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Abstract

If G is the special orthogonal group O + ( K ) of a quadratic space V over a finite field of
characteristic p, and r is a positive integer, we determine the abelian ^-subgroups of largest order in
G whose fixed subspaces in V have dimension at least r. In particular, we determine the abelian
subgroups of largest order in a Sylow p-subgroup of G, extending some results obtained with
different methods by Barry (1979).

1980 Mathematics subject classification (Amer. Math. Soc.): 20 G 40.

Introduction

Interest in the large abelian subgroups of a finite/>-group P goes back at least to
Burnside (1912), and has more recently been stimulated by their use in the
definition of the important Thompson subgroup J(P), Thompson (1964). A
particularly interesting case arises when P is a Sylow/>-subgroup of a group G of
Lie type defined over a finite field of characteristic p, since the study of the
unipotent elements and subgroups of G appears to be a key to understanding its
structure and properties. If G is a Chevalley group of type An, Bn, Cn or Dn, the
abelian subgroups of largest order in P were determined by Barry (1979),
applying an inductive method on a suitable parabolic subgroup of G, and using
extensive calculations with the Chevalley commutator formula. In applications,
however, G often arises not as abstract group, but as a classical group of linear
transformations on a vector space V, and then the abelian />-subgroups of G
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having certain properties in this representation become of interest. In this paper
we consider the case that G is an orthogonal group, and study the abelian
/^-subgroups of G of largest order fixing the vectors of an /--dimensional
subspace of V. Our methods are again inductive, but use the geometry of the
situation rather than the Chevalley formula.

We begin by explaining some necessary notation and terminology in Section
1. In Section 2, we obtain a recursion formula for the largest order of an abelian

^-subgroup of G fixing the vectors of an /--dimensional subspace, and we find its
explicit value in Section 3. The description of the groups which occur is given in
Section 4, except for a few cases in low dimensions. In Section 5 we show how
our results give the largest abelian subgroups in a fixed Sylow/?-subgroup of G,
thus providing an alternate method to that of Barry, and completing his results
for the case of the orthogonal groups. The paper closes with some remarks in
Section 6.

Most of the work in this paper is independent of the value of p. However, it is
convenient to omit the case when p = 2 and dim V is odd, so as to avoid the
"defective" situation in which the bilinear form on V is degenerate.

1. Notation and terminology

We take a finite field F of q elements, having characteristic p, and consider a
finite-dimensional vector space V over F, equipped with a quadratic form. This
is a map Q: V^> F such that

Q(av + bw) = a2Q(v) + b2Q(w) + abB(v, w),

for all v, w e V, a, b G F, where B is a bilinear form. In general our terminol-
ogy will be similar to (but not identical with) that of Dieudonne (1955). In the
following glossary, W and Z are subspaces of V, with W C Z.

W x = orthogonal complement of W in V, relative to B.
w£ = w1- n z.
Radical of W, rad W = W£.
W is defective if rad W ¥= 0.
W is totally isotropic if rad W = W.
Index of V = largest dimension v of a totally isotropic subspace.
Singular vector: v ¥= 0, Q(v) = 0.
0-radical of W, radg W = (H> e rad W\Q{w) = 0}.
W is degenerate if radg W ¥= 0.

W is singular if rade W = W.

Q-index of V = largest dimension vQ of a singular subspace.

lip ^ 2, then rade W = rad W, defective = degenerate, and so on.
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We assume throughout that V is nondefective of dimension n. Then v =
(j)(n — 1) if n is odd, while v = (i)« or v = {^)n — 1 if n is even. In the latter
case we shall occasionally say B is of hyperbolic type or nonhyperbolic type
according as v = (\)n or v = (\)n — 1. If p = 2, B is an alternating form, so
that M must be even and B is of hyperbolic type.

The orthogonal group O{ V) consists of all linear transformations a on V such
that Q(ov) = Q(v), for all v G V. For technical reasons, we restrict to the
special orthogonal group O +(V) (of index 2 in O(V)\ which is the set of all a in
O{ V) for which dim(a - 1) V is even, Dye (1977).

We shall say an element or subgroup of O +(V) fixes a subspace X of V if it
fixes every vector in X. More generally, it fixes a quotient X/ Y of two subspaces
of V such that 1 2 Y, if it maps every coset x + Y on itself (JC e A").

We shall frequently use the following facts.
(a) For WC V, dim W + dim WL = dim V, and (W"1-)-1- = W.
(b) If W is a singular subspace of V, then

Q(v + W)= Q(v) (e G Wx)
defines a nondefective quadratic form Q on W x / W.

(c) If an element or subgroup of O +(V) fixes a quotient ^ / Y of subspaces of
F, then it also fixes Yx/X^.

(d) The only element a of O+(V) fixing a hyperplane of V is the identity
(since dim(a - \)V < 1 and dim(o — l)V is even).

2. Recursion formula

For 0 < /• < n, we let <35 (V, r) denote the set of all abelian /^-subgroups A of
O +{V) such that A fixes some subspace of dimension r, and let &(V, r) be the
set of all members of % (V, r) having largest possible order. We write the order
of an element of &(V, r) as qK"'r). This is an incomplete notation, since, for a
given n, there can be different quadratic forms, giving different orthogonal
groups (when n is even). However, it will turn out that two quadratic forms
whose associated bilinear forms have the same type (hyperbolic or nonhyper-
bolic) give the same value of f(n, r). Thus ambiguity will be avoided if it is
understood that, for even dimension, the notation is always used for spaces
whose bilinear forms have the same type as the space V in which we are
interested. We shall use such spaces in our inductive argument.

If is clear that /(/i, r) is a nonincreasing function of r, and that /(«, n) = 0.
Also /(«, n — 1) = 0, since only the identity element of O+(V) fixes a hyper-
plane.
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The following result shows that/(n, 0) = f(n, 1), and also allows us to set up
our basic inductive situation.

LEMMA 1. If P is a p-subgroup of O+(V), P =£ iy then the vectors of V fixed by
P form a degenerate subspace. In particular, P fixes some singular vector.

PROOF. Suppose that the subspace W of fixed vectors is nondegenerate. We
have W =£ V, so that W± ¥=0. Since Wx is invariant under P, a counting
argument (or Engel's theorem) shows that P fixes a nonzero vector of W±, so
that rad W ¥= 0. Thus W is defective, p = 2, and X = rad W has dimension 1,
by Dieudonne (1955), pages 33, 34. Write W = X © Y, where Y is a nondefec-
tive subspace (possibly 0), and set Z = Yx. Then X C X% c Z, and all these
subspaces are invariant under P. If X =£ X£, then P fixes some nonzero element
of X£ /X, so that there exists a vector v G X%, v & X, such that av =v
(mod X), for every a EL P. Since v is orthogonal to X, Q(ov) = Q(v) +
Q(av — v), and so Q(av — v) = 0, av — v E radg W = 0, by nondegeneracy of
W. Thus v G W n Z = X, a contradition. Hence A'/ = *, dim Z = 2, and W
is a hyperplane of F. Since only the identity element of O+(V) fixes a
hyperplane, this is a contradiction, and Lemma 1 is proved.

If x is a singular vector of V, we can choose another singular vector y, such
that B(x,y) = 1, by Dieudonne (1955), pages 20, 33. Then x,y is called a
hyperbolic pair, and spans a nondefective subspace <x, >>). The restriction of B
to the orthogonal complement <JC, >'>"L is of the same type as Z?.

