem 4 was proved in [26] by a different
method.

THEOREM 5. Let N\ and p be distinct irreducible characters on S,. Let
G=S,0Seand x = \N#0p)¢ Then

dim U, (G) = 2dim Uy(Sy,) dim U,(Sy,)
where Ny = {1,...,n} and No = {n + 1,...,2n}.
Proof. Since (N # p)€ is self-associated with respect to Sy, - Sy, and
Xl sy sy, = Mo+ NFo,
it follows from Theorem 2 and Theorem 4 that

dim Uy(G) = 2dim Uy4,(Sw, - Sws)
= 2dim U\(Sy,)dim U,(Sy,).
CoroLLARY 1 [8]. Let N and p be distinct irreducible characters of S,.

Then (N # p)¢ is a (k)-character of G = S, ! Saif and only if either \ or p is
a (k)-character of S,.

Proof. This follows immediately from Theorem 5.

3. Nonzero symmetry classes of smallest dimension. In this
section we shall determine those subgroups G of S,, and those irreducible
characters N on G such that dim Uy(G) = XA(1) when m = 2k where
k = dim U.

Throughout the rest of the paper we assume that dim U = &,
M=1{1,2, ..., m}and K = {1,2,...,k}.

THEOREM 6. Let 0 # dim Uy(G) < kN(1). If a € A then |a(M)| = k
and la (1) = m/k for1=1,2,..., k.

Proof. It & > m, let Q be the set of all mappings 8in T, ; such that

a(l) <a(2) < ... < a(m).
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Then Q C A and hence from (1) and (2) we have
dim U, (G) = [QIN1) = ,Cn(1) = kA1)
a contradiction. Hence & = m.
Suppose now |a(M)| = s # k. Then for each 7 £ (M) and j ¢ a()),
1 £j < k,leto;; = (7) be the transposition in S;. Then
leriaii € a(M),j 7 a(M), 1 =] =k} (e}

is a set with s(k — s) + 1 elements and different elements of the set
belong to different orbital subspaces of U, (G). Hence

dim Ux(G) = [s(k — s) + 1]A(1) = kX(1),

a contradiction. Hence |a(M)| = k.
Let D = {j:la”(j)| = |«~1(1)|}. Suppose that |D| = [ # k. Then for
cachi € Dandj ¢ K\D, let 7,; be the transposition (#j) in S;. Then

tefiaii € D,j € K\D} U {e.*]

is a set with t(k — ) + 1 elements and different elements of the sect
belong to different orbital subspaces of U, (G). Hence

dim U\(G) z [tk — 1) + 1]N(1) = kN (1),

a contradiction. Hence |a~'(1)| = |a~'(4)| for i = 1,..., k. This com-
pletes the proof.

CoroLLARY 2. If dim Ux(G) = N(1), then k is « divisor of m.
The following result was proved in [2, Corollary 1].

THEOREM 7. Let N be the irreducible character of S,, corresponding to «
Young diagram (\y, ..., \,). Then dim U\(S,,) = 0 if und only if t > k.

The following result follows from the Proposition in [12, p. 20] and
Theorem 1 in [25].

THEOREM 8. Let \ be the trreducible character of S, corresponding to u
Young diagram (N, ..., N,). Then dim Uy(S,) = N(1) if and only if
t=Fkand \y = Ny = ... = \.

We remark that the necessity of the above theorem also follows easily
from the Theorem in [21] and Theorem 6.
Let 4,, denote the alternating group of degree m.

THEOREM 9. Let N\ be an 1rreducible character of A,,. Let m = ks and
k= s. Then dim Ux(A4,) = N(1) if and only if s = k and \ is the restric-
tion of the self-associated irreducible character of S, corresponding to the
Young diagram (\y,, ..., \;) where \; = ... =\, = k.
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Proof. If X is the self-conjugate irreducible character induced by the
associated characters x and x’ on .S,,, then by Theorem 2,

U)\(A7n> = Ux(sm) @ Ux’(Sm)~

If dim U\(4,) = N(1) then we may assume without loss of generality
that dim U,(S,,) = N(1) and dim U, (S,,) = 0. Hence by Theorem 8, x
corresponds to the Young diagram (\y, ..., \,) where t = k, \; = \»
= ... =\, =s. Hence x’ corresponds to a Young diagram with s rows.
However Theorem 7 implies that s > k, a contradiction.

If X\ is not self-conjugate then, by Theorem 1, X + X = x|4,, for some
self-associated irreducible character x of S,, where X is the conjugate of \.
In view of Theorem 2,

dim Uy(4,) = A1) < dim Ux(4,,) = \(1)
e dim U, (S,,) = x(1)

< x corresponds to the Young diagram (A, ..., \,) with { = k and
Ai=...= A, =35,

Since x is self-associated, we must have s = k. This completes the
proof.

