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Abstract

A method is presented for the study of fully developed parallel flow of Newtonian
viscous fluid in uniform straight ducts of very general cross-section. The method
is based upon the concept of contour lines of constant velocity in a typical cross
section of the duct, and uses the function which describes the contour lines as an
independent variable to derive the integral momentum equation. The resulting
ordinary integro-differential equation is, in principle, much easier to solve than
the original momentum equation in partial differential equation form. Several
illustrative examples of practical interest are included to explain the method of
solution. Some of these solutions are compared with available solutions in the
literature. All details are explained by graphs and tables. The method has several
interesting features. The study has relevance to biomedical engineering research
for blood and urinary tract flow.

1. Introduction

The problem of viscous fluid flow through a duct of uniform cross-section
has received considerable attention in the past, especially after the publi-
cation of a pioneering work by Osborne Reynolds [15]. However, such a
problem requires considerable computational effort in carrying out the de-
tails of the solution if the cross-section of the duct is quite arbitrary. Ducts
of certain simple shapes like circles, ellipses, and rectangles or when the
duct boundary coincides with one of the natural coordinate systems, have
been studied extensively by various methods [2, 4, 13, 14], but these ducts
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212 J. Mazumdar and R. N. Dubey [2]

cannot fulfil many modern engineering requirements. Furthermore, because
of the complicated mathematical tools involved in these methods, they are
not suitable for arbitrary shaped ducts. However, in some situations the com-
plication caused by the boundary shape can be removed if one uses numerical
techniques. Indeed, the most commonly used numerical methods for ducts
with geometrically complicated cross sections are finite difference and finite
element methods. Although these numerical approximate methods have been
found to be quite suitable in most cases, there appears to exist a need for an
easier method that will handle problems with arbitrary cross sections in a
minumum of computer time. With this in mind, a new method is presented
in this study.

The purpose of the present investigation is therefore to provide an alter-
native way of solving the fully developed laminar duct flow problems and to
obtain in an easy manner a highly accurate velocity component parallel to the
duct walls. A knowledge of the velocity field permits the calculation of the
shear stress, flow rate, etc. In fact, the calculation of such flows is interesting
also in biomedical engineering research concerning blood and urinary tract
flow.

The method derives the governing equations from first principles. A simi-
lar contour lines concept has been used earlier to solve a large class of bound-
ary value problems for linear and nonlinear analysis of plates, shells and
membranes as well as for two dimensional heat conduction problems and
electromagnetic waveguide problems [7]-[ll].

2. An account of the method and derivation of basic equations

Consider a uniform long straight duct of any cross-section and take rectan-
gular axes oxyz with z-axis parallel to the length of the tube and the origin
o at the centroid of a right section, as shown in Figure 1. Let the duct be
filled with liquid, which is made to oscillate in the direction of the length of
the duct due to the application of a pressure gradient and assume that the
motion is everywhere axial. It is also assumed that the fluid is incompressible
Newtonian and the flow is fully developed with a single velocity component
w parallel to the duct walls. Since the flow is assumed to be fully developed,
our attention will be focussed far downstream of the duct entrance, so that
the initial growing shear layer and acceleration effects have vanished and the
velocity is purely axial and independent of its z-coordinate. We are inter-
ested here to find the time periodic velocity and pressure fields which can
exist inside an infinitely long straight duct.
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Constant shape
j:ross section

FIGURE 1. Fully developed flow in a duct with an arbitrary cross section.

Imagine the flow pattern is obtained from a representation of velocity
distributions and velocity contour lines at any typical cross-section of the
duct. A velocity contour line represents the locus of points having the same
value of velocity at any fixed instant of time T0 . Such a curve is called an
isovelocity curve or an isotac for the velocity component w(x, y, T0) . These
curves may be formed in any way, but no two isovelocity curves cut each
other, since no point inside the duct can have two different velocities at the
same time. Furthermore, the viscous boundary condition on the duct wall
suggests that the velocity component must be zero on the boundary of the
cross-section.

Let the family of isovelocity contour lines at any fixed time instant be
denoted by u(x, y) =constant. Without loss of generality, one can assume
that u = 0 on the boundary c of the cross-section. Thus, at time x these
level curves form a contour map of lines of equal velocity—a system of non-
intersecting closed curves, with the boundary as one of the lines. Let the
family of curves u(x, y) =constant be denoted by cu , 0 < u < u , so that
co = c, the boundary of the cross-section, and cu. coincides with the point at
the centre of the contour pattern at which the maximum u = u* is attained
as shown in Figure 2. It has been assumed here that u increases inwardly.
Clearly, steeper velocity increase is distinguished by the closer proximity of
lines of equal velocity.