LEMMA 2. Suppose x,y is a hyperbolic pair in V, and Z = {x,y}±, so that
V = (x} © Z © <_y). For ju G O(Z), / 6 Z , cfe/i/ie a /mear transformation
a( jii, /) o« F by

a(n, t)x = x,

o(n,t)z = nz-B(nz,t)x, z G Z,

o(M. 0^ -.V + ' - 2(0*-
Then a( ju, /) « an orthogonal transformation fixing x, and, conversely, every
orthogonal transformation of V fixing x has the form a(/x, t),for unique fi G O(V),
t G Z. Multiplication of two such transformations is given by the equation

o(n,t)o(p',t') = o(w',t + Hi').
In particular, a(/u, /) and a(/i', *') commute if and only if MI' = ju'|i and (ji — l)t'

if (i (E O +(Z).
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PROOF. Any orthogonal transformation a fixing x must leave <x>x = <x> ©
Z invariant, and so must have the form

ax = x,

oz = (iz + f(z)x, z G Z,

ay = ay + t + bx,

where ju: Z-*Z,f: Z -* F are linear maps, ( 6 Z , and a, b G F. Necessary and
sufficient conditions for a to be orthogonal are that Q(az) = <2(z)> 5(az, ay) =
0, B(ax, cry) = 1, Q(ay) = 0, for all z e Z. There are equivalent to: p G O(Z),
/(z) = -B(|^, t),a = l,b = -Q(t), and soo = a(ju, t).

The multiplication formula is a straightforward calculation.
In the special case n = 1, if / ^ 0 then B(z, t) ¥= 0 for some z, and so

(<x(l,0 - \)V = <x, 0 has dimension 2. If f = 0, then o(l, 0) = 1. Hence o(l, /)
E 0 +(K), for all r G Z. Since a(/x, /) = a(l, t)o(n, 0), a(ja, / ) 6 O +(F) if and
only if a(n, 0) e O +(F). But (a(jn, 0) - \)V = (/i - 1)Z, and so a(/i, 0) G
O +(V) if and only if /x G O +(Z). This proves Lemma 2.

If L = {a G 0 +(K)|ax = x), then o(ju, /) -> /i is a homomorphism 9: L -*
O +(Z) with kernel iV = {a(l, 01' £ Z} isomorphic to the additive group of Z,
and in fact L is a splilt extension of Z by O +(Z).

In applying Lemma 2, it will be convenient to use a standard notation as
follows.

BASIC SITUATION 1. The initial ingredients are a singular vector x, and a
subspace X of K whose radical contains x. Take y and Z as in Lemma 2, and
define the transformations a(/i, /)• Set W = X n Z, so that Z = <JC> © JF. We
note that o(ja, 0 fixes X/(x} if, and only if, fi fixes W, and a(fi, i) fixes X if,
and only if, /i fixes W and r G W/ .

We shall make reference to this situation in constructing groups .n &(V, r).
We shall also use Lemma 2 when we already have a group in &(V, r). Here we
have a rather more elaborate configuration, and use a standard notation as
follows.

BASIC SITUATION 2. The initial ingredient is a group A in &(V, r), with A ^ \.
By Lemma 1, there is a degenerate /--dimensional subspace X fixed by A
(possibly not the subspace of all vectors fixed by A), and a singular vector x may
be chosen in rad X. From x and X, we set up Basic Situation 1, with its
notation. The homomorphism 9: L—> O+(Z) shows that \A\ = \M\ \AX\, where
M = A n N and

Ax = 9(A) = {/x G O+(Z)\o(fi, t) eA, some/}.

(/I, is "essentially the same" as the group of transformations induced by A on
<x>J-/<x>.) If a(/x, 0 G ^ , then / G w£. In particular, {f G Z\a(l, t) G A/}
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spans a subspace S of W^- Write s = dim S, so that s < n — r — 1. If o(fi, t) G
y4, a(l, /') G Af, then, since ,4 is abelian, (p — l)t' = 0. Thus .4, is an abelian
/^-subgroup of O + ( Z ) fixing both W and 5. Hence,

\M\<q\ \Ax\<q^^d\

where d = dim( W + S), and we remind the reader that /(« — 2, <;?) refers to the
space Z, whose bilinear form has the same type as that of V.

We now proceed to find an upper bound for f(n, r). By Lemma 1, we may
assume r > 1, and also n > 3, since O+(V) has no nontrivial /^-subgroup if
n < 2, as only the identity fixes a hyperplane.

LEMMA 3. Let n > 3, 1 < r < n, and set

+ f(n ~ 2' max(r - 1, s)), if r <v,( \ =
g{n,r,s) \ s + f i n 2 m a x ( r i S + i ) ) ifr>v.

Then,f(n, r) < max{g(n, r, .s)|0 <s <n - r - 1}.

PROOF. We set up Basic Situation 2. Clearly

d = A\m{W + S) > max(/- - 1, s).

If r > v, then dim W exceeds the index v — 1 of Z, so that ff cannot be totally
isotropic. Since S C W£, it follows in this case that W <£ 5, and so

rf > max(r - 1, s + 1).

Thus, |^ | = \M\ \Ai\ < q^n-r-s\ for some value of s between 0 and n - r - 1.
This proves Lemma 3.

To show that we have equality in Lemma 3 requires the construction of some
abelian/^-subgroups of O+(V). The /--dimensional fixed subspaces will lie in a
certain family, defined as follows.

Let §>(V) be the set of all subspaces X of V such that (a) X D Xx, (b)
I C ^ i , o r (c) dim X = (j)n and dim(rad X) = v = (\)n - 1.

LEMMA 4. Let r, s be nonnegative integers, r + s < n, X G S(F) , and

dim X = ( m a x ( ' ' *>' ifr<V>
[ max(r,s + 1), if r > v.

Then there exist subspaces W, S of X of dimensions r, s respectively, such that W

is orthogonal to S, and W, S G S ( F ) .

PROOF. If s + 1 > r > v, then s > r > v + 1, so that r + s > 2(i> + 1) > n.
Then we must have s = r = v + 1 = (£)«. Then dim X = (^)n + 1, dim Af-1 =
(\)n — 1, and, since X G §>(F), ^ D J f 1 . Take any subspace W of dimension
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(^)n with XL c W c X, and let 5 = Wx, also of dimension (|)n. Then
^ c S c J f , and rad »T = rad S = A'-1, so that W, S B S(K).

Now suppose we do not have the case r = s = (\)n, v = (|)n — 1. Then
dim X = max(r, s), and we have symmetry between r and 5. We may assume
r > s, so that dim A' = r, and we take W = X.lf X D Xx, then dim *-1 = n
— dim A' = /I — r > s, and we take 5 to be any j-dimensional subspace of A'x.
If X C X-1, we take 5 to be any s-dimensional subspace of X. If r = (5)/!,
dim(rad A") = v — (j)n — 1, thens # (j)n by supposition, so that s < (5)/! — 1,
and we take S to be any ^-dimensional subspace of rad X. In all three cases,
S C S±, so that 5 G S(F). This proves Lemma 4.

RECURSION FORMULA./(«, 0) = f(n, 1). / / 1 < r < n, then

0, ifn < 2,
max{ g(n, r, s)\0 < s < n — r — 1}, ifn > 3,

where

g ( " ' r*S ' \ s + f(n - 2, max(r - I, s + I)), ifr>v.

