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The Metric Dimension of the Total Graph
of a Finite Commutative Ring

David Dolžan

Abstract. We study the total graph of a ûnite commutative ring. We calculate its metric dimension
in the casewhen the Jacobson radical of the ring is nontrivial, andwe examine themetric dimension
of the total graph of a product of at most two ûelds, obtaining either exact values in some cases or
bounds in other, depending on the number of elements in the respective ûelds.

1 Introduction

In [5], Anderson and Badawi introduced the notion of a total graph of a commutative
ring R as the graph with all elements of R as vertices, and for distinct x , y ∈ R, the
vertices x and y are adjacent if and only if x + y is a zero-divisor in R. _ey studied
some graph theoretical parameters of this graph such as diameter and girth. In ad-
dition, they studied some special subgraphs of the total graph and the properties of
the total graph based on these subgraphs. _ey also proved that the total graph of a
commutative ring is connected if and only if the set of zero-divisors does not form an
ideal. In [1] Akbari et al. proved that if the total graph of a ûnite commutative ring is
connected, then it is also a Hamiltonian graph. In [14], Maimani et al. gave the nec-
essary and suõcient conditions for the total graphs of ûnite commutative rings to be
planar or toroidal, and in [18] Tamizh Chelvam and Asir characterized all commu-
tative rings such that their total graphs have genus 2. In [16], Shekarriz et al. studied
the total graph of a ûnite commutative ring and calculated the domination number of
such a ring and also found the necessary and suõcient conditions for the graph to be
Eulerian. In [8] the authors studied the total graph of a ûnite non-commutative ring.

_e sequence of edges

x0—x1 , x1—x2 , . . . xk−1—xk

in a graph is called a path of length k. _e distance between vertices x and y is the
length of the shortest path between them, denoted by d(x , y). _e diameter diamΓ
of the graph Γ is the longest distance between any two vertices of the graph.
A complete graph on m vertices will be denoted by Km , and a complete bipartite

graph with the respective sets of sizes m and n will be denoted by Km ,n .
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For an ordered subset W = {w1 ,w2 , . . . ,wk} of the vertex set of graph G and a
vertex v of G, the k-vector

r(v∣W) = (d(v ,w1), d(v ,w2), . . . , d(v ,wk))
is called the representation of v with respect to W . A set W is called a resolving set
for G if distinct vertices of G have distinct representations with respect to W . A re-
solving set ofminimal cardinality for G is a basis ofG, and the cardinality of the basis
is called the metric dimension of G, denoted by β(G) [7]. Motivated by the problem
of uniquely determining the location of an intruder in a network, Slater [17] intro-
duced the concept of a metric dimension. _e metric dimension was then studied
by Harary and Melter [10], and it has appeared in various applications of graph the-
ory, for example pharmaceutical chemistry [6,7], robot navigation [12], combinatorial
optimization [15], and sonar and coast guard long range navigation [17]. It turns out
that determining the metric dimension of a graph remains a NP-complete problem
even in special cases like bounded-degree planar graphs [2], or split graphs, bipartite
graphs and their complements, line graphs of bipartite graphs [3].

Recently, Faisal et al. [4] studied themetric dimension of the commuting graph of
a dihedral group.

Let us recall some basic deûnitions.
For any commutative ring R, we denote by Z(R) the set of zero-divisors, Z(R) =

{x ∈ R; there exists 0 /= y ∈ R such that xy = 0}. In accordance with [5], we deûne
the total graph of a ring R as follows.

Deûnition _e total graph τ(R) of a commutative ring R is the graph, where
● the set of vertices V(τ(R)) of the graph τ(R) is the set of all elements in R and
● two distinct vertices x and y are adjacent if and only if x + y is a (le� or right)
zero-divisor in R.

We limitour study to the total graphsof ûnite ringsbecauseof the following lemma.

Lemma 1.1 ([9, 13]) If R is a ring with m zero divisors, 2 ≤ m <∞, then R is a ûnite
ring with ∣R∣ ≤ m2.

So, if an inûnite ring R hasmore than one zero divisor, then it has inûnitelymany of
them, and so the degree of each vertex in the total graph is inûnite, which means that
is it diõcult (or perhaps even meaningless) to study the graph theoretical properties
of the total graph. On the other hand, if an inûnite ring R has only one zero divisor,
each a ∈ R is either an isolated vertex or adjacent only to −a, so the total graph is a
disjoint union of inûnitely many graphs isomorphic to K1 or K2.

