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Let (R,M) be a local ring and let R* be the M-adic ring completion of R. It is well
known that R is a regular local ring if and only if R* is a regular local ring. The purpose of the
note is to show that this result is essentially a consequence of a more general theory concerning
local Noether lattices which was developed in [6].

By a multiplicative lattice we will mean a complete lattice on which there is defined a
commutative, associative, totally join distributive multiplication for which the unit element of
the lattice is an identity for multiplication (written juxtaposition). Let £C be a multiplicative
lattice. An element P of £? is said to be meet principal if AP A B = A A (B: P), for all A and B
in if; Pis said to bejoin principal if {A vBP):P = Bv {A:P), for all .4 and .Bin &; and P
is said to be principal if P is both meet and join principal. JS? will be called principally generated
if each element of if is a join (finite or infinite) of principal elements of JSf. if is called a
Noether lattice in case if is modular, principally generated, and satisfies the ascending chain
condition on elements. A Noether lattice if is said to be local if it has a unique maximal
(proper) prime M. In this case we shall write (S£, M). In general we adopt the lattice termin-
ology of [2] and [6].

Let (21, M) be a local Noether lattice. As in section 2 of [3] we let if * be the collection of
00

all formal sums £ An of elements of S£ such that An = An+l v M", for n= 1,2 On

Se* define

E A ^ E B . if and only if An ^ Bn, n = 1,2,...

so that JSf * becomes a multiplicative lattice satisfying the ascending chain condition [3,
n

Theorem 2.1]. For each element A in £C, set A* = £ /4n where An = AvM" and note that
n=1

Let if be a Noether lattice, De&, and set if /£> = {̂  eif | A ^ D}. If we define AoB =
AB v D, for all A, Be&ID, then if/Z) becomes a Noether lattice [2, Lemma 4.1]. If (if, M) is
a local Noether lattice, DeJ?, D g M, then if/Z) is a local Noether lattice with maximal
element M [2, Corollary 4.1]. A local Noether lattice (J£, M) is called M-complete if, given
any decreasing sequence </4 ,> of elements of if and any n ^ 1, it follows that /4j-^ /\ A( v M",
for all large integers/ '

REMARK 1. We will require the following known properties of if *. We refer the reader to
[3, p. 331] for their proof.
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00

(i) i f * is a local Noether lattice with maximal element M* = £ M.
n=i

(ii) For each natural number n, the map A\-*A* from if/AT -^SC*/M*" is a multi-
plicative lattice isomorphsm.

(iii) £C * is M*-complete.

The following result will be needed in the proof of Theorem 3 [3, Corollary 1.3].

LEMMA 2. Let (<eu Mt) and(£C2, M2) be local Noether lattices and {(pt: &JM[ -> Se2IM2)
a sequence of multiplicative lattice homomorphisms of ^1jM\ onto Z£2\M\ such that q>i+1

extends q>tfor all i. If ££2 *s M2-complete, then i f t is embeddable in SC2. If also 3?^ is M^-
complete, then i f j and if2 are isomorphic as multiplicative lattices.

We shall in general adopt the ring terminology of [7]. In particular, a local ring is com-
mutative, Noetherian, and has an identity. If R is a ring, we denote the multiplicative lattice of
ideals of R by SC(R). If R is a local ring, JSf (R) is a local Noether lattice [2, p. 486].

THEOREM 3. Let (R, M) be a local ring with M-adic completion (R*, MR*). Then &(R*)
and J?(R)* are isomorphic as multiplicative lattices.

Proof. For each i, i = 1,2,.. . , define

X{: JSP(K)/Jlf' -» &(R*)I(MR*)' by X^.A^AR*

so that Xt is the canonical multiplicative ideal lattice isomorphism. For each i, define

i by a,: £ Am» f] An
n = l n = l

by t/̂  : 4i-».4*.

For each i, î f is a multiplicative lattice isomorphism (Remark 1) and by [6, p. 160, Remark 1]
at is the inverse of ^ thus af is a multiplicative lattice isomorphism. For each /, set <p( = Ajtx,
so that

<p,: Se(R)*lM*^Se{R*)l{MR*)1 and ? l : £ ^ ^ f) W-
n = l n = l

Thus each (pt is a multiplicative lattice isomorphism and q>i+1 extends (p{. Since SP{R)* is
M*-complete (Remark 1) and &{R*) is MiJ*-complete [8, Theorem 1] it follows that &(R)*
and J5?(i?*) are isomorphic as multiplicative lattices by Lemma 2.

The height of a prime element P of a Noether lattice 5£ is defined to be the supremum of all
integers n for which there exists a prime chain Po < Pt < ... < Pn = P in S£, and the altitude
of i f is defined to be the supremum of the heights of the prime elements of if. A local Noether
lattice (if, M) of altitude k is said to be regular in case M is the join of k principal elements.

LEMMA 4. Let (R, M)bea local ring. Then R is a regular local ring if and only if&(R) is a
regular local Noether lattice.

Proof. Clearly the altitudes of R and &(R) are the same. Let d be their common altitude.
If .Risregular, there exist*/elements a ^ ^ •.., aa in R such that M = aiR+ ... +adR. Since
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each atR is principal in i f (i?) [2, p. 482), SC(R) is regular. Conversely, if •£?(!?) is regular, there
exist principal elements Au A2,..., Adin £P{R) such that M = At v . . . v Ad. Since JSf(/?) is
local, for each i, 1 ^ i ^ d, there exists at in R such that At = a,.R [5, Corollary 6] and so R is
regular.

The proof of the following theorem may be found in [6, Theorem 3].

THEOREM 5. Let (if, M) be a local Noether lattice. Then i ? is a regular local Noether
lattice if and only if SC* is a regular local Noether lattice.

By Lemma 4, R is regular if and only if if(i?) is regular and similarly for R* and i f (R*).
By Theorem 5, £t?(R) is regular if and only if ££*(R)* is regular. These results in conjunction
with Theorem 3 immediately yield the following theorem.

THEOREM 6. Let (R, M)bea local ring and let R* be the M-adic completion ofR. Then R is
a regular local ring if and only ifR* is a regular local ring.

As we have seen (Lemma 4) the ideal lattice i f (R) of a regular local ring R is contained in
class of regular local Noether lattices. The following example (due to Bogart [1]) shows the
existence of regular local Noether lattices which are not the ideal lattice of any regular local
ring. Let F be a field, let xux2, ...,xn be indeterminates, and let RLn be the collect of
elements of £f(F[xl,x2, ...,xn]) which are joins of products of the principal ideals (Xj),
(x2), . . . , (*„). RLn is a sublattice of SC(F[xux2, ••.,*„]) and is a regular local Noether
lattice of altitude n. For n ^ 2, it can be shown RLn is not isomorphic to the ideal lattice of
any ring. We refer the reader to [1, p. 169] for the details.
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