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Abstract

We modify an argument of Hablicsek and Scherr to show that if a collection of points in Cd spans
many r -rich lines, then many of these lines must lie in a common (d−1)-flat. This is closely related
to a previous result of Dvir and Gopi.
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1. Introduction

This note shows that the techniques of Hablicsek and Scherr from [6] can be
extended from Rd to Cd , with an ε loss in the exponent. In [3], Dvir and Gopi
proved a new upper bound on the number of r -rich lines in ‘truly’ d-dimensional
configurations of points in Cd . Given a collection of points in Cd , Dvir and Gopi
proved that either many of these points lie on a (d − 1)-flat (that is, a (d − 1)-
dimensional affine subspace) or the points span few r -rich lines. Specifically, they
established the following result.

THEOREM 1.1 (Dvir and Gopi). For all d > 1, there exist constants cd,Cd such
that the following holds. Let P ⊂ Cd be a set of n points, let r > 2 be an integer,
and let Lr (P) be the set of lines that are incident to at least r points from P .
Suppose that for some α > 1,

|Lr (P)| > Cd · α ·
n2

r d
.
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Then there exists a subset P ′ ⊂ P of size at least cd · α · n/r d−2 contained in a
(d − 1)-flat.

The bounds in Theorem 1.1 are not believed to be tight. Dvir and Gopi
conjectured the following bound, which (if correct) would be tight.

CONJECTURE 1.1 (Dvir and Gopi). For r > 2, suppose P ⊂ Cd is a set of n
points with

|Lr (P)| �d
n2

r d+1
+

n
r
.

Then there exists an integer 1 < t < d and a subset P ′ ⊂ P of size &d n/r d−t

contained in a t-flat.

This bound is a d-dimensional generalization of the (complex) Szemerédi–
Trotter theorem [10–12]. In [6], Hablicsek and Scherr proved a stronger version
of Theorem 1.1, except that they needed to replace complex lines in Cd with
real lines in Rd . This allowed them to use the discrete polynomial partitioning
theorem [5, Theorem 4.1] and the joints theorem [4] of Guth and Katz.

THEOREM 1.2 (Hablicsek and Scherr). For all d > 1, there exist constants cd,

Cd such that the following holds. Let P ⊂ Rd be a set of n points, let r > 2 be
an integer, and let Lr (P) be the set of lines that are incident to at least r points
from P . Suppose that

|Lr (P)| > Cd ·
n2

r d+1
.

Then there exists a subset P ′ ⊂ P of size at least cd · n/r d−1 contained in a
(d − 1)-flat.

In this paper, we will prove a theorem similar to Theorem 1.2 in the original
setting of Dvir and Gopi (that is, for complex lines in Cd). As in the Hablicsek
and Scherr proof, the discrete polynomial partitioning theorem will play a major
role. The joints theorem will not be used directly, but similar types of arguments
will be employed.

1.1. Incidence theorems over the complex numbers. Since its introduction
in 2010, the discrete polynomial partitioning theorem has been used to prove
many incidence bounds in Rd . The theorem makes crucial use of the fact that
removing a point from R disconnects the real line into two components. This
property is not true for C, which means that the discrete polynomial partitioning
theorem cannot be employed directly to prove incidence theorems in Cd . Of
course, one can identify C with R2 and then the discrete polynomial partitioning
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theorem becomes available again. Unfortunately, moving from Cd to R2d often
makes the problem appear more complicated, since the dimension of the objects
being studied has now doubled. However, since the problem originally arose
from a configuration in Cd , the new configuration in R2d may have some special
properties that can aid in the analysis of the problem. This strategy was employed
by Tóth in [11] to prove the Szemerédi–Trotter theorem in C2 and by Sheffer and
the author in [8] to obtain an incidence theorem for points and curves in C2. In the
present work, we will note several elementary relationships between collections
of lines in Cd and the corresponding two-flats in R2d , and these observations will
allow us to transfer the Hablicsek–Scherr argument from Rd to Cd .

1.2. Statement of the theorem

THEOREM 1.3. For all d > 1 and ε > 0, there exist constants cd,ε,Cd,ε such that
the following holds. Let P ⊂ Cd be a set of n points and let r > 2 be an integer.
Suppose that for some α > 1,

|Lr (P)| > Cd,ε · α ·
n2+ε

r d+1
. (1)

Then there exists a subset P ′ ⊂ P of size at least cd,ε · α · n1+ε/r d−1 contained in
a (d − 1)-flat.