Two permutation groups H; and H, on Ny and N, respectively are said
to be of the same type if there exists an injection ¢:N; — N, and an
isomorphism f:H; — Hs such that

¢(c (1)) = f(o)(¢()) forall i € Ny, o € Hi.

The following result is useful in the sequel.

THeOREM 10 [8]. Suppose m < 2k = 2dim U. Then U\(G) is trivial
if and only if one of the following holds:

1. G contains a subgroup of type S, with n > k and \| s, is a multiple of
an 1rreducible character of S, corresponding to a Young diagram (N1, ..., \,)
where t > k.

2. G contains a subgroup of type Sy ! Se and

>\lskl Se = >\(1)p z X
where p 1s the sign character of Sy and x ts the sign character of Ss.

THEOREM 11. If G has t orbits Oy, Os, . ..0, such that |04 = ... =
|0, = k, then dim Uy (G) = N(A) if and only if G = Sy, .. . So, and X = .

Proof. The sufficiency follow from Theorem 4. To prove the necessity,
let 1 <1 < t. Given distinct elements s,j € O, let « € T, ; such that

e (0,)] = & for n # 1,
(0] =k —1 anda(s) = a(j).

https://doi.org/10.4153/CJM-1980-073-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-073-0

964 G. H. CHAN AND M. H. LIM

By Theorem 6, e,* = 0. Hence G, # {1} and therefore (sj) © G. Hence
So; € G. This shows that G = Sy, ... S,. Hence N\ = N\ #... 47, for
some irreducible characters \; of S;, 2 = 1,2, ..., f By Theorem 4,

12
dim U\(G) = [] dim Uy, (So;) = A(1).
=1

Hence dim Uy;(Sy;) = A\;(1) for all 1 =1,...,¢ Since |0, = k and
dim U = k it follows from Theorem 8 that \; = e. This completes the
proof.

LEmMMA 1. Let G be « subgroup of Se containing meither 2-cycles nor
3-cycles. If dim U = k = 3, then dim U,(G) > N(1) for any irreducible
character ) of G.

Proof. Suppose that dim Uy(G) = N(1). Let « € T4 3 such that
a1 (1) = 11,2}, a71(2) = {3,4,5},a71(3) = {6].

By Theorem 6, ¢,* = 0 and hence G, # {1}. Suppose |G, > 2. Then
G contains a 2-cycle or a 3-cycle, a contradiction. Hence |G| = 2. We may
assume that (12)(34) ¢ G,. Then

2 Ao) = A1) + A ((12)(34)) =0

TEGy
and hence N((12)(34)) = —\(1). Similarly, we can show that for
BlyB? E Fﬁﬁ deﬁned by

61_1(1) = {3r4}v 61_1(2) = {1r576}761_1(3)
Bo7H(1) = {1, 2}, B(2) = {4,5,6},8:71(3) =
(

It

w o

Gg, = 11, (34)(56)}, Gg. = 11, (12)(56)} and
N((34)(56)) = N(12)(56)) = —\(1).

Now for y € T'g 3 defined by
Y =1L 20 v 2) = 18,4, v (B) = 15, 6,
we have G, = |1, (12)(34), (12)(56), (34)(56)}. It follows that

> A(e) = A(1) — 3a(1) = —2x(1),

TEG,
which contradicts the fact that FGA,I_lZ,,EG_r}\(O’) is a non-negative
integer. Hence dim U\(G) > M(1).

LemMma 2. If dim U\(G) = N(1) then for any (k — 1)-dimensional sub-
space W of U, Wy(G) = 0.

Proof. This follows immediately from Theorem 6.

TreOREM 12. If dim Uy (G) = N(1) and N s not linear, then G is u
(R)-group.
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Proof. Since dim U, (G) = \(1), A = {a} for some « € A and by (2)
we have

1
1= —G“"| Z o).

UEG

If G, = {1} then 1 = X(1), a contradiction. Hence G, # {1}. This implies
that G is a (k)-group.

THEOREM 13. For m = 2k = 2dim U, dim U,(G) = x(1) if and only
if one of the following holds:
(@) G = Sy, -So, where |01 = |0s] =k, x = e
(b) G = S, and x corresponds to the Young diagram (x, . . ., xx) where
= .0 = Xk

(C)Gu of type Sp, 0 S2y x = € 1.
(d) Gisof type Sa 0 Ss, x = €l ¢ k
() G = Ay, x £ 1, x 15 limear, k =

= 3.
2,

Proof. The sufficiency follows from Theorems 11, 8 and 9 and formula
(4). The proof of the necessity is divided into three cases:

Case 1. G is intransitive. Suppose G has an orbit O such that [0 < k.
Let « € A and # = (12...k) € Sx. Then a 2 wma (mod G), e,.* # 0.
Hence dim U,(G) = 2x(1), a contradiction. Hence G has only two orbits
0; and 0, with |0, = |0s] = k. By Theorem 11, we obtain (a).