There exist an r-dimensional subspace X G S(F) and a subgroup A G &(V, r),
such that A fixes X.

PROOF. We prove this result by induction on n. As noted before, Lemma 1
gives /(n, 0) = f(n, 1), and also f(n, r) = 0 for n < 2. Assume n > 3, and let
0 < s < n — r— 1. Let d = max(r — 1, s) if /• < v, d = max(r — 1, j + 1) if
r > v. Take a singular vector x and choose y, Z as in Lemma 2. Then Z has
dimension n — 2, and index v — 1 (and the same type as V). By induction, there
exists a subspace Y G S(Z) of dimension d such that O+(Z) has an abelian
^-subgroup Ax of order qffn~2-d'> fixing K By Lemma 4 applied to Z instead of
F, there exist subspaces W, S of Y of dimensions r - 1, s respectively, such that
W and S are orthogonal to each other, and W, S G S(Z). Then /I = {CT(JH, 0| I11

G A}, t G S} is an abelian/j-subgroup of order qg^n-r'^ in O+(V), fixing the
r-dimensional subspace X = <x> © W, which lies in S (F).

Choice of the value of s giving the largest value of g(n, r, s), together with
Lemma 3, completes the proof of the Recursion Formula.

It is easy to verify that, if the group A, of the proof is elementary abelian, then
so is A. Thus the induction proof shows that &{V, r) always contains at least
one elementary abelian group. The descriptions obtained in Section 4 will show
that in fact the groups in &(V, r) are almost always elementary abelian.
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We note that the equality in the Recursion Formula imphes that, in the Basic
Situation 2, we have M - {o(l, 01' G S), and At e &(Z, d'), where d' =
max(r — 1, s) or max(r — 1, s + 1) according as r < v or r > v. Also,
f(n -2,d)= f(n - 2, d'), where d = dim( W + S) > d'.

3. Explicit values

For small values of n, calculation with the Recursion Formula gives the values
of f(n, r) shown in the table.

v = ( >
(Hyperbolic)

v = (> - 1
(Nonhyperbolic)

n
1
3
5
7
9

2

4

6
8

2

4

6
8
10

1
0
1
3
5
7

0
2
4
6

0
2
4
6
8

2

0
2
4
7

0

1

3
6

0

1

3
5
8

3

0
1
4
7

0

3
6

0

2
5
8

4

0
3
7

0

1
6

0

1
4
8

5

0
1
6

0
3

0
3
7

6

0
3

0
1

0
1
6

7

0
1

0

0
3

8 9 10

0 0

0

0
1 0 0

In each section of the table, the last row illustrates a general pattern holding
for all larger values of n. Also, if r > (|), the values of/(«, r) are the triangular
numbers.

THEOREM I. (a) If r > (\)n, thenfin, r) = (|X« - r\n — r — X).
(b)Ifn=2m+ 1, r < m, and m > 4, thenf(n, r) = (\)m(m - 1) + 1.
(c) Ifn= 2m, v = m, r < m, and m > 4, thenf(n, r) = (\)m(m — 1).
(d) If n = 2m, v = m — 1, and m > 5, then f(n, r)

if r <m, and f(n, m) = (\){m2 — 3m + 4).
(|)(m2 - 3m + 6)
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PROOF, (a) We use induction on n, the result being true for n < 2. Suppose
n > 3. lfO<s<n-r-\, then s + \ < n - r < r - l , so that g{n, r, s) = s

+ f(n — 2, r — 1). Thus, in the expression for fljn, r) given in the Recursion
Formula, the maximum value of g(n, r, s) occurs (only) at s = n — r — 1, and
f(n, r) = n — r — 1 + f(n — 2, r — 1). By inductive hypothesis, f(n — 2, r — 1)
= (iX» - r - 1)(« - r - 2). Hence,/(«, r) = (±X» - rX» - r - 1).

(b) We use induction on m, the result being true for m = 4 by the table. Let
m > 5. If J < r — 1, then g(n, r, s) = s + f(n — 2, r — 1) is a strictly increasing
function of s, and so /(«, /•) = max{ g(n, r, s)\r — \ < s <, n — r — 1}. I f r— 1
< j < m - 1, then g(n, r, s) = s + f(n - 2, s) = s + (j)(m - l)(m - 2) + 1,
by inductive hypothesis, and so the maximum value of g(n, r, s) for 5 in this
range is m - 1 + (i)(/w - l)(w - 2) + 1 = ({)m(m - 1) + 1. for m < s < n -
r - 1, g(n, r,s) = s+f(n-2,s) = s + (JX« - 2 - s^n - 3 - s), by (a). This
is a convex function of J, whose maximum value on the closed interval from m
to n - 2 is m + (|)(n - 2 - w)(/i - 3 - m) = ( j M m - 1) + 1. Thus, /(«, r)
= (j)m(m — 1) + 1, and the maximum of g(n, r, s) occurs at s = m — \,m.

(c), (d) We omit the proof in these cases, as it is similar to that in case (b). We
simply state the values of s for which the maximum value of g(n, r, s) occurs.

n = 2m, v = m, m > 5, r < m: s = m — 1.

n = 2m, v = m — 1, m > 6, r < m: s = m — 2, m — 1, m.

n = 2m, v = m — I, m > 6, r = m: s = m — 2, m — 1.

4. The groups

We shall give descriptions of the groups in &(V, r) in most cases, including
the "general" cases covered by Theorem I. Most of the groups occurring will be
given as the group of all elements of O+(V) fixing some elements x or
subspaces W or quotients X/ Y of subspaces of V. It will be convenient to use
the notation exemplified by

A(x, W,X/Y) = (<TG O +(V)\a fixes x, Wand Xf Y).

The subspaces of fixed vectors of elements of &(V, r) are usually, but not
always, in the family S ( V) defined in Section 2. We enlarge this family slightly
by defining %(V) to be the set of all subspaces X of V such that (a) X D Xx,
(b) X C X-1, (c) dim X = (\)n and dim(rad X) = v = (\)n - 1, (d) X is degen-
erate and dim A" = n — 2, or (e) Jf is degenerate, dim X < 3, n = 6 and r = 2.
We shall write %r( V) for the set of all /--dimensional subspaces of V lying in
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We shall describe the groups in &(V, r) in a series of propositions, labelled in
accordance with the cases of Theorem I. We shall give proofs for the proposi-
tions corresponding to cases (a) and (b), and omit proofs for the remaining
cases, which use the same basic ideas although some cases require more
elaborate calculations.

Of course, &(V, r) contains only the identity group if r > n — 2.

PROPOSITION A. Let (\)n <r <n - 2. Then

PROOF. We use induction on n, the result being vacuously true if n < 3.
Assume n > 4, X G %r(V). Either r < / j - 2 a n d A ' - L C A r , or r = n - 2 and *
is degenerate. Since radG X has codimension at most 1 in rad X, we can in any
case choose a nonzero vector x in rade X, and set up Basic Situation 1 as in
Section 2. Then A(X) consists of all a(/i, 0 such that \i fixes Wand / G W^. If
r = n - 2, then W is a hyperplane of Z, A(X) = {a(l, t)\t G W^} is an abelian
group of order q, and thus A(X) G &(V, r). If r < n - 2, then W£ c W, since
X1- c X, and so W G %r_x(Z). By inductive hypothesis, the group Ax of
elements of O +(Z) fixing W is an element of &(Z, r - 1). Since W£ c W,
O - l)f = 0, for all ft G Ax, t' G W/ . Hence, A(X) = {a(/i, />| M G ̂ , , / G
W£) is abelian. A calculation of orders, using Theorem I, shows that A(X) G
&{V,r).