It is to be made clear that in general the mathematical form of u(x, y)
will differ from one instant of time, T0 , to the next. However, it is sufficient
to consider a particular instant of time T0 that produces a particular form
of u(x,y), since initially solutions for w which are separable in space and
time variables are being sought.
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u(x ,y ) = 0

u(x ,y ) = constant

u ( x , y ) = u*

FIGURE 2. Isovelocity contour lines.

To find the velocity distribution, it is necessary to set up the integral form
of the momentum equation. Consider the flow of fluid through an element
bounded by any closed contour, cu at any instant T . According to the theory
of fully-developed isothermal viscous flow, the momentum flux of fluid which
flows through the element per unit time from the interior of the region to the
exterior is equal to [17]

/

where ai3 is the z-component of the viscous-stress tensor and flM is the area
bounded by the contour cu. Moreover, for a Newtonian fluid, the viscous
stresses are proportional to the element strain-rates. Thus,

aw
°xz ~ ^ dx

dw

i.e., (7.3 = / /Vw
where ji is the coefficient of viscosity. Substituting this value of stress tensor
in the above expression and using Green's Theorem, one obtains

jf w ~n)ds,

where ds is an elemental arc length and the contour integral is taken
round the contour cu , and ~n denotes the unit normal vector to the curve
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[5] Flow in ducts 215

u(x, y) =constant in the positive outward direction, i.e., ~n = - V M/| VM| .
If however ^p denotes the driving pressure gradient which is assumed to be
purely oscillatory, then the net resultant force in the axial direction is given
by ^

H I (Viu -Jt)ds- f f(S?p • 1c)(£1

where k is the unit vector in the z-direction. The above expression must
be equal to the inertial force, in accordance with the principle of momentum
flux of fluid. Hence, using the local balance of surface forces we obtain the
fundamental integral momentum equation governing the unsteady laminar
motion of a viscous incompressible fluid in a duct in the absence of any
external forces, in the form

li i (fw-Jt)ds- j f(fp-t)da= f f P^da. (1)

In the above formulation, the weight of the fluid has been ignored, as the
pipe is horizontal. It is to be mentioned here that the governing equation (1)
can as well be obtained from the z-component of the Navier-Stokes equations
viz.,

2 dp dw
w = p

integrated over the duct area fiM bounded by a contour cu .
When the flow is oscillatory, one may write

p(z, T) = P(z)eicox, w(u, T) = W{x, y)e'm (2)

where co is the frequency of oscillation. As an approximation, it is supposed
that

W(x,y) = W(u) (3)

i.e., it is assumed that each of HW and 1W share the same contour lines
u = constant. This is true for co = 0, because IW can then be taken
to vanish, and is approximately true for large (o, since W is then nearly
constant save in a thin boundary layer, where, to a first approximation, it
varies with normal distance to the boundary. However, between these two
extremes the above approximation is empirical, but appears to result in close
agreement with such calculations of velocity by other methods, as is shown
in the illustrative examples.

In the above expressions, w(u, r) and p{z, T) are the real parts of the
respective expressions on the right-hand side of (2).

If, however, one considers a pulsating flow, it is possible to assume

https://doi.org/10.1017/S0334270000007001 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007001


216 J. Mazumdar and R. N. Dubey [6]

which is composed of steady and oscillatory components. Here Ps is constant
and Posc is the complex modulus of the oscillating pressure.

Substituting (2) into (1) and cancelling the factor e'wx, one obtains

f [ [% f (5)
cu I* Jnu J dz JaJ v '

where the notations

~ x + y> v = n/p and A2 = co/v (6)

have been used. Here I2 is a reduced frequency. In formulating (5), use has
been made of the fact that

•=}„. _• dW-i _ dW [Vu-T?u\ rdW
VW- n = -j-Vu-ri=—j- r—]=-Vt-r-. (7)

du du y yft J du K '

Now, using the technique of converting the double integral into a contour
integral as explained previously [8], which for any continuous function F(u)
is given by

j J fJJf (8)
and then differentiating (5) with respect to u, one finally obtains

d2w r / - , dwrv2u, .,2.,, r ds \dp r ds
=- * Vtds+-r- <b —f^ds-lX W <f) -= = --r- * -= . (9)

du2 Jcu du 7c yTt 7cu\ft n dz JCuyTt
While deriving the second term in the above equation, the following relation-
ship has been used

— 6 y/ids = - -r- f v M • It ds
du JCu du JCu

\

d

=
& * • ( 1 0 )

It is interesting to note that (9) is identical to the linear heat conduction
equation, in two spatial dimensions with a source term [10]. The pressure
gradient can vary only with time, and thus represents a uniformly distributed
heat source.