In this paper, we study themetric dimension of the total graph of a ûnite commu-
tative ring. In the ring setting, the total graph has a special signiûcance, since among
all the graphs that are commonly assigned to a ring the total graph takes both ring
operations into account. In the next section,we calculate themetric dimension of the
total graph of a ring in case the Jacobson radical of the ring is nontrivial and in the
last section we turn our attention to studying themetric dimension of the total graph
in the remaining case of a ûnite ring with a trivial Jacobson radical, which implies
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that the ring is a direct product of ûelds. We calculate themetric dimension of a total
graph of a ûeld. In the case of the product of two ûelds, we ûnd an exact value for the
metric dimension of its total graphwhen one ûeld is at least twice the size of the other
one, and ûnd a bound for the metric dimension in all other cases, whereby we also
conjecture about the exact value.

2 The Metric Dimension of the Total Graph of a Finite Ring

We shall make use of the following two lemmas.

Lemma 2.1 If R is a ûnite ring, then every a ∈ R is either invertible or zero-divisor.

Proof Choose any a ∈ R. Since R is ûnite, there exist integers k, l > 0 such that
ak = ak+l . Choose the smallest such k. _en ak(a l − 1) = 0, and either a l = 1 (so a is
invertible) or aak−1(a l − 1) = 0 (so a is a zero divisor).

Lemma 2.2 ([5]) If R is a ûnite ring, then

diam τ(R) =
⎧⎪⎪⎨⎪⎪⎩
∞, if R is local,
2, if R is not local.

In this section we investigate the metric dimension of the total graph of a non-
semisimple ûnite ring. We start with the following lemma. Here, J(R) denotes the
Jacobson radical of R.

Lemma 2.3 For every ûnite ring R we have a + b ∈ Z(R) if and only if

(a + J(R)) + (b + J(R)) ∈ Z(R/J(R)).

Proof Let J denote J(R). If a + b ∈ Z(R), there exists a nonzero c ∈ R such that
(a + b)c = 0, and thus ((a + J) + (b + J))(c + J) = J. So, either (a + J) + (b + J) is a
zero-divisor in R/J or it is invertible byLemma 2.1. If (a+J)+(b+J) is invertible, there
exists u ∈ R such that (u+ J)((a+ J)+(b+ J)) = 1+ J, or, equivalently, u(a+b) ∈ 1+ J.
Since R is ûnite, J is nilpotent, and thus all elements in 1+ J are invertible, so u(a+b)
is an invertible element in R, which contradicts the assumption a + b ∈ Z(R). _us,
(a + J) + (b + J) ∈ Z(R/J).

If (a+J)+(b+J) ∈ Z(R/J), there exists c ∈ R∖J such that ((a+J)+(b+J))(c+J) =
J, and thus (a+b)c ∈ J. If a+b is invertible in R, there exists u such that u(a+b) = 1,
and therefore c = u(a + b)c ∈ J, a contradiction. _us, a + b is not invertible, so
a + b ∈ Z(R).

Next, we need the following deûnitions.

Deûnition Let v be a vertex of a graph G. _en the open neighbourhood of v is
N(v) = {u ∈ V(G); there exists an edge uv in G} and the closed neighbourhood of v
us N[v] = N(v) ∪ {v}. Two distinct vertices u and v of G are twins if N(u) = N(v)
or N[u] = N[v].
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_e following lemma can be found in [11].

Lemma 2.4 ([11]) Suppose u and v are twins in a connected graph G, and the set W
is a resolving set for G. _en u or v is in W .

We will need the following lemma on metric dimensions of some special graphs.
Here, the graph G1 ∪G2 denotes the disjoint union of graphs G1 and G2.

Lemma 2.5 (i) If ∣G1∣, ∣G2∣ ≥ 2, then β(G1 ∪G2) = β(G1) + β(G2);
(ii) β(Kn) = n − 1;
(iii) For m + n ≥ 3, β(Km ,n) = m + n − 2.

Proof _e ûrst statement is obvious; the second and third follow from [7, _eo-
rems 3 and 4].

We can now examine themetric dimension of the total graph of a ringwith respect
to the total graph of the ringmodulo its Jacobson radical. _e following theoremnow
describes themetric dimension of the total graph of a ûnite non-semisimple ring.

_eorem 2.6 Let R be a ûnite commutative ring with its Jacobson radical J. If J /= 0,
then themetric dimension of τ(R) equals β(τ(R)) = ∣J − 1∣∣R/J∣.