Conversely, suppose A G 6E(F, r), and set up Basic situation 2. As noted
earlier, M = (o(l, t)\t G 5}, and ^ , G <£(Z, rf'), where, in this case, d' =
max(r — I, s). In the proof of Theorem I(a), we saw that we must have
s = n — r — 1. It follows that S1 = W%, and d' = r — 1, since r > (\)n. Also,
we know that d = dim( W + S) > d', and/(n - 2, rf) = /(« - 2, </'). If r < n -
2, it follows from Theorem I that d = d', so that S Q W. Setting * = <x> ©
W, we have X G 9Cr(F) in any case. Since ^ C ^(Z), and A(X) G (£(F, /•), we
have A = A(X). This proves Proposition A.

We remark that, in Proposition A, X is the subspace of all fixed vectors of
A(X), since /(«, r + 1) </(«, r). A similar remark holds for the groups de-
scribed in Propositions Bl, Cl, Dl, D2.

PROPOSITION Bl. Let n = 2m + 1, m > 1. Then &(V, m) consists of all groups
A(X, Ar X/<x», where X G %m(V) andO¥=xGX,
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PROOF. Suppose X G %m{V), so that X is totally isotropic, and let 0 ¥= x G
X. Set up Basic Situation 1, and let S = W£. Then S G %m(Z), and
A(X, X-1-/^)) consists of all a(fi, t) such that ja fixes S and ( 6 S . By
Proposition A, the group A, of all /x in 0 +(Z) fixing S lies in #(Z, m) if m > 2,
and the same holds trivially if m = 1. Since (/x - 1)/' = 0 for /* G Av t' G S,

^ / ( x ) ) is abelian. A calculation of orders, using Theorem I, shows that

Conversely, suppose A G &(V, m), and set up Basic Situation 2. In the proof
of Theorem I(b), we saw that s = m or s = m— 1, provided m > 5. This holds
also when m < 5, in the case r = m. Suppose first that s — m. Arguments as in
the proof of Proposition A show that W = S^ c S, and so X = <x> © W G
9Cm(K). Since,4, fixes S = ^z1- A fixes A'VC*). so that/4 C A(X, AV<*»>
and hence ^ = ^(A^ X^/ix})

Now suppose J = m - 1. Then l f = S c W£, so that A' = <JC> © W G
9Cm(K). If /w = 1, then X = <x> and y4 automatically fixes A'x/<x>, since
O+(A'-L/<x» = 1. Then A C A(X, X^/ix}), and so ^ = ^(X, X^/^x}). If
m > 1, then since Ax G (J(Z, m — 1) and Ax fixes W, an inductive hypothesis
will show that A{ is the subgroup of O +(Z) fixing W and JP^1"/<x,), for some
nonzero x, in W. We now choosey in Z so that *,,>>, is a hyperbolic pair, and
let Z, = (x , ,^ , )^ , so that we have a Basic Situation 1 for Av For \ G 0 +(Z!),
/, G Z,, we define a transformation /x(X, ?,) on Z analogously to the definition
of o(n, t) on V. Set Wx = W n Z{. Then the elements of y4, have the form
/i(X, /,), where X fixes (W,)z,, and r, G (W,)^.

Since dim Wx = m -2, dim(ff,)2, = w - 1, we can write (W,)^ = W, ©
<M>, and so W% = W © <w>, for some vector u. Suppose o(/x, 0, O(M', O lie in
^, where ju, ju' G y4,, and t, t' G W/ . Suppose fi = ja(X, /,), /x' = fi(X', t[),
t = w + cu, t' = w' + c'u, where w, w' G Jf, and c, c' G F. Since A is abelian,
(ju - 1)/' = (/*' - 1)/. A calculation shows that C.B(M, t\) = c'5(w, <,). We can
choose t\ in (W,)^ such that fi(«, ?',) ^ 0, since otherwise ( W ^ would be
totally isotropic of dimension greater than (j)dim Z,. Use this t\ with a suitable
X' to get an element \t! of Au and choose t' so that o(/it', t') EL A. Then we see
that c = &5(M, /,), where k is independent of \i and f.

A calculation now shows that
(o(n, t) - l)u = -B{u, tl)(xl + kB(u, u)x).

Since X^ = X © <w>, and ^ fixes A", we see that A C ^(A", Ar X/<x'», where
x' = x, + AC5(M, M)X, and hence y4 = A(X, A x / < x ' » . This proves Proposition
Bl.

PROPOSITION B2. Let n = 2m + 1, m > 4, 1 < r < m. 77ie/i <£(F, r) =
ff(F, m), unless m = 4, r = 1, »« w/»'c/i ccue &(V, 1) consists of &(V, 4) together
with all groups A(x, ( x ) " 1 / ^ ) ) , vv/iere x « a singular vector of V.

https://doi.org/10.1017/S1446788700024575 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024575


234 W.J.Wong [12]

PROOF. By Theorem I, &{V, m) C &(V, r), r < m. If m = 4 and x is a

singular vector, take X = (x}-1- and set up Basic Situation 1. Then
A(x, <JC> X /<X» = {a(l, 01' e 2} is an abelian group of order q1, and so lies
in<£(K, 1).

Conversely, suppose A G $(K, r), and set up Basic Situation 2. We now
introduce a new method for studying^. For ft G v4,, we set

<:„- {/e z|a(ju, / ) e / ( ) .

For a(ju, /) to fix W, / must lie in W£, so that CM C W£. The equation
a(l, t')a{n, t) = o(n, t + t') shows that CM is a coset of 5 in W^, and so we
have a map

y^.-^/S,

given by y(n) = C .̂ Since Ax fixes 51 and W, W£/S is an /1,-module, and the
equation a( /x, <)a( ju', f') = a( ju/x', t + ju/') shows that y is a crossed homomor-
phism. The group A is determined by A, and y.

The "kernel" of y,

K={pGAl\C,i=S},

is a subgroup of Av and the image of y has cardinality \Al : K\. Since W£/'S
has order q"~r~s~', a lower bound for |̂ T| is given by

\K\ > M.l/V—*-1 > \Ax\/q"—\
Theorem I can now be used to find an upper bound on the dimension of the
subspace

T= H k e r ( M - l )

of vectors of Z fixed by K. If ju G K, t G S, the equation (n - l)t' = (jit' - 1)/
= 0 for all jtt' G Av t' G CM- shows that every CM- is contained in T, so that the
image of y is in T/S. Thus a new lower bound for \K\ is given by

Application of Theorem I gives a new upper bound on dim T, and so on, and
thus we obtain information on the image of y.

In our present case, we have s = moTs = m— 1, unless m = 4 and r — 1,
when we may also have s = 7.

Suppse first that s = m. Then A{ G (£(Z, m), and ^ , fixes 5. By Proposition
A, S G 9Cm(Z) and ̂  consists of all elements of O + (Z) which fix S. We have
Mil = 4(2Xm-lx'"~2). If m > 4, the method outlined above leads to the succes-
sive bounds \K\ > ^ixm-ixm-^ dim T < m + 1, |A-| > g(iXm-iXm-2)-i; dim T

< m. Thus T= S, all CM = S, and so

^ = {a(n,t)\(ieAvt G 5}.