Theorem 1.3 is not strictly stronger than Theorem 1.1 because Theorem 1.3
contains the term n2+ε rather than n2. However, if r is not too small compared to
n, then one can ‘trade’ the term nε for a term of the form r ε1 . More precisely, we
have the following.

COROLLARY 1.1 (Cheap Dvir–Gopi). For all d > 1 and ε0 > 0, there exist
constants cd,ε0,Cd,ε0 such that the following holds. Let P ⊂ Cd be a set of n
points and let r > nε0 be an integer. Suppose that for some α′ > 1,

|Lr (P)| > Cd,ε0 · α
′
·

n2

r d
. (2)

Then there exists a subset P ′ ⊂ P of size at least cd,ε0 · α
′
· n/r d−2 contained in a

(d − 1)-flat.

Proof. Let ρ = log r/ log n; by assumption ρ > ε0, and for each ε > 0, nε = r ε/ρ .
Select ε = ρ/2, and let α = α′r 1/2. Applying Theorem 1.3, we conclude that either

|Lr (P)| > Cd,ε · α ·
n2+ε

r d+1

> Cd,ε0 · α
′
·

n2

r d
, (3)
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or there exists a subset P ′ ⊂ P of size at least cd,ε ·α ·n1+ε/r d−1
= cd,ε ·α

′
·n/r d−2

contained in a (d − 1)-flat.

1.3. Initial reductions. In this section, we will show that in order to prove
Theorem 1.3 it suffices to prove the following lemma.

LEMMA 1.1. For all d > 1 and ε > 0, there exist constants c′d,ε,C ′d,ε such that
the following holds. Let P1 ⊂ Cd be a set of n1 points and let L1 be a set of `1

lines in Cd . Then at least one of the following statements must hold:

(A) There are a point p ∈ P1 and a complex (d − 1)-flat Π ⊂ Cd so that

|{L ∈ L1 : p ∈ L , L ⊂ Π}| > c′d,ε|{L ∈ L1 : p ∈ L}|. (4)

(B)
I (P1,L1) 6 C ′d,ε(n

(2+ε)/(d+1)
1 `

d/(d+1)
1 + n1 + `1

)
. (5)

To obtain Theorem 1.3 from Lemma 1.1, fix ε > 0. Let P ⊂ Cd be a set of n
points and suppose (1) holds. If r > α1/dn(1+ε)/d , then

α
n1+ε

r d−1
6 r,

so Theorem 1.3 holds with cd,ε = 1. Just select any line from Lr (P); let P ′ be the
set of points incident to the line, and select any (d − 1)-flat containing the line.

Henceforth we will assume that r < α1/dn(1+ε)/d . Repeating an argument of
Hablicsek and Scherr [6], we can find a set L1 ⊂ Lr (P) and a set P1 ⊂ P so
that each line in L1 is incident to at least r/4 points from P1, each point in P1

is incident to at least 1
4 C ′d,ε · α · n

1+ε/r d lines from L1, and I (P1,L1) >
1
2 I (P,

Lr (P)). In brief, the argument is as follows. If G = (A t B, E) is a bipartite
graph, then we can find subsets A′ ⊂ A, B ′ ⊂ B so that in the induced subgraph,
each vertex from A has degree at least |E |/4|A|, each vertex from B has degree
at least |E |/4|B|, and |E ′| > |E |/2. We apply this lemma to the bipartite graph
with edge set A = P, B = Lr (P), and where a ∼ b if the point corresponding
to a lies on the line corresponding to b. See [6] for details.

Let p ∈ P1 and let ρ > 0. Observe that if a ρ-fraction of the lines from L1

passing through p lie in a common (d − 1)-flat, then at least (ρ/16)Cd,ε · α ·

n1+ε/r d−1 points from P1 lie in a common (d − 1)-flat.
Apply Lemma 1.1 to the arrangement (P1,L1) (with the same value of ε). If

condition (A) from Lemma 1.1 holds, then there exists a subset of P ′ ⊂ P of
cardinality at least 1

16 c′d,ε · α · n
1+ε/r d−1 contained in a (d − 1)-flat.
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If condition (A) does not hold, then condition (B) must hold, and this implies
that

I (P,Lr (P)) 6 C ′d,ε(n
(2+ε)/(d+1)
1 `

d/(d+1)
1 + n1 + `1).