For the oscillatory solution, the third term in (9) requires W to be com-
plex for real P. Hence, both the real and imaginary parts of (9) should be
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[7] Flow in ducts 217

considered together. However, if the flow is steady then dw/dr = 0, and w
and p are independent of T . In that case the fundamental integral equation
(1) takes the form

d w f i- dw f V u 1 dp f ds

~di?Jc ' +~dMJc,.~7T ~li~dltc.,7t'
(11)

Although in the present study we are concerned with unsteady flows, it is
clear that the steady flow equation can be obtained from the unsteady flow
equation (9) by simply putting A = 0. Thus, the pulsatile flows comprising
both steady and oscillatory components may be obtained by linear superpo-
sition of the two solutions. It is clear that the analytical solution predicted
by (9) and (11) should be exact in nature, at least in those cases where the
assumption (3) is valid for both KW and XW. In fact, for a straight duct
of uniform cross-section, this assumption seems to be true, which is evident
from the examples discussed below.

3. Illustrations

In order to test the accuracy of the method, a number of illustrative exam-
ples will now be discussed. These examples will describe the fluid flow char-
acteristics of non-circular ducts, which have become a subject of considerable
practical interest in connection with compact heat exchange equipment.

Our first step is to find the appropriate equation for the family of isoveloc-
ity contour lines at any time T0 . Although in principle the equation of isove-
locity contour lines can be determined both in steady as well as in unsteady
cases, one can still solve the duct problems without a priori knowledge of the
contour equations. This will be explained in one of the illustrative examples.
It is however to be mentioned that the equation of isovelocity contours can
be obtained using a few well-known analogies of laminar flow in conduits
viz., the membrane analogy, the soap-bubble analogy, the torsion analogy,
the vorticity flow analogy, etc. These analogies are usually true for steady-
flow problems, but one can still consider them to be approximately true for
oscillatory-flow problems, especially when the duct geometry has symmetry
about the coordinate lines. This will be evident from the first two illustrative
examples.

(a) Flow through a duct of elliptical cross section
Flow in an elliptical duct is selected as a useful test of the method, since

for the limiting case, i.e. for a circular duct, the exact solution is known. This
problem, however, has been initially studied by Khamrui [4].
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218 J. Mazumdar and R. N. Dubey [8]

Consider the fluid in a long elliptical duct which is made to oscillate under
the influence of a periodic pressure gradient. Assume the motion is every-
where axial and gradually approaches the fully developed flow. Since in this
case W is symmetric about both axes of the ellipse, it will be assumed that
the isovelocity curves form similar and similarly situated ellipses with the
boundary of the duct as one of those lines. Hence we will have

u(x,y) = l-x2/a2-y2/b2 (12)

It is to be mentioned here that for the case of a circular duct, this is no longer
an assumption. Calculations of the contour integrals appearing in (9) yield

/
Jc.

(.3)

{
/
Jc.

y —=ds = nab, (14)

K 'ab

where t = 4(x /a4+y2/b4), and the contour integrals (13)-( 15) are evaluated
along the boundary of the ellipse x2/a2 +y2/b2 = 1 - u as explained in [7].
Substituting these values in (9) one obtains

d2W dW a2a2b2 „ , a2b2 dP
W( 1 - w ) = j = ,-W = 5 =—-j-

du1 du 2(a2 + b2) 2n(a2 + b2) dz

which in terms of a new variable / reduces to a Bessel's equation

(16)

df f
where

1 2 , 2 , 2
A , 2 2a b A.f=l~u and K =w^-

The solution to (17) is given by

W = AxIQ{SiKf)+A2KQ{yTiKf)) + - ^ - ^ (19)

where the third term which represents a particular solution to (17) can be
interpreted as a uniform oscillating "Plug" velocity (—•^s-jr) (see [13]).