Now/* fixes < » © 5Z
X, and so A G (£(F, w).
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The same argument works when s = m = 4, if K =£ 1. Suppose K = 1, so that
y is a bijection of ^ , on Z/S (and r = 1). Since Ax fixes S, /I , also fixes Z / 5 / .
Also, 5 / is singular, since 5 / c S and p ¥= 2. Thus, if fi e v4,, z E Z, we
have £>((/* - l)z) = 0, so that Q([iz) = (>(z) + £((/i - 1)^, z), and hence
i?((/x - l)z, z) - 0. The map taking z,, z2 to B((fi - l)z,, Zj) is therefore an
alternating bilinear form on Z, and so is skew-symmetric. In particular, if
H,n'(EAvte CM, /' G C,,., then

- 1)/', 0 = -B((/i ' - 1)*, 0 = 0.

Since y is surjective, /' can be any element of Z, and so (/x — 1); = 0, since Z is
nondegenerate. I f ( i , f i 'G^ , , ( G C^./'G C,,., then f + fit' G C ,̂., and so

( w i ' - l X f + Zi/O-O.

Since /i/x' = /i'/i, \U = t, n't' = ;', we obtain

Since (pi' — 1)/ = (ju — 1)<', this gives

Since /' can be any element of Z, this implies that ju.2 = 1, and so fi = 1, since/?
is odd. Thus A, = 1, a contradiction. This disposes of the case s = m.

Next suppose s = m — 1. Then /I, G (2(Z, w — 1), and Ax fixes S1. By
Proposition Bl, S is totally isotropic, and there exists a nonzero x, in S such that
Ax consists of all elements of O + (Z) fixing both S and £ / / < * , > . Arguing as
before with the kernel K of the crossed homomorphism y, and its fixed subspace
T, we find that dim T < m, unless m = 4 and y is a bijection. If T = S, then
A = {a( fi, t)\ n E A„ t G S} fixes <x> ® S, and so v4 G &( V, m).

Suppose that dim T = m. Then \K\ > 9<iXm-ixm-2) S i n c e K f i x e s ^ i t

follows from Theorem I that |AT| = ^Xm-iXm-2); K G # ( z , w)> a n d r / c 71

by Proposition A. Then, T£ = {z G r|<3(z) = 0} D 5, and so T^- = S. Hence
S is fixed by all a(n, t) with / G CM, so that/4 fixes <x> © 5, and^4 G &(V, m).

If m = 4 and y is a bijection, then (/x - l)2z G <x,>, for all ju G Ax, z G Z,
since Ax fixes Z/S^~ and Sz/(xx~). Hence Q(ii2z — 2/xz + z) = 0. Expanding
the left side and using the fact that /i is orthogonal, we find

so that the bilinear map on Z taking zx,z2 to B(([i— l)(/x — 3)z,, Z2) is
alternating. If /x, /x' G ^ , , r G CM, /' G CM<, we set z = (/x - 3)t, z' = (11' - 3)f.
Then

- IX M - 3)2, z') = -5 ( ( M - 1)( M - 3)z', z).
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Since /* commutes with p', and (/i — 1)/' = (fi' — l)t, we have (/i — IX M ~ 3)z'
= (ju' - 1)O' - 3)z, and so

fl((|u - 1)(M - 3)z, z') = -*((M ' - 1)(M' - 3)z, z) = 0.
Let H = <x,>z. Since Ax fixes S ^ x , ) , it also fixes / / / S , and so, if t' G H,
(/x' - 3)f' = -2r'(mod S). Since y is surjective, /' can be any element of H, and
so

- 3)z e # / = <*,>.

Since (ju - I)2 maps Z into <x,>, and (ja - lX/i - 3)2 = (jn - I)3 - 4(ft - I)2

+ 4(/x — 1), we see that (ju — 1)/ e <-«i>- The same calculation as in the case
s = m, taken mod<x,>, shows that (/x - 1)Z C <*,>, for all /x G /4,. Since
H G O+(Z), we must have ft = 1, so that /4t = 1, a contradiction. This com-
pletes the case s = m — 1.

Finally, suppose that m = 4, r = 1, j = 7. Then ^4, = 1, and A = {a(l, /)|/ G
Z}, so thatv4 = A(x, <x>J-/<x». This proves Proposition B2.

As previously mentioned, we omit the proofs of the remaining propositions in
this section.

PROPOSITION Cl. Let n — 2m, m > 2, v = m. Then,

&(V,m) = {A(X)\XG%m(V)}.

Before stating the next result, we define some groups that occur in the case
n = 8, p = 2. First suppose vQ = 4, and take a singular subspace X of dimension
4 in V. Let x be a nonzero element of X, and set up Basic Situation 1. If
v,w EL W = X f\ Z, define a linear map 0(v, w) on Z by

9{v, w)z = 5(z, v)w + B(z, w)v.

Then v, w -» 0(t>, w) is an alternating bilinear map of W X W into End Z, and

so we have a linear map of /\W into End Z such that v A w -* 0(«i w). Every
2 2

element of A W is decomposable, dim /\W = 3, and one can check that the
image in End Z has dimension 3. If p(v, w) = 0{v, w) + 1, then n(v, w) G

O + (Z), and t> A w -» jn(f, w) is an isomorphism of the additive group A w

with a subgroup A, of 0 +(Z) fixing W, so that ^ , G ffi(Z, 3).
Now take a nonzero element e of the 1-dimensional exterior power

3

A (^ /<*»- Since X/(x} is naturally isomorphic with W, we can consider e as
3 2

an element of A w- Then e defines a natural isomorphism of A W with the
dual space W* of ff, while the bilinear form B defines an isomorphism of W*
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with Z / W. We obtain an isomorphism T: / \ W -» Z / ff, such that T(V A w) =
t + W, where, for w e W, u /\v /\w = B(t, u)e. Clearly t is orthogonal to

Given /i, /x' e Ax, we can write /* = /t(t>, w), ju' = \i(p, w'\ since any
two 2-dimensional subspaces of W intersect in a line. If T(U /\w)=t+ W,

T(V A W) = t' + W, then (/i - 1)/' = B(t', w)v, (fi' - \)t = B(t, w')v. Since
B{t', w)e = w A « A W = w' A « A w = 5( / , v*/)e,

we have (ft — 1)/' = (/*' — 1)/. If now we set, for [i = /i(u, w) e y4p CM =
T(U A W), then

^ ( x , A - / < x > ; e ) = {a(p, t)\p e ^ , , f G CM}

is an abelian subgroup of order q6 in O + (K) , fixing x. There are # — 1 such
groups for each pair X, x, depending on the choice of e.

Now suppose n = 8, q = 2, and let X be a totally isotropic subspace of
dimension 4 in V which is not singular. Let x be a nonzero element of radg X.
Again set up Basic Situation 1. Take a basis xx, x2, x3 of W = X n Z such that
xt, x2 e rade W (and (?(x3) = 1), and extend to a basis *,, x2, x3,yl,y2,y3 of
Z, where B(xt,yj) = 0 when i T^y, and (SC^i) = Q(yz) = 0- The &OXXP ̂ i °f
elements of O + ( Z ) fixing ff consists of all linear transformations ju(a, b, c),
where a, b, c G F, ju,(a, fe, c) fixes Ff, and

\i{a, b, c)yx = yx + axx + bx2 + ax3,

n(a, b, c)y2 = y2 + bxx + cx2 + cx3,

ju,(a, b, c)y3 = y3 + ax{ + cx2.