But since each line from Lr (P) is r -rich, we conclude that

r |Lr (P)| 6 2C ′d,ε(n
(2+ε)/(d+1)
1 `

d/(d+1)
1 + n1 + `1)

6 2C ′d,ε(n
(2+ε)/(d+1)

|Lr |
d/(d+1)

+ n + |Lr |),

and thus

|Lr | 6 2d+1C ′d,ε

(
n2+ε

r d+1
+

n
r

)
6 2d+1C ′d,εα

n2+ε

r d+1
, (6)

where on the second line we used the fact that α > 1 and r < α1/dn(1+ε)/d . This
contradicts the assumption that (1) holds. Thus we obtain Theorem 1.3 with cd,ε =
1

16 c′d,ε and Cd,ε = 2d+1C ′d,ε .

1.4. Main proof ideas. The rest of this paper will be devoted to proving
Lemma 1.1. The basic idea is to use a bounded-degree partitioning polynomial
and prove the lemma by induction on n1 + `1. Theorem 1.3 does not survive the
process of induction, but Lemma 1.1 does—this is why we prove Lemma 1.1 first
rather than proving Theorem 1.3 directly.

Here are the main steps. We regard complex lines in Cd as two-flats in R2d . We
will then prove Lemma 1.1 by induction on the number of points and flats. We
partition R2d into cells using a bounded-degree partitioning polynomial; inside
each cell we can apply the induction hypothesis. Either there is a point inside a
cell satisfying condition (A) from the lemma, or the total number of incidences
inside the cells is controlled by (5).

We must now deal with incidences occurring on the boundary of the partition. If
p is a point lying on the boundary of the partition and X is a two-flat (arising from
a complex line) that is incident to p, then X is either contained in the boundary
of the partition or intersects the boundary in a bounded-degree algebraic set of
dimension at most 1.

If the former option occurs most of the time (for a given point p), then there
must exist a (2d − 1)-flat in R2d containing many two-flats, each of which
contains p, and these two-flats in turn arise from complex lines. This implies
that many complex lines are contained in a complex (d − 1)-flat in Cd .

If the latter option occurs most of the time, then after applying a generic linear
transformation we are reduced to a problem that is very similar to our original
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one, except now we are dealing with points and bounded-degree curves in Rd ,
rather than points and two-flats in R2d . A similar argument shows that either the
number of incidences is controlled by (5), or there are a point p and a (d − 1)-
flat in R2d containing p so that many curves passing through p are tangent to
this (d − 1)-flat at the point p. This implies that in the original configuration
of complex lines there are many lines passing through a common point that are
contained in a complex (d − 1)-flat.

2. Preliminaries

2.1. Real and complex vectors. Let ι : Cd
→ R2d be the map ι(x1 + iy1,

. . . , xd + iyd) 7→ (x1, y1, . . . , xd, yd). If v = (a1, b1, . . . , ad, bd) ∈ R2d , then
ι−1(v) = (a1 + ib1, . . . , ad + ibd) ∈ Cd .

If X1, . . . , Xk are vector spaces in Rd (respectively Cd), let spanR{X1, . . . ,

Xk} (respectively spanC{X1, . . . , Xk}) be the linear span of these vector spaces,
regarded as subspaces of Rd or Cd . Abusing notation, we will identify the nonzero
vector v ∈ Rd with the one-dimensional vector space Rv, and similarly for vectors
v ∈ Cd .

If v = (a1, b1, . . . , ad, bd) ∈ R2d, define

v†
= spanR{(a1, b1, . . . , ad, bd), (−b1, a1, . . . ,−bd, ad)}.

By definition, if v ∈ R2d then

v†
= ι(spanC(ι

−1(v))).

That is, if v ∈ R2d is a vector, let ι−1(v) ∈ Cd be its preimage under ι. Then the
span of ι−1(v) is a one-dimensional complex subspace of Cd . The image of this
subspace under ι is a two-dimensional real subspace of R2d . This is precisely v†.

Finally, if Π ⊂ R2d is a vector space, define Π †
= spanR{v

†
: v ∈ Π}. Note

that dim(Π †) 6 2 dim(Π).

2.2. Linear algebra.

LEMMA 2.1. Let L1, . . . , Lk be lines in Cd passing through the origin. If there is
a (2k − 1)-flat Π0 ⊂ R2d containing ι(L1), . . . , ι(Lk), then there is a (d − 1)-flat
Π ⊂ Cd containing L1, . . . , Ld .