Here Al and A2 are arbitrary constants and Io and Ko are modified
Bessel functions of the first and second kind. These constants can however
be determined by imposing the viscous no slip boundary condition of zero
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[9] Flow in ducts 219

velocity at the duct wall together with the regularity condition at the centre
of the duct. The centre, of course, is the point where u attains the value u*,
which in this case is the origin of coordinates. Using the above conditions,
one obtains

x ^ ^ Q A2 = 0. (20)

Thus,

The Bessel functions appearing in the above expression may be split up
into their real and imaginary parts by means of the relations

f^ix) = berx + ibeix (22)

and if W is written in the form

W=Wx + iW2, (23)

it is found that
_ _ j _ rfP (berKbeiKf -beiKberKf\

1 fiX2 dz \ ber2K + bei2K J

and
dP ( _ berKberKf+beiKbeiKf\

In the limiting case, when a = b, the ellipse reduces to a circle. In this case
one obtains

f=y/a, K = ay/aifi (26)

and (21) reduces to

"'- f f I1 J o { \ i 0 ) / U r ) ) . (21)

which coincides with the exact solution for a circular duct [2].
If, however, one considers the flow to be steady, then the governing equa-

tion (11) for steady flow yields

d^w ldw = K[dp
df2 f df n dz'

where
K2. = 2a2b2/(a2 + b2). (29)
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220 J. Mazumdar and R. N. Dubey [10]

The solution to (28) with associated boundary conditions can be written as

# « 2 * 2 / x2 v2\
W = - - , 7 2 .2, ! " ^2 " I I (30)

2ft(a + b) \ a b I
which again is the exact solution of the problem [1].

Let us now examine the unsteady situation for very small and very large
frequencies.

In the case of very small frequency oscillations, the parameter K will be
small, and to a first order approximation, one obtains

berK~l, beiK~K2/4. (31)
Thus, remembering that 0 < / < 1, expressions for W{ and W2 given in
(24) and (25) reduce to

W^-^r^^rz, (32)

(33)

which, for K4 < 16, ultimately take the form,

1 2/i(a2 + b2) dz \ a2 b2 J

W2~0. (35)

Hence, considering the real part in expression (2) the velocity w becomes

a2b2 dP (t x2 y2\ . _ .
W = s 5--J- 1 7 - *-$ \ COS COT , (36)

2/i(a2+b2) dz \ a
2 b2 J

indicating that when the frequency of the pressure gradient is small the flow
is laminar under a steady pressure gradient which varies slowly with time.
This result is also shown by Khamrui [4].

In the case when the frequency of oscillations <u is very large, and hence
K is also very large, one can use the following asymptotic forms of ber and
bei functions

{2nK)~*eacosp, beiK = (2nK)~ieasiafi,

2 e2a

and ber K + bei K =
2nK

where

•-£•'-£-*• (38)
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Therefore,
berK V2nK o , „ ,

cos /? (39)+ bei2K
and

beiK V2nK . _ . . . .
S i n P • (40)T T~ = 7=

ber2K + bei2K e
K/V1

Substituting these asymptotic forms in (24) and (25), one obtains

(42)
fiA.- «<• \ MJ j

where
y = (l-f)K/V2. (43)

Thus,

(44)

which for large co (suitably scaled) can be expressed as

„. i dP [, (. licop \] . . . .
w~w~E[l~a*[l~)lirn)\' (45)

where n denotes a suitably chosen geometrical parameter.
The fluid velocity is given by

w = Re(WeiC0T)

= - — — [ in cor - —e~y smicox - )] (46)

rf dz [SmCOT Sfe Sm(C0T y)\
which agrees with Sexl's [15] results for a circle if we put f = r/a. Conse-
quently, when the frequency of oscillation is large, one obtains

^ , - 0 , (47)

W2 = - L ^ (48)

and hence the velocity w is given by

w = —^r-^sincor, (49)
M2dz

indicating that there is a phase lag of 90° behind the pressure gradient.
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Let us now examine the velocity components Wx and W2 given in (24)
and (25). Using the calculated values of ber and bei functions, one can
obtain the ratios Wx/W* and WJW* where W* is the centreline veloc-
ity which, for steady flow, becomes the maximum velocity. Since in many
instances one is concerned with an oscillation of definite magnitude rather
than with the forces which produce this oscillation, the variations of WJW*
and W2/W* are shown in Figure 3(a), (b) for periods of oscillation given by
various values of the parameter r) = bk and for a/b = 2. The parameter r\
is usually referred to as Stokes number. In Figure 4, the velocity profiles for
oscillatory flows in an elliptical duct of aspect ratio 2: 1 have been shown
for a set of values of r\ . As r\ increases from the steady case (rj2 = 0),
the velocity profile changes markedly from the parabolic profile.