For ju. = n(a, b, c), set CM = a(>-2 + y3) + Zy3 + c(^, + ^3) + W. Then,

is an abelian subgroup of order 26 in O + ( F ) fixing x, which, for uniformity of
notation, we again denote as A(x, X/(x}; e), where now the superfluous

symbol e may be thought of as the unique nonzero element of / \ (X/(x}). This
group is independent of the choice of basis made in its definition.

PROPOSITION C2. Let n = 2m, m > 4, v = m, and 1 < r < m. Then &(V, r) =
&(V, m), unless m = 4 and r = 1. If m = 4, and either p =£2, or q > 2 and
vQ = 3, then &(V, 1) consists of &(V, 4) together with all groups
A(x, <x> ± /<x)) , where x is a singular vector of V. If m = 4, p = 2, and either
q = 2 or vQ = 4, then &(V, 1) consists of &(V, 4), the groups A(x, < J C > ± / < X » ,

and the groups A(x, X/(x}; e), where X is a totally isotropic 4-dimensinal

subspace of V, 0=tx e X, 0 ^ e e A (* /<*»> and X is singular if q > 2.
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It remains to deal with the nonhyperbolic case.

PROPOSITION Dl . Let n = 2m, m > 2, v = m - 1. Then, &{V, m) consists of
all groups A(X, A'-L/<x», where X G 9Cm(K) a m / 0 ^ x £ r a d X.

The next case, n = 2m, v = m — 1, r = m — 1, is more complicated. Let X be
a totally isotropic (w — l)-dimensional subspace of V. Then X^/X is an
anisotropic plane relative to the bilinear form B inherited from B. Suppose f is a
self-adjoint linear transformation o n J 1 / ^ that is,

B(u, $v) = B(£u, ©),

for u, tJ G A ^ / * . I f *i> *2 G *> " e XL/X, then

TU = 5(«, v)xt + B(ii, ?t5)x2

defines a linear map T = r(xv x2, u) of Xx/X into A\ Let £(x,, x2, f) be the set
of all T(X], X2, t7), as u ranges over X±/X. We write A(X, X^/X; xx, x2, £) for
the group of all elements a of O +(V) such that a fixes X and X^/X, and the
map of Xx/X into A' induced by a — 1 lies in £(x,, x2, f).

PROPOSITION D2. Let n = 2m, v = m - I. If m > 4, then &(V, m - 1) con-
sists of all groups A(X, Xx/X; x{, x2, f), where X G 9Cm_|(F), x,, x2 are a
linearly independent pair in X, and J is a self-adjoint linear transformation on
X^/X. Ifm = 3, then &(V, 2) consists of all such groups A(X,XX/X; xt, x2, f)
for totally isotropic X in %2(V), together with all groups A(X, X1-/<*» for
subspaces X in <9L1( V) which are not totally isotropic, 0 ̂  x G rad X.

The groups A(X, Ar±/Ar; xx, x2, f) can be described more simply in some
cases. If f is a scalar multiple of 1, f = c\, then A(X, X±/X; xv x2, f) =
A(X, Ar X/<x», where x = x, + cx2. Suppose then that f is not a scalar
multiple of 1. We note that £(x,, x2, f) = £(x, - a~xbx2, a~xx2, at; + b), if
a, b G F, a =£ 0. Since f satisfies its characteristic equation, of degree 2, we can
therefore arrange to obtain f2 = cl, c G F.

If c is a square, we can get f2 = 1, and there exists an orthogonal basis vx, v2

of X ±/X such that £o, = «„ ftJ2 = -v2. lfueXx/X,T = T(X,, X2, «), then

TU, = 5(i7, c,)(x, + x2), TV2 = 5(t7, tJ2)(x, - x2).

If <«,> = Y/X, where Y is a subspace of K containing X, then y G 9Cm(F),
<u2) = Y±/X. Stty = x, + x2,j>' = x, — x2, linearly independent elements of
X=Yn Y^.ThenAiX, Xx /X; xu x2, £) = A(Y/(y}, Y±/(y'»-
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If c is a nonsquare, there exists a basis 6,, v2 of X±/X, with 5(02, tJj) =
c.8(»i> u,), such that fu, = c2, £tJ2 = cu,. If i7 e X±/X, r = r(xt, x2, u), then

-re, = 2?(t7, u,)x, + B(u, v2)x2,

Thus £(x,, *2, £) consists of all the linear combinations of the two maps T,, T2,
where T,U[ = *„ T,t52 = cx2, T2U, = x2, T2U2 = JC,. It does not seem possible to
give a simpler description of A(X, Xx/X; xv x2, J) in this case. Of course, we
can take c to be any prescribed nonsquare.

PROPOSITION D3. Let n = 2m, v = m - \, m > 5, \ <r < m - \. Then
&(V, r) = &(V, m - 1), unless m = 5 and r = 1. If m = 5, </K?M (£(F, 1) consists
of &(V, 4) together with all groups A(x, <x>x/<x)), where x is a singular vector
ofV.

This completes the description of the groups in &{V, r) in all but a few cases
of low dimension, where similar results can be found. For example, if n < 7, or
if n = 8 and »> = 3, then &(V, 1) consists of all groups A(x, <JC>X/<JC», where
x is a singular vector. Not covered by our results are the three cases when v = 3,
r = 2.

If we define the "unipotency class" of A to be the least number c = c(A) such
that (CT, - l)(a2 - 1) • • • (ac - 1) = 0, for all av a2, . . . , ac G A, it can be
verified that c(A) < 3 for all the groups A occurring in this section, except when
n — 8, p = 2, and A = A(x, X/(x}; e) as in Proposition C2, in which case
c{A) = 4. If p is odd, then it follows that A is elementary abelian, since
OP - i = (a _ \y> = 0, a e ^ . If p = 2, it still holds that ^ is elementary
abelian, with the single exception when n = 8, q = 2, and A = A(x, X/(x}; e)
with X not singular, in which case A has exponent 4.

5. The Sylow group

We shall use our results to determine the abelian subgroups of largest order in
a given Sylow /^-subgroup P of O +(V). We first give a description of P.

A sequence of singular subspaces of V,

0 = Wo c Wx c W2 c • • • C Wk,

such that dim W{ = i, is called a singular flag of V, of length A:, and defines a
subgroup P( Wo, Wx, . . . , Wk) of O +(K), consisting of all elements which fix all
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WJ Wt_ i (1 < i < k) and Wk
x/ Wk. Such an element a also fixes all W+,/ W±,

so that a — 1 maps each subspace of the chain

0 = w0 c wx c • • • c wk c wk
x c • • • c wf c w£ = K

into the preceding one. Thus, (a - 1)2*+1 = 0, so that ap° - 1 = (a - Vf° = 0,
for pa > 2k + 1, and so a is a /^-element. Thus P(W0, Wx, . . . , Wk) is a
/>-group.