Proof Let us ûrst assume that R is not local and suppose that W is a resolving set
for τ(R). Let a − b ∈ J and c ∈ R. _en by Lemma 2.3, a + c ∈ Z(R) if and only if
a + c + J is a zero divisor in R/J, and b + c ∈ Z(R) if and only if b + c + J is a zero
divisor in R/J. Since a + c + J = b + c + J, this implies that N(a) = N(b). R is not
local, so the total graph of R is connected by Lemma 2.2, and by Lemma 2.4 we get
that all except perhaps one element of every coset from R/J is in W . _is now yields
β(τ(R)) ≥ ∣J − 1∣∣R/J∣.

Now, suppose X = {a1 , . . . , a∣R/J∣} is a complete set of representatives of the cosets
from R/J and let W = R ∖ X. Obviously, ∣W ∣ = ∣J − 1∣∣R/J∣. To prove that W is a
resolving set for τ(R) we only have to check that no two elements from X have the
same representations with respect to W . Suppose the contrary, so that for some i /= j
we have d(a i ,w) = d(a j ,w) for allw ∈W . Since J /= 0,W contains a representative of
every coset fromR/J. Ifw ∈ N(a i), thenw+J ⊆ N(a i) byLemma 2.3, and this implies
that either N[a i] = N[a j] (if a i and a j are connected in τ(R)) or N(a i) = N(a j) (if
they are not connected). However, a i + (Z(R) − a i) ⊆ Z(R). If N[a i] = N[a j], then
a j+(Z(R)−a i)∖{a j} ⊆ Z(R), and ifN(a i) = N(a j), then a j+(Z(R)−a i)∖{a i} ⊆
Z(R). In both cases a j − a i is connected in τ(R) with all except perhaps one element
of Z(R). We can decompose R as a direct product of (ûnite commutative) local rings,
R = R1 × R2 × ⋅ ⋅ ⋅ × Rk , with R i local for each i and let a j − a i = (x1 , x2 , . . . , xk) for
some x l ∈ R l , l = 1, 2, . . . , k. Since a j − a i ∉ J, there exists an integer s such that
xs ∉ J(Rs). But Rs is a local ring, so xs is invertible in Rs . Because of the assumption
that J /= 0, we also know that there exists some integer t such that J(Rt) /= 0. Now, let
b = (1 − x1 , . . . , 1 − xs−1 , 0, 1 − xs+1 , . . . , 1 − xk) and observe that a j − a i + b + J(Rt) =
(1, . . . , 1, xs , 1, . . . , 1) + J(Rt) is an invertible element of R. Since ∣J(Rt)∣ ≥ 2, at least

https://doi.org/10.4153/CMB-2016-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-015-5


752 D. Dolžan

two elements of b + J(Rt) lie in Z(R), so a j − a i is not connected to at least two
elements from Z(R), which is a contradiction.

Now, assume that R is local. By [5,_eorems 2.1 and 2.2], we know that τ(R) is a
disconnected graph isomorphic to ∣R/J∣ copies ofK∣J∣ if 2 ∈ J and isomorphic to a copy
K∣J∣ and

∣R/J∣−1
2 copies of K∣J∣,∣J∣ if 2 ∉ J. _e result now follows from Lemma 2.5.

Now, it is le� for us to investigate the metric dimension of the total graph of a
semisimple ring. Since any commutative Artinian (and hence also ûnite) ring can be
written as a direct product of local rings, thismeans the ringswe are le� to investigate
are the products of ûelds. _is is the topic of the next section.

3 The Metric Dimension of the Total Graph of a Product of Fields

In this section, we study themetric dimension of a ûnite semisimple ring. Since any
commutative ûnite ring is a direct product of local rings,we can limit our study to the
case where the ring is a product of ûnite ûelds.

Let us ûrst consider the case of one ûeld.

Lemma 3.1 If F is a ûeld, then

β(τ(F)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣F∣ − 1, if char(F) = 2,
∣F∣ + 1

2
, otherwise.

Proof If char(F) = 2, then τ(F) is equal to ∣F∣ disconnected copies of K1 and thus
β(τ(F)) = ∣F∣− 1. If char(F) /= 2, then τ(F) is equal to a copy of K1 and ∣F∣−1

2 discon-
nected copies of K1,1, and thus β(τ(F)) = 1 + ∣F∣−1

2 = ∣F∣+1
2 .