Case 2. G is primitive.

(1) If £ = 1, then G = Sy, x = 1 and we obtain (b).

(2) If & = 2, then G = A4 or Si. In the first case, by Theorem 9, we
have (e). In the second case, by Theorem 8, we have (b).

(3) If B =3, then G is of the type 4s, Ss ((126)(354), (12345),
(2345)) or ((126)(354), (12345), (25)(34)) (see [3]). The first case
cannot occur by Theorem 9. The second case implies (b) by Theorem §&.
The third and fourth cases cannot happen by Lemma 1.

(4) B = 4. If x is not linear then by Theorem 12 G is a (4)-group. Since
G is primitive, by Theorem 3.6 in [6], G D As. If x is linear then by
Lemma 2, W,(G) = 0 for some 3-dimensional subspace W of U. Hence
by the theorem in [7], G 2 As since G is primitive. Thus by Theorems 8
and 9 we obtain (b).

(5) k > 4. Since dim U,(G) = x(1), by Lemma 2, G is (k — 1)-
group. Hence by Theorem 6.3 in [6], G contains 4,. Appealing to
Theorems 8 and 9 we obtain (b).

Case 3. G is imprimitive transitive. Let { Ny, ..., N,} be a complete
block system of G. Suppose ¢ = 2. For each function 8, from N; to
11,2,...,k — 1}, let B € T, be defined by

B(i) = B:(7) for i € Ny,
BYG) N Ny = 1forj=1,...,k
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Since |871(7)| # 2 for some j, by Theorem 6, eg* = 0 and hence

> x(@) =0.

7cGg
Hence Gy, = {g € Gig(1) = 1,7 € No} is a (k — 1)-group and x|ey, is
a (k — 1)-character. By Theorem 10,

Gy, = Sy, and x|y, = x(De.
Similarly, we can show that

Gy, = Sy, and X|GN-: = x(1)e.

Hence G = Si { So. By Theorem 3, x is of the form (N #p)%, AN 1 or N} e
where X\ and p are distinct irreducible characters of .S;.
If x = (N#p)° then Theorem 5 implies that

dim Ux(Sy,) = A1), dim U,(Sy,) = p(1).

By Theorem 4, A\ = eand p = ¢, a contradiction. If x = N 1 or A\ ¢
we have

XlSNi = NN =x(1)e, 12 =1, 2.

Hence N = M(1)e. By the irreducibility of X we have N(1) = 1. Hence
x (1) = 1. Using formula (4), we have x = ¢ 1. This gives (c).

We now consider individual values of k.

For & = 2, we have { = 2 and this implies that we have (c).

For k = 3, we have t = 2 or 3. We need only to consider ¢t = 3. Let
Ny = {x1, %2}, No = {y1, vo} and N3 = {2, 22}. Let a € T 3 be defined
by

a™t (1) = {x1, yi}, a7H(2) = {y2, 22}, a71(3) = {21, xa}.

Then G, = {1} and hence G is not a (3)-group. By Theorem 12, x is
linear. Now let 8 € T's ;3 be defined as follows:

6—1(1) = {xlvx‘lv 3’1}v5—1(2) = {y‘l: 22})6—1(3) = {21}‘

Since dim U,(G) = x(1), by Theorem 6 we have e* = 0. Hence
(x1x9) € G and

0= 2 x(0) =14 x((xx2)).

7€Gg
Hence x((x1x2)) = —1. Similarly we can show that (y1y2), (z122) € G
and
x((y2)) = x((z122)) = —1.

It follows that Sy, Sy, Sy; © G and XISM- =¢ 1= 1,2 3. Next, let
Y E I‘e_:; be deﬁned by

YL = {xy, v 21, vTH2) = (kg e, vTH(B) = {29
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In view of Theorem 6, e,* = 0. Hence

(%1y1) (x2y2) € G and x ((e1y1) (x2ys)) = —1.

Similarly we can show that

Hence G =
For k =z 4 we have 2k < 3(k — 1). Since Gisa (k — 1)-group, G is of

(%121) (%222) € G and x((x121) (w222)) = —1;
(1121) (y222) € G and x((3121) (¥222)) = —1.
Se? Szand x = €l e

type Sa ¢ Sy where & = 4 or ¢t = 2 (see Lemma 8.7 and Corollary 6.2 in
[6]). The second case implies (c). Suppose that G is of the type S, S..
Let 6 € Ts 4 be defined by

()N N =1, i=123.
12) NN =1, i=1,4.
P @)NN| =1, i=24
1@ NN =1, i=3.

Then G; = {1} and hence ¢;* # 0. By Theorem 6, we obtain a contra-
diction. This completes the proof.
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