If P is a Sylow/>-subgroup of O+(V), then

for a singular flag of length k = [(j)(n — 1)]. This may be seen by induction on
n. It is clearly true if n < 2, since then P = 1. Assume n > 3. By Lemma 1, /*
fixes a singular line Wv Then W ^ / J ^ i inherits a nondefective quadratic form
from Q, by remark (b) of Section 1, and P induces a /j-subgroup P of
0 + ( Wf / Wi). By induction, P lies in the/j-group defined by a singular flag of
W,x/ W, of length & — 1. The preimage of this flag in W,x gives a singular flag
of length k in K, for which P C P(W0, Wx, . . . , Wk), and thus /» =

Since dim WV"/^* < 2> O + (»^ x /» f f c ) is a / -g roup , and so /» can also be
described as the set of all p-elements of O + ( V) fixing all WJ Wt_x{\ < i < k).

For each type of group A in &{V, 1), we determine the conditions under
which A is contained in a given Sylow /^-subgroup P. Usually A G $ ( F , i>),
where P is the index of V, and we begin with this case.

LEMMA 5. Suppose A £ &(V, v), and assume that v > 3 if n is even. Let X be
the subspace of all vectors fixed by A, and Y a subspace of codimension at least 2
in X. Then

{v e Yx\(a - l)v e Y,alla G A } C J f 1 .

PROOF. Under the conditions of the lemma, X is totally isotropic of dimension
v, by Propositions Bl, Cl, D2. There is a nondegenerate subspace Z such that
y x = Y 0 Z, and dim Z = « - 2 dim Y > 4. Now * = F 0 (X n Z),
dimCA' n Z) = v - dim 7, so that, if A" = (A' n Z ) x , then dim A" = r, where
r = n — dim Y — v. We note that r < dim Z — 2, and r > (j) dim Z if v <
(\)n, while r = ( | ) dim Z if »> = (j)«. If B = {a G 0 + ( Z ) | a fixes A"}, then
B G &(Z, r), by Propositions A and Cl, and A" is the space of all vectors in Z
fixed by B. By defining the action of B on Z x to be the identity, we consider B
to be a subgroup of O +(V). Then B fixes Xx = y © A", so that fi C A, by the
description of A given in Propositions Bl, Cl, D2.

Suppose now that t; G Yx, and (a — l)v G Y, a\l a G A. Then v = y + z,
y G Y, z G Z, and (a - l)z = (a - l)t> G Y n Z = 0, for all a G 5 . Hence
z G A", so that t; G Y © A" = X-1. This proves Lemma 5.
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LEMMA 6. Let P = P(W0, Wx, . . ., Wk) be a Sylow p-subgroup of O + (
where k = \{\){n - 1)], and let A (E &(V, v).

(a) / / n is odd, A = A(X, X x / < x » as in Proposition Bl, then A C P if and
only if either X = Wk,or x G Wk_x c X.

(b) If n is even, v = (\)n, n > 6, A = A(X) as in Proposition Cl, then A C P if
and only ifXD Wk.

(c) / / n is even, v = (\)n - 1, n > 8, A = A(X, X ^/X; xx, x2, {) as in
Proposition D2, then A C P if and only if X = Wk, or xx, x2 G H^_, c A", or
x, + cx2 G W .̂_, c X and f = cl.

PROOF. We consider the three cases in turn. In each case, X is a maximal
totally isotropic subspace (of dimension v).

(a) Suppose A C P. if Wi d X, i < k - 2, then Lemma 5 shows that Wi+X C
XL, and hence Wi+1 Q X, since Wi+l + X is a totally isotropic subspace
containing X. By induction, Wk_x C X, and s o H ^ _ , c A r c A r - L c W/_,. If
X ¥= Wk, then /I fixes the distinct lines X/Wk_x, Wk/Wk_x in the 3-dimen-
sional space Wk

1~_x/Wk_x, and so A fixes Wk
±_x/Wk_x. (Here we have used

remarks (b), (d) of Section 1). Thus A fixes A r ± / ^ _ 1 . Since A fixes Ar±/<x>
but does not fix X -1, it follows that * G Wk__,.

Conversely, if Z = Jf̂ , then A consists of ^-elements fixing all Wi/Wi_x

(1 < / < k), and so A c P. If x G W^_, c A', so that H^. , c A' c Xx c
W^-i, then A fixes the hyperplane ArX/W^_, of the 3-dimensional space
Wk

±_x/Wk_x, and so A fixes W^i, /H^_, . In particular, A fixes ^ / W ^ _ , and
Wf/Wk, as well as all WJ Wt_x,\ <i <k - 1, so that v4 C P.

(b)\i A c P, the same argument as in (a) shows that X D Wk. Conversely, if
X D Wk, then A consists of /^-elements fixing all WJ Wt_ „ and so A C P.

(c) Suppose A C P. As in case (a), W^_, c X. If X ^ H^, then H .̂ $ * x , for
else X + Wk would be a totally isotropic subspace properly containing X. Since
A"-1 is a hyperplane of Wktx, Wk

x_x = Ar± + Wk. Since A fixes ^ / H ^ _ , and
Xx/X, it fixes W^^A". By remarks (a) and (c) of Section 1, A also fixes
XL/Wk_x. Since the image of Xx under {a — l\a G A) is <x, + «c2> if
f = cl and <*,, x2} if f is not a scalar multiple of 1, we obtain xx + cx2 G
Wk_x or x,, x2 G W^_! accordingly.

The converse is proved by the same argument as in (a). This proves Lemma 6.

LEMMA 7. Let P = P( Wo, Wx, . . . , Wk) be a Sylow p-subgroup ofO+{ V), and
A = A{x, <x> x /<x», where x is a singular vector. Then A C P if and only if
<x> = Wx.
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PROOF. With the notation of Lemma 2, A consists of all o(l, t), t G Z, and we
check easily that <x> consists of all vectors fixed by A. If A C P, it follows that
O > = Wx. Conversely, if <x> = Wx, then A fixes Wx and Wx

x/Wx, and so
A QP, since Wf C Wf.

LEMMA 8. Let n = 8, r = 4,p = 2, a/irf let P = P(W,, W,, W2, W3) be a Sylow
2-subgroup of O +(V)- Suppose A = A(x, X/(x}; e) as in Proposition C2. Then
A QP if and only if <x> = Wx and X D W3.

PROOF. Suppose A C P. As in Lemma 7, <x> = Wx. The group of transfor-
mations induced on <JC>X/<JC> by A is an element of &((x}±/(x), 3) con-
tained in the Sylow 2-subgroup of O + ((x}-1-/ (x}) defined by the sequence
Wx/Wxc W2/Wx c W3/Wx. By Lemma 6(b), the subspace of fixed points
X/(xx) = X/Wx contains W3/Wx, and so X D W3.

Conversely, if <x> = Wx and X D ff3, then since A fixes x and X/(x}, A
consists of 2-elements fixing all WJ Wt_x, so that A C P. This proves Lemma 8.

THEOREM II. Let P = P( Wo, Wx, . . . , Wk) be a Sylow p-subgroup of O +(V),
where k = [(j)(n — 1)], and let &(P) be the set of all abelian subgroups of largest
possible order in P. Write

f{q, r, 1) = (q' - 1) / {q - 1), f{q, r, 2) = (qr - l)(qr - q)/ (q - 1).

(a) / / n is odd and n > 11, then &(P) consists of all the groups A(X, X ±/(x}),
where X is a maximal totally isotropic subspace of V, 0 ¥= x G X, and either
X = Wk or x G Wk_x<zX. There are f(q, k, 1) + qf(q, k - 1, 1) such groups.
If n = 9, then &{P) consists of these groiq>s A(X, Xx/<*» together with one
additional group A(Wx,Wf/ Wx).