Proof. Since L1, . . . , Lk pass through the origin,Π0 must also contain the origin.
Let v0 ∈ R2d be a vector orthogonal to Π0. Then v0 is orthogonal to ι(L j) for
each j = 1, . . . , k. This implies that ι−1(v0) is orthogonal to L j for each index
j = 1, . . . , k. Let Π be the orthogonal complement of ι−1(v0).
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LEMMA 2.2. Let L1, . . . , Lk be lines in Cd passing through the origin. For each
index i , let vi ∈ ι(L i) be a nonzero vector. LetΠ0 ⊂ R2d be a (d−1)-dimensional
vector space. If v1, . . . , vk ∈ Π0, then there is a (d − 1)-dimensional subspace
Π ⊂ Cd containing L1, . . . , Lk .

Proof. Let w1, . . . , wd−1 ∈ R2d be vectors that span Π0. For each index j we
have v j =

∑
i ai jwi , and thus ι−1(v j) =

∑
i ι
−1(ai jwi). But this implies that

L = Cι−1(v j) ⊂ spanC{ι
−1(w1), . . . , ι

−1(wd)}. Define Π = spanC{ι
−1(w1), . . . ,

ι−1(wd)}.

LEMMA 2.3. Let v1, . . . , vk ∈ R2d . LetΠ ⊂ R2d be a (d−1)-dimensional vector
space, and suppose v1, . . . , vk ∈ Π . Then v†

1, . . . , v
†
k ⊂ Π

†.

2.3. Real and complex varieties. We will need several properties of real and
complex affine varieties. For complex varieties, a good introduction can be found
in [7], while for real varieties [2] is a good source.

Let K = R or C. Let V ⊂ K d be an irreducible variety, and let I (K ) be the
ideal of polynomials in K [x1, . . . , xd] that vanish on V . For x ∈ K , we define the
Zariski tangent space of V at x to be

Tx V = {v ∈ K d
: v · ∇ f (x) = 0 for all f ∈ I (V )}.

We always have dim(Tx V ) > dim(V ) (in the case K = R, the dimension of
a real variety is slightly subtle; see [2] for details). If dim(Tx V ) > dim(V ), then
x is a singular point of V . Let Vsing be the set of singular points of V and let
Vreg = V \Vsing be the set of regular points of V . See [2, 7] for further background
and details.

If V ⊂ Cd is a complex variety, let V (R) ⊂ Rd be its real locus. In particular,
if V ⊂ Cd is a one-dimensional variety, then V (R) is a real variety of dimension
at most 1. If V ⊂ Rd is a real variety, let V ∗ ⊂ Cd be the complexification of V —
this is the smallest complex variety whose real locus contains V . If p ∈ Rd is a
point, then p∗ ⊂ Cd is the image of p under the usual embedding from Rd

→ Cd .
Most of our arguments will occur over the reals. However, we will sometimes

need to work over C in order to make use of the following result of Solymosi and
Tao.

LEMMA 2.4 (Solymosi and Tao [9, Corollary 4.5]). Let V ⊂ Cd be a k-
dimensional algebraic variety of degree at most D. Then one can cover V by
Vreg and OD,d(1) sets of the form Wreg, where each W is an algebraic variety
contained in V of dimension at most k − 1 and degree OD,d(1).

Finally, if P ∈ R[x1, . . . , xd] is a polynomial, define Z(P) = {x ∈ Rd
: P(x)

= 0}.
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2.4. The discrete polynomial partitioning theorem. We will make crucial
use of the discrete polynomial partitioning theorem of Guth and Katz.

THEOREM 2.1 (Guth and Katz [5, Theorem 4.1]). Let P be a set of n points in Rd .
For each D > 1, there exists a polynomial P of degree 6 D so that Rd

\Z(P) is a
union of Od(Dd) connected components (cells), and each cell contains Od(nD−d)

points of P .

2.5. Connected components of real varieties. The discrete polynomial
partitioning theorem will be used to partition the point-line arrangement
(technically, the point-two-flat arrangement) into connected components, which
are called cells. Each point lies in at most one cell. While each two-flat can enter
several cells, the following theorem controls how many cells a given two-flat can
enter.

THEOREM 2.2 (Barone and Basu [1], special case). Let Y ⊂ Rd be a real variety
of dimension e that can be defined by polynomials of degree at most D1, and let
Z ⊂ Rd be a real variety that can be defined by polynomials of degree at most
D2. Then Y\Z contains Od,D1(D

e
2) connected components.