Also shown in Figure 5 are velocity profiles for elliptical ducts of different
aspect ratio corresponding to r\ = 3 . Centre-plane oscillatory flows in an
elliptical duct of aspect ratio 2: 1 have also been computed for r\2 = 0, 1
and 2. The numerical values of the velocity profiles (real and imaginary parts)
are calculated and displayed in Table 1. The results show excellent agreement
with that of O'Brien [14] calculated on the same dimensional form from her
Figure 6.

From the foregoing analysis it can be concluded that the practical impor-
tance of the above method stems not so much from the fact that it constitutes
an experimental verification for the determination of the lines of constant ve-
locity for oscillatory flow, but from the fact that it furnishes the basis for an
intuitive, qualitative discussion of isovelocity contour lines in cases where
the exact determination is difficult.

(b) Flow in a straight duct where cross-section is an equilateral triangle
As a second example, consider the case of a flow in a duct with cross-

section in the form of an equilateral triangle as shown in Figure 6. If the
flow is steady, then the equation of isovelocity contours can be obtained, as
mentioned earlier, using well-known analogies of laminar flow in conduits in
the form

u(x, y) = 4a3 - 3a{x2 + y2) + 3xy2 - x3 (50)

which, in fact, is the equation of the boundary of the plane section. Consider
the above equation to be approximately true for the oscillatory flow. Clearly
u = 0 on the boundary of the duct and u = u* = 4a3 at the centroid of the
section.

The value of the contour integrals appearing in (9) are obtained with the
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(a)

(b)
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W,/W*

1.00

0.80

0.60

0.40

0.20

\ ^ \ )v
• \ \ 1

\ \ \

1

\ \f
i l l i i \ r

000 0.20 0.40 0.60 0.80 1.00 120
W2/W*

FIGURE 3. Velocity profiles in an elliptical duct for different values of r\:
(a) Normalised real part WJW'.
(b) Normalised imaginary part W2/fV* .

help of Green's Theorem as follows:

f

Ly/i \2adu\2aduJ,

(51)

(52)
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w
b2 dP
fj. dz

0.40

0.30

0.20

0.10

0.00

-

i i i i i

1-2.0

\
\

000 0.20 0.40 0.60 0.80 1.00
f

FIGURE 4. Velocity profiles in an elliptical duct of aspect ratio 2:1.

0.00
000 020 0.40 0.60 0.80

f
1.00

FIGURE 5. Velocity profiles in an elliptical duct for different aspect ratio.
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[15] Flow in ducts 225

TABLE 1. Centre plane velocity profiles for oscillatory flow
in an elliptical duct of aspect ratio a/b = 2/1

, 2 = 0

n2 = i

X

wx

w2

w2

wx

w2

wx

w2

A

B

A

B

A

B

A

B

A

B

A

B

0.00

0.4

0.4

0.0

0.0

0.397

0.399

0.030

0.029

0.392

0.394

0.059

0.059

0.25

0.375

0.375

0.0

0.0

0.373

0.374

0.027

0.025

0.367

0.365

0.054

0.053

0.50

0.3

0.3

0.0

0.0

0.299

0.300

0.021

0.018

0.294

0.298

0.040

0.041

0.75

0.175

0.175

0.0

0.0

0.174

0.175

0.010

0.010

0.172

0.175

0.021

0.021

dz = \w2\i dz

A = Present results

B = O'Brien [14]

where A(u) is the area enclosed by the region Qu and Ao is the total area
of the triangular section. With the values of these integrals introduced (9)
finally reduces to

(u - u)
d2W dW
du1 du Via Man dz

which in terms of a new independent variable / given by

u-u = f2

assumes the form

d2W

df

(53)

(54)

(55)
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(a , / 3a )

(-2a,o)

u(x,y) = const.
(a, - / 3 a )

FIGURE 6. Equilateral triangular duct geometry.

where

K2 = X2/3a. (56)

It is interesting to note that (55) is identical in form to (17). Hence the
method of solution used in the previous illustration can be used, giving

uX2 dz \
(57)

If, however, one considers the case of steady flow, then the governing equation
(11) yields

djw_ \_dw__k\_dp_
df2 + fdf nTz

where

Kt=l/(3a).