(b) If n is even, v = ( |)n, and n > 10, then &(P) consists of all the groups
A(X), where X is a maximal totally isotropic subspace of V containing Wk. There
are 2 such groups if p ¥= 2, q + 1 if p = 2. If n — 8, and either p =£ 2, or q > 2
and vQ = 3, then &(P) consists of these groups A(X) together with one additional
group A(WX,WX

X/ Wx). Ifn = S,p = 2,and either vQ = 4 or q = 2, then &(P)
consists of the groups A (X), the group A(WX, Wx

x / Wx), and
(i) 2{q — 1) groups A(WX, X/ Wx; e), where X is a singular 4-dimensional

subspace containing W3, in the case that q > 2 and pQ = 4; or
(ii) 3 groups of the form A(WX, X/Wx; e), where X is a totally isotropic

4-dimensional subspace containing W3, in the case that q = 2.
(c) Ifn is even, v = (\)n - 1, and if n > 12, then &(P) consists of f(q, k, 1) +

(<72 + (i)9 - 5)/(<7. k, 2) groups A(X, X±/X; xx, x2, f), where X = Wk, and
q*f{q, k - 1, 1) + q\q2 + (\)q - \)f{q, k - 1, 2) groups A(X, X±/X;
*\> X2> £)> where X is a maximal totally isotropic subspace different from Wk,

https://doi.org/10.1017/S1446788700024575 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024575


[211 Finite orthogonal groups 243

containing Wk_y, and xx, x2 e Wk_x, or x, + cx2 G Wk_x and J = cl. If n =
10, then &(P) consists of these groups together with one additional group
A{WX, Wf/Wx).

(d) If n < 7, or if n = 8 and v = 3, then &(P) consists of the single group
(WWt/W)

PROOF. By Lemma 1, &(P) C &(V, 1). The descriptions of the groups in
&(P) follow directly from the descriptions of &(V, 1) in Section 4, together with
Lemmas 6, 7, 8. We outline the calculations needed to determine the numbers of
groups in &(P).

If n is odd, the number of groups A(X, Xx/<x» with X = Wk is the number
of choices of the line <x> in X, which is/(#, k, 1). A maximal totally isotropic
subspace X containing Wk_x corresponds to an isotropic line in the 3-dimen-
sional space Wk

±_x/Wk_x. Choosing an orthogonal basis for W^_JWk_v we
see by Dickson (1958), page 48, that there are q + 1 such lines. For each of the q
subspaces X different from Wk, we can choose the line <x> in Wk_x in
f(q, k — 1, 1) ways. Hence there are qf(q, k — 1, 1) further groups
A(X, X ±/{x}), and the enumeration in (a) follows.

If n is even, v = (\)n, then a maximal totally isotropic subspace X containing
Wk corresponds to an isotropic line in the 2-dimensional space Wk

x/Wk. If
p ^ 2, there are 2 such lines, while all q + 1 lines are isotropic if p = 2. If n = 8,
p — 2, q > 2, VQ = 4, the singular 4-dimensional subspaces X containing W3

correspond to the singular lines in the 2-dimensional space Wy~/ W3; there are 2
such lines. Each X gives q — 1 groups A(Wt, X/ Wt; e). If n = 8, q = 2, there
are 3 totally isotropic 4-dimensional subspaces X containing W3, corresponding
to the 3 lines in W3

X/Wy Each X gives a single group A(WX, X/Wx; e). This
completes the enumeration for case (b).

If n is even, v = (^)n — 1, consider the number of groups A(X,X±/X;
JC,, x2, f) for which X = Wk. If f is a scalar multiple of the identity, f = cl, the
number of such groups is the number of lines <JC, + cx2) in X, which is given
by/(<7, &> !)• WI is n°t a scalar multiple of the identity, but f2 = cl where c is a
square, then we have A{Y/()>}, Yx/<>»')), where y corresponds to a line in
the 2-dimensional space X ±/X, a.ndy,y' form a linearly independent pair in X.
There are q + 1 choices of y, and/(^, /c, 2) choices for the pair of lines <>»),
<>»'>. Since each choice of Y gives the same groups as Yx, we obtain
(5X? + !)/(?»&> 2) groups in this case. Finally, if f2 = cl, where c is a fixed
nonsquare, then for a given nonzero u, in X^/X, there are q + 1 ways of
choosing t52 in Xx/X such that fi(iJ2, Oj) = cB(o,, «,), by Dickson (1958), page
46, each giving a single f with f2 = cl, fo, = c2- There are (qr — \ff{q, k, 2)
choices for the linearly independent pair xx, x2, with a pair which is a multiple of
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x\> X2 by a single nonzero scalar giving the same group. Hence the number of
groups in this case is (q + l)(q — l)/(#, k, 2), so that in all we have ./fa, k, 1) +
(q2 + (i)4 ~ 5)/(<7, k, 2) groups A(X, X^/X; xt, x2, f) with X = Wk. If X *
Wk, and X corresponds to an isotropic line in the 4-dimensional space
wk~-\l Wk-\> m e r e a r e I2 choices for X, by Dickson (1958), page 47. For each
such X an enumeration similar to the above holds, and we obtain the total
number as in (c).

The last case (d) follows immediately from Lemma 7 and the remark follow-
ing Proposition D3. This completes the proof of Theorem II.

It can be checked that our results agree with those of Barry (1979) for
Chevalley groups of types Bn and Dn, as well as covering the groups of twisted
type 2Dn.

It is easy to check which of the groups in &(P) are normal in P. We state the
result without proof.

THEOREM III. In Theorem II, let &N(P) denote the set of groups in &(P) which
are normal in P.

(a) If n is odd and n > 11, then <3.N(P) consists of the single group
A(Wk, Wf/Wy). If n = 9, then &N(P) consists of this group together with the
additionalgrotq> A(WX, Wf /Wx).

(b) Ifn is even, v = (\)n, n > 8, then &N(P) = &(P).

(c) If n is even, v = (|)« — 1, n > 12, then &N(P) consists of the single group
A(Wk, Wk

x/WY). If n= 10, then &N(P) consists of this group together with the
additional group A(WX,W^/ Wt).

(d) Ifn < 7, or ifn = 8 and v = 3, then &N(P) = &(P), consisting of the single
groupA{WX, Wt/Wx).

In particular, &N(P) is always nonempty, that is, at least one of the abelian
subgroups of largest order in P is normal in P.

6. Remarks

(a) If F is taken to be an algebraically closed field instead of a finite field, so
that O+(V) is an algebraic group, our methods determine the closed abelian
unipotent subgroups of largest dimension/(«, r) in O+(V), fixing the vectors of
an /--dimensional subspace.

(b) For the other finite classical groups, the abelian unipotent subgroups
fixing an /--dimensional subspace can be studied by our methods. In the case of
the general linear groups, this was done by Goozeff (1970). The cases of the
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symplectic and unitary groups G are more complicated, as the group of transfor-
mations in G fixing an isotropic vector is the semidirect product of a lower-
dimensional group with a unipotent group which is not abelian, but nilpotent of
class 2. We hope to deal with these cases in a later paper.

(c) Results of this paper (for the case n — 8), together with some properties of
Cayley algebras, have been applied in current work of the author and William
Higgins to find the abelian unipotent subgroups of largest order in finite
Chevalley groups of type E6.
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