REMARK 1. In the special case where Y ⊂ Rd is a two-flat, the above result
also follows from the Milnor–Thom theorem. However, we will also be interested
in the case where Y is defined by polynomials of larger (though still bounded)
degree.

3. Proof of Lemma 1.1, Step 1: Lines in Cd

Proof of Lemma 1.1. We prove the lemma by induction on n1 + `1. First, note
that I (P1,L1) 6 n2

1+ `1. Thus if we select C ′d,ε sufficiently large, we can assume
that `1 < ρn2/(d+1)

1 `
d/(d+1)
1 ; we can make ρ > 0 arbitrarily small by making the

constant C ′d,ε larger.
Let P be a partitioning polynomial in R2d of degree D adapted to the set

ι(P1) ⊂ R2d , as given by Theorem 2.1; there are Od(D2d) cells. We will choose
D later, and it will depend only on d and ε. For each cellΩ, let `Ω be the number
of lines L ∈ L1 so that ι(L) ∩Ω 6= ∅. By Theorem 2.2, we have∑

Ω

`Ω = Od(D2`1). (7)

Apply the induction hypothesis inside each cell. Either property (A) holds
inside some cell, or we have
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I (ι(P1)\Z(P), ι(L1))

=

∑
Ω

I (ι(P) ∩Ω, ι(L1))

6
∑
Ω

C ′d,ε(Od(n1 D−2d)(2+ε)/(d+1)`
d/(d+1)
Ω + |ι(P1) ∩Ω| + `Ω)

6 C ′d,ε(Od(1)D−(2dε)/(d+1)n(2+ε)/(d+1)
1 `

d/(d+1)
1 + |ι(P1)\Z(P)| + Od(D2`1))

6 C ′d,ε((Od(1)D−(2dε)/(d+1))n(2+ε)/(d+1)
1 `

d/(d+1)
1 + |ι(P1)\Z(P)|

+
1
4 n2/(d+1)

1 `
d/(d+1)
1 )

6 C ′d,ε(
1
2 n(2+ε)/(d+1)

1 `
d/(d+1)
1 + |ι(P1)\Z(P)|). (8)

Here we selected D sufficiently large (depending on d and ε) so that the term
Od(1)D−2dε/(d+1) is at most 1

4 , and we selected C ′d,ε sufficiently large (depending
on D, d , and ε, which in turn depend only on d and ε) to guarantee that the term
Od(D2`1) is at most 1

4 n2/(d+1)
1 `

d/(d+1)
1 .

Applying Lemma 2.4 to Z(P)∗, we can find a collection V of Od,D(1) complex
varieties in C2d and sets {PV }V∈V so that the following properties hold:

• Each variety in V is of degree Od,D(1).

• For each V ∈ V , PV ⊂ ι(P) ∩ V (R).

• The sets {PV }V∈V are disjoint, and
⋃

V∈V PV = ι(P) ∩ Z(P).

• For each p ∈ PV , p∗ is a regular point of V .

For each V ∈ V , let

LV = {L ∈ L1 : (ι(L))∗ ⊂ V }.

One of the following must hold:

(A.1) There are a variety V ∈ V and a point p ∈ PV so that

|{L ∈ LV : p ∈ L}| > 1
2 |{L ∈ L1 : p ∈ L}|. (9)

(B.1) Equation (9) fails for every V ∈ V and every p ∈ PV .

Suppose (A.1) holds for some variety V and some point p ∈ PV . LetΠ0 ⊂ R2d

be a (2d − 1)-flat containing (Tp∗V )(R). If ι(L)∗ ⊂ V and p ∈ L , then L ⊂ Π0.
Thus ι(L) ⊂ Π0 for at least half of the complex lines in {L ∈ L1 : p ∈ L}.
By Lemma 2.1, there exists a complex (d − 1)-flat Π so that at least half of the
complex lines in {L ∈ L1 : p ∈ L} are contained in Π . We conclude that (A)
holds, provided c′d,ε >

1
2 .
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Now suppose (B.1) holds. We will consider each V ∈ V in turn. If (A) holds
for some point p ∈ PV , then we are done. If (A) fails for every point p ∈ PV ,
then we will establish the bound

I (PV , ι(L1)) 6 C ′′d,ε(n
(2+ε)/(d+1)
1 `

d/(d+1)
1 + |PV | + `1). (10)

Since there are Od,ε(1) elements of V , if we establish (10) for each V ∈ V then
we will have proved the bound

I (P ∩ Z(P), ι(L1)) 6 C ′d,ε(
1
2 n(2+ε)/(d+1)

1 `
d/(d+1)
1 + |P ∩ Z(P)| + `1), (11)

provided C ′d,ε is chosen sufficiently large (depending only on d and ε), and this
will conclude the proof of Lemma 1.1. It remains to prove (10) for each V ∈ V ;
recall that by assumption, (B.1) holds and (A) fails.