The solution to (58) is given by

w = ~
K2 dp

(58)

(59)

\2ans (60)

which in fact is the exact solution for steady flow [1].
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Now returning to the unsteady case, it can be shown, as in the previous
example, that

_dP_ ( berKVSbeiKf - beiKVi
iX2 dz \

1 dP ( berKVSbeiKf+beiKVifberKA
2 tfdzy ber2KV7 + bei2KVF ) ' ( }

In Figure 7(a), (b) velocity profiles (normalised real and imaginary parts)
are shown for various values of the parameter rj2 where r\ = aX = a^/co/v .
As TJ2 increases from its zero value when the flow is fully steady, the de-
viations from parabolic profile become quite apparent. Also shown in Fig-
ure 8 are graphs for W/W* against u/u* where W = ^Jw2 + W2 and

W* = \j^g\. The parameter r]2 sometimes denoted by co* is called the
kinetic Reynolds number and is a measure of viscous effects on oscillating
flow. The flow may be turbulent when co* exceeds a certain value.

(c) Flow in regular polygonal ducts
It has been made clear in the previous two examples that the accuracy of

the solution of oscillatory duct problems depends largely on knowledge of
the form of the contour function u(x, y), and attention was focussed on a
possible approximation for one such function. However, it will be shown in
this example that the oscillatory flow problems can be solved without a priori
knowledge of the contour function for any simply connected section that can
be mapped conformally onto a unit circle, for which isovelocity contours are
concentric circles. Thus, the method of conformal transformations can be
used to obtain an accurate approximation for the solution to the problem.
It is the purpose of this illustration to explain the procedure involved and
to show that the proposed method is quite general and can be used for any
arbitrary cross-section.

Method

Consider the duct geometry as shown in Figure 2. It is required to obtain
the conformal mapping function that maps the contour c onto the unit circle
in the complex plane £ = £+/>/, Figure 9. The existence of such a conformal
transformation between the simply connected region R and the unit circle
|C| = 1 is guaranteed by the well-known Riemann mapping theorem. The
mapping function can be expressed in a general form as z = y/{Q or £ =
(f>(z). If the family of isovelocity contours in the C-plane is denoted by, say,

https://doi.org/10.1017/S0334270000007001 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007001


228 J. Mazumdar and R. N. Dubey [18]

0.35

(a)

0.00
Q00 0.20 0.40 0.60

(x/a)
Q80 1.00

0.18

(b)

0.00
000 0.20 0.40 0.60

( x / a )
O.80 1.00

FIGURE 7. Velocity profiles in an equilateral triangular duct:
(a) Normalised real part.
(b) Normalised imaginary part.
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0.35

0.00
0.00 0.20 0.40 0.60 080 1.00

u/u*

FIGURE 8. Velocity profiles in an equilateral triangular duct for a range of values of r\.

u = cu u=o

u = constant

FIGURE 9. Conformal mapping geometry.

Inconstant

U(£,, rj) = constant, then one can write

U(Z,r,)=l-S2-t,2 (62)

and clearly, U = 0 on the boundary C, and U* = 1 at the centre of the
unit circle. It is assumed here that there is a one-to-one correspondence
between the contours U(£, rj) = constant in the C-plane and the contours
u{x, y) = constant in the z-plane. Calculating the values of the various
integrals appearing in the integro-differential equation (9), in the transformed
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t = Ux+Uy = L
dz

V u = 4u- =

and for any continuous function f(x, y)

dz

I f(x,y)ds=i f(z,z)ds=<f
Je,. Jc,, Jcr,

dS,

[20]

(63)

(64)

(65)

where the Jacobian of the transformation J = dz/dC, and dS is the elemental
arc length of the appropriate circle U = constant in the C-plane. Thus, the
values of the integrals in (9) are

Vtds = IUrUydS,

Jcu Vt Jcv 2jU^U7

dz
dS.

The above integrals can further be simplified using the facts that

yielding

<p Vtds = 4n(l - U),

<b —=- ds = -An,
Jcu vt

/ * =
 1 /

Jc Vt 2^1 - U Jc
dS.

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

The contour integral appearing above in (74) can be evaluated once the map-
ping function z = IJ/(Q is known. The governing equation (9) can now be
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written in the transformed plane as

<* - u)% - % -a2H{u)w = lSHm (75)

where

it
C

It (76)

The differential equation (75) is now solved by the method of collocation
assuming a power series of the form

anU". (77)

Substituting this expression into (75) and requiring that it holds for N dif-
ferent values of U, one finally arrives at the following system of algebraic
equations

±\n(n - §
L J n=l M

(78)
for j=l,2,... ,N and 0 < Uj < 1.