Next, we move on to the case of the product of two ûelds. It is not entirely clear
how themethodswe use could be extended to the product ofmore than two ûelds, as
the total graphs in those cases turn out to be a level of degreemore complex.

In general, we can state the following proposition.

Proposition 3.2 Let R = F1 × F2, where F1 and F2 are ûnite ûelds. _en β(τ(R)) ≤
∣F1∣ + ∣F2∣ − 2.

Proof We have to examine the case F1 = F2 = Z2 separately. Observe that W =
{(0, 0), (1, 0)} is a resolving set for the total graph of Z2 × Z2, so in this case the
statement holds.

Suppose now that at least one of the ûelds F1, F2 has at least 3 elements. Denote
F1 ∖ {0} = {x1 , x2 , . . . , x∣F1 ∣−1} and F2 ∖ {0} = {y1 , y2 , . . . , y∣F2 ∣−1}. Deûne the set
W = {(x1 , 0), (x2 , 0), . . . , (x∣F1 ∣−1 , 0)}∪{(0, y1), (0, y2), . . . , (0, y∣F2 ∣−1)}. Obviously,
∣W ∣ = ∣F1∣ + ∣F2∣ − 2. We have to prove that W is a resolving set for τ(R). Suppose
there exist a = (a1 , a2), b = (b1 , b2) ∈ R ∖W such that d(a,w) = d(b,w) for all
w ∈ W . Since R is not local, by Lemma 2.2 we have d(x , y) ∈ {1, 2} for all x , y ∈ R.
Also, for x = (x1 , x2), x′ = (x′1 , x′2) ∈ R, we have d(x , x′) = 1 if and only if x1 = −x′1
or x2 = −x′2. If a1 = b1 = 0, then a2 = b2 = 0, since a, b ∉ W . If a1 = b1 /= 0,
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then a2 , b2 /= 0 and 1 = d(a, (0,−a2)) = d(b, (0,−a2)) implying that a2 = b2. If
a1 /= b1 then a1 /= 0 or b1 /= 0. Suppose without loss of generality that a1 /= 0. _en
1 = d(a, (−a1 , 0)) = d(b, (−a1 , 0)), so b2 = 0, and thus b = 0 (since b ∉ W). Now,
1 = d(b,w) = d(a,w) for all w ∈ W , thus d(a, (0, y)) = 1 for all y ∈ F2 ∖ {0}, which
yields ∣F2∣ = 2. Since a2 /= 0, we also have d(a, (x , 0)) = 1 for all x ∈ F1 ∖ {0}, and
thus ∣F1∣ = 2, but we have already veriûed this case in the ûrst part.

In many cases, this bound can be lowered. We need the following technical lem-
mas.

Lemma 3.3 Let R = F1 ×F2, where F1 and F2 are ûnite ûelds and letW be a resolving
set for τ(R). If there exist t ≥ 2 and y1 , y2 , . . . yt ∈ F2 such that for any (x1 , x2) ∈W we
have x2 /= y l for all l = 1, 2, . . . , t and for any y ∉ {y1 , y2 , . . . , yt} there exists x1 ∈ F1
such that (x1 , y) ∈W , then ∣W ∣ ≥ ∣F1∣(t − 1) + ∣F2∣ − 2t.

Proof Choose x1 ∈ F1. For l = 1, 2, . . . , t deûne elements r l = (x1 ,−y l) ∈ R and
observe that for 1 ≤ i , j ≤ t we have d(r i ,w) = d(r j ,w) for all w ∈ W . Since W is
a resolving set, this implies that either r i or r j lies in W for all i /= j. _e element
x1 was an arbitrary element from F1, so W has to contain at least ∣F1∣(t − 1) elements
with the second component equal to one of elements −y1 ,−y2 , . . . ,−yt . _e elements
in W have at least ∣F2∣ − t diòerent second components, so there are at least ∣F2∣ − 2t
elements inW with the second component not equal to any of ±y1 ,±y2 , . . . ,±yt , and
we thus get ∣W ∣ ≥ ∣F1∣(t − 1) + ∣F2∣ − 2t.

Lemma 3.4 Let R = F1 × F2, where F1 , F2 are ûnite ûelds, ∣F1∣ ≤ ∣F2∣, f1 ∈ F1, and
f2 ∈ F2. Let W ⊆ R be such a set that for each x2 ∈ F2 ∖ { f2} there exists a unique
z = (z1 , z2) ∈ W such that z2 = x2 and for each x1 ∈ F1 ∖ { f1} there exist s = (s1 , s2) /=
r = (r1 , r2) ∈ W such that s1 = r1 = x1. Suppose further that ( f1 , r2), (r1 , f2) ∉ W for
all r1 ∈ F1 , r2 ∈ F2. If for any w ∈W also −w ∈W , then W is a resolving set for τ(R).