Since (A) fails, by Lemma 2.3, for each p ∈ PV and each (d−1)-flatΠ ⊂ R2d

containing v, we have

|{L ∈ L1 : p ∈ L , dim(Π ∩ ι(L)) > 1}| 6 c′d,ε|{L ∈ L1 : p ∈ L}|.

Since dim(Π ∩ ι(L)) = dim(Π∗∩ ι(L)∗) (where the left dim is the real dimension
of the real algebraic set and the right dim is the complex dimension of the complex
algebraic set), we have

|{L ∈ L1 : p ∈ L , dim(Π∗ ∩ ι(L)∗) > 1}| 6 c′d,ε|{L ∈ L1 : p ∈ L}|,

and thus

|{L ∈ L1 : p ∈ L , dim(Π∗∩Tp(ι(L)∗∩V ))> 1}|6 c′d,ε|{L ∈ L1 : p ∈ L}|, (12)

where Tp(ι(L)∗ ∩ V ) ⊂ C2d is the Zariski tangent space of the (complex) variety
ι(L)∗ ∩ V at p.

Let π : R2d
→ Rd be a generic (with respect to P , L, and V ) linear

transformation. The transformation π also extends to a map from C2d
→ Cd .

Since the projection of a linear algebraic variety cannot increase its dimension
(this is actually true for all algebraic varieties, though we do not need this fact),
we have

|{L ∈ L1 : p ∈ L , dim(π(Π∗) ∩ π(Tp(ι(L)∗ ∩ V ))) > 1}|
6 c′d,ε|{L ∈ L1 : p ∈ L}|

for every (d − 1)-flat Π ⊂ R2d containing p. This implies that

|{L ∈ L1 : p ∈ L , dim(Π∗ ∩ π(Tp(ι(L)∗ ∩ V ))) > 1}|
6 c′d,ε|{L ∈ L1 : p ∈ L}| (13)

for every (d − 1)-flat Π ⊂ Rd containing p.
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Let Γ0 be the set of irreducible components of π(ι(L)∗ ∩ V ) as L ranges over
the set L1\LV . We have

|Γ0| = Od,D(`1) = Od,ε(1). (14)

Furthermore, if L ∈ L1, then Od,ε(1) curves from Γ0 can be contained in π(ι(L)∗)
(this is because the projection π was chosen generically with respect to L). Since
there is at most one complex line from L1 passing through any two points in Cd,

there are at most Od,ε(1) curves from Γ0 passing through any two points in C2d .
Let P ′ = π(ι(PV )); technically P ′ ⊂ Cd , but the points in P ′ are real, that is, all

coordinates are real. As noted above, the arrangement (P ′, Γ0) has two degrees of
freedom and multiplicity type Od,ε(1)—this means that any two curves intersect
in at most Od,ε(1) points, and if we fix two points from P ′ then at most Od,ε(1)
curves pass through both of them.

We will need the following lemma.

LEMMA 3.1. Let P2 ⊂ Rd be a collection of n2 points. Let Γ0 be a collection of
`2 irreducible complex curves in Cd , each of degree at most C. Let Γ = {α(R) :
α ∈ Γ0}. Suppose that (P2, Γ ) has two degrees of freedom and multiplicity type
s. Then at least one of the following must hold.

(A.2) There are a point p ∈ P2 and a (d − 1)-flat Π ⊂ Rd containing p so that

|{γ ∈ Γ : p ∈ γ, dim(Tpγ ∩Π) > 1}| > 1
2 |{γ ∈ Γ : p ∈ γ }|, (15)

where Tpγ is the (real) Zariski tangent space of γ at p (see Section 2.3 for
a definition of the Zariski tangent space).