Thus, once the //-function is known, the above system of equations can be
solved numerically and hence values of real and imaginary parts of velocity
components can be obtained.

If, however, one considers the steady case, then the governing equation
(11) for steady flow can be written in the transformed plane as

which again can be solved easily by the method outlined above. For a detailed
discussion of the method, see Mazumdar and Hill [12].

As an illustration of the proposed method, consider first the case of a
flow through a polygonal cross-section as shown in Figure 10. The mapping
function that transforms a regular polygonal region onto the unit circle is
given by the well-known Schwartz-Christoffel transformation [5].

z = W(Q = tfF- / (1 + t ) " dt, (80)
Jo

where n is the number of sides, a is the apothem of the regular polygon,
and Fn is the mapping coefficient given by

l + t")-"dt. (81)
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U=0

u = constant

FIGURE 10. Regular polygonal duct.

The numerical values of the mapping coefficients for some regular polygons
are given in Table 2.

TABLE 2. Numerical Values for Regular Polygonal Transformations.

Shape Parameter

3 (triangle)

4 (square)

5 (pentagon)

6 (hexagon)

7 (heptagon)

8 (octagon)

Mapping Coefficient

1.135

1.079

1.052

1.038

1.028

1.022

Also shown in Figures 11 and 12 are the variations of real and imaginary
velocity components for different values of ka for n = 3 and 4, compared
with known results. It is interesting to note that for n = 3 i.e., for an
equilateral triangular duct the graphs are exactly the same as those obtained
previously in Figures 7(a) and 7(b). Furthermore, the numerical values for
centre-plane velocity profile for a square duct (« = 4) given in Table 3 agree
very well with those of O'Brien [14].
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TABLE 3. Centre plane velocity profiles for
oscillatory flow in a square duct: 7 = 1 .

The figures in brackets are due to O'Brien [14].

235

x/a

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

Real

0.2815

0.2778

0.2668

0.2482

0.2208

0.1865

0.1400

0.0810

0

part

(0.2817)

(0.2780)

(0.2669)

(0.2478)

(0.2201)

(0.1828)

(0.1347)

(0.0743)

(0)

Imaginary part

-0.0621

-0.0610

-0.0577

-0.0525

-0.0452

-0.0359

-0.0250

-0.0132

0

(-0.0623)

(-0.0612)

(-0.0578)

(-0.0525)

(-0.0451)

(-0.0358)

(-0.0259)

(-0.0128)

(0)

(d) Flow in cardioidal ducts
As a final example of fully developed laminar flow cases, let us consider

the flow in a pipe whose cross-section is that of a cardioid, Figure 13. The

r = 2C (1 + COS 9 )

FIGURE 13. Cardioidal duct.
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mapping function in this case is well known [6] and is given by

z = T T ^ ( C + "lc2)) (82)

where the parameter a is the radius of the circumscribing circle and the
parameter m may have values ranging from 0 to 0.5 . For m = 0, one gets
the case of a circle duct whereas for m = 0.5 , the case of a duct in the actual
cardioidal shape is obtained. Velocity profiles for m = 0 and m = 0.5 are
shown in Figures 14 and 15.

4. Conclusions

In the preceding analysis, a new approximate method of solution for fully
developed fluid flow in a duct of arbitrary shape has been developed. Both
steady and unsteady flows have been considered. It has been demonstrated
that the proposed method produces results which are sufficiently accurate for
engineering purposes.

It is not claimed here that the contour function method will replace pow-
erful numerical techniques like finite element and finite difference methods,
since these techniques are becoming much more sophisticated and capable,
especially with the ever increasing power of computers. However, the pro-
posed method is a relatively simple, quasi-analytical approach which requires
very little computer time and computer memory. These features make the
method superior to available numerical methods where the solution involves
all interior points. In addition, the results produced by its use may be utilised
as useful checks on those solutions produced by finite element and other more
intricate numerical methods, although there are not many measurements of
velocity in fully developed unsteady flow available in the literature. Finally,
because of the assumption involved in selecting the contour function in the
first two examples, the method yields exact solutions for steady flow problems
and highly accurate approximate solutions in oscillatory flow problems.
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