(B.2)
I (P2, Γ ) 6 C ′′ε (n

(2+ε)/(d+1)
2 `

d/(d+1)
2 + n2 + `2), (16)

where the constant C ′′ε depends on ε, d, C, and s.

To avoid breaking the flow of the argument, we will defer the proof of
Lemma 3.1 to Section 4.

For each V ∈ V , apply Lemma 3.1 to the collection (PV , Γ0). If (B.2) holds,
then

I (PV , ι(Γ0)) 6 C ′′ε (|PV |
(2+ε)/(d+1)

|Γ0|
d/(d+1)

+ |PV | + |Γ0|).

Recall that the constant C ′′ε depends only on d, ε,C, and s. The constants C and
s in turn depend on D, which depends only on ε and d . Thus C ′′ε depends only on
ε and d . By (14), |Γ0| = Od,ε(`1). We conclude that

I (PV , ι(L1\LV )) 6 C ′′d,ε(n
(2+ε)/(d+1)
1 `

d/(d+1)
1 + |PV | + `1).
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Finally, since (A.1) fails, we have

I (PV , ι(L1)) 6 2I (PV , ι(L1\LV )),

so (10) holds. Thus if (B.2) holds for each V ∈ V then we are done.
Now suppose (A.2) holds for some V ∈ V and some point p1 ∈ P ′, and let

Π ⊂ Rd be the corresponding (d − 1)-flat. Then

|{γ ∈ Γ : p ∈ γ, dim(Tpγ
∗
∩Π∗) > 1}| > 1

2 |{γ ∈ Γ : p ∈ γ }|.

Since each L ∈ L contributes Od,ε(1) curves to Γ , if we choose the constant c′d,ε
sufficiently small (depending only on d and ε), then

|{L ∈ L : dim(Tpπ(L∗ ∩ V ) ∩Π∗) > 1}| > c′d,ε|{L ∈ L : p ∈ L}|,

which violates (13). This concludes the proof of Lemma 1.1, modulo the proof of
Lemma 3.1.

4. Proof of Lemma 1.1, Step 2: Proof of Lemma 3.1

Proof of Lemma 3.1. First, note that I (P, Γ ) 6 sn2
2 + `2. Arguing as above, we

can assume `2 < ρn(2+ε)/(d+1)
2 `

d/(d+1)
2 or (16) holds immediately; we can make

ρ > 0 smaller by making the constant C ′′ε larger.
We will prove the statement by induction on n2 + `2. Let P be a partitioning

polynomial of degree D, as given by Theorem 2.1; there are Od(Dd) cells. By
Theorem 2.2, we have

|{(γ,Ω) : γ ∈ Γ,Ω a cell, γ ∩Ω 6= ∅}| = Od,C(D`2). (17)

Apply the induction hypothesis inside each cell. Either there is a point p ∈
P2\Z(P) satisfying property (A.2), or by the same calculation as in (8) we have

I (P2\Z(P), Γ ) 6 C ′′ε (n
(2+ε)/(d+1)
2 `

d/(d+1)
2 + n2). (18)

It remains to count incidences involving points on Z(P) ∩ P2. Applying
Lemma 2.4 to ZR(P)∗, we can find a collection W of OD(1) complex algebraic
varieties, and a partition {PW }W∈W of P so that for each W ∈W, PW ⊂ Wreg.

By Bézout’s theorem (recall, we are currently working with complex curves
and varieties), for each W ∈W we have

|{(p, α) ∈ PW × Γ0 : p∗ ∈ α, α 6⊂ W }| = OC,D(`2). (19)

The total contribution from terms of the form (19) summed over all W ∈W is
OC,D(`2). If we select C ′′ε large enough, we conclude that either

I (P2 ∩ Z(P), Γ ) 6 C ′′ε `2, (20)
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or there are a variety W ∈W and a point p ∈ PW so that at least half of the curves
{α ∈ Γ0 : p∗ ∈ α} are contained in W . If the latter happens then

|{α ∈ Γ0 : p∗ ∈ α, dim(Tp∗α ∩ Tp∗(W )) > 1}| > 1
2 |{α ∈ Γ

∗
: p∗ ∈ α},

where Tp∗(W )) is the (complex) Zariski tangent space of W .
Let Π ⊂ Rd be a (d − 1)-flat containing (Tp∗(W ))(R). Then (15) holds with

this choice of p and Π . Thus, either (A.2) holds, or combining (18) and (20) we
obtain (16); that is, (B.2) holds.
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