Proof Suppose there exist a = (a1 , a2) /= b = (b1 , b2) ∈ R ∖W such that d(a,w) =
d(b,w) for all w ∈W .
Examine ûrst the case when a1 /= − f1. _ere exist s = (s1 , s2) /= r = (r1 , r2) ∈ W

such that s1 = r1 = −a1. Obviously, d(a, r) = d(a, s) = 1, therefore d(b, r) = d(b, s) =
1. Since r2 /= s2, this yields b1 = a1. _erefore, b2 /= a2, so { f2} is a proper subset
of {−a2 ,−b2}. Suppose without loss of generality that f2 /= −a2. _en there exists
a unique z = (z1 , z2) ∈ W such that z2 = −a2. Now, 1 = d(a, z) = d(b, z), so
z1 = −b1 = −a1. However, this implies that a = −(−a1 ,−a2) = −z ∈ W , since z ∈ W ,
but this is a contradiction.

It remains to check the case a1 = − f1. If a2 /= − f2, then 1 = d(a,w) for a unique
element w = (w1 ,−a2) ∈ W . If b2 = a2 (and b1 /= a1), then there exist r = (−b1 , r2) /=
s = (−b1 , s2) ∈ W such that d(b, r) = d(b, s) = 1, which is a contradiction since a is
connected to only one element inW . On the other hand, if b2 /= a2, then the fact that
b is connected to only one element in W yields b2 = − f2 and b1 = −w1. Since w1 /= f1
we can ûnd an element w′ = (w1 ,w2) ∈ W with w′ /= w and d(b,w′) = 1, which is
again a contradiction. Lastly, if a2 = − f2, then d(a,w) = 2 for all w ∈ W . Since a is
the only element in R with this property, we again have a = b, a contradiction.
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We can now calculate themetric dimension in the case ∣F2∣ ≥ 2∣F1∣ − 1.

_eorem 3.5 Let R = F1 × F2, where F1 , F2 are ûnite ûelds with ∣F1∣ ≤ ∣F2∣ and either
char(F2) /= 2 or char(F1) = char(F2) = 2. If ∣F2∣ ≥ 2∣F1∣ − 1, then β(τ(R)) = ∣F2∣ − 1.

Proof Denote F1 ∖ {0} = {x0 , x1 , . . . , x∣F1 ∣−2} and F2 ∖ {0} = {y0 , y1 , . . . , y∣F2 ∣−2}. If
F1 and F2 are not of characteristic 2, then sort the elements of F1 ∖ {0} in such a way
that x2i = −x2i+1 for all i = 0, 1, . . . , ∣F1 ∣−3

2 and the elements of F2 ∖ {0} in such a way
that y2i = −y2i+1 for all i = 0, 1, . . . , ∣F2 ∣−3

2 . _en deûne z i = (x i mod (∣F1 ∣−1) , y i) for
0 ≤ i ≤ ∣F2∣ − 2. Now, let W = {z0 , z1 , . . . , z∣F2 ∣−2}.

If char(F1) = 2 and char(F2) /= 2, then sort elements of F2 ∖ {0} in such a
way that y i = −y i+(∣F1 ∣−1) for all i = 0, 1, . . . , ∣F1∣ − 2 and y2i = −y2i+1 for all
i = ∣F1∣ − 1, ∣F1∣, . . . , ∣F2 ∣−3

2 . _en deûne z i = (x i mod (∣F1 ∣−1) , y i) for 0 ≤ i ≤ 2∣F1∣ − 3,
and if ∣F2∣ ≥ 2∣F1∣ + 1 also deûne z i = (0, y i) for i = 2∣F1∣ − 2, 2∣F1∣ − 1, . . . , ∣F2∣ − 3.
Again, let W = {z0 , z1 , . . . , z∣F2 ∣−2} and note that in both cases W is a set with ∣F2∣ − 1
elements.

Since ∣F2∣ ≥ 2∣F1∣ − 1,W satisûes the conditions of Lemma 3.4 (for f1 = 0, f2 = 0),
so W is a resolving set, and this implies that β(τ(R)) ≤ ∣F2∣ − 1.

Now, choose an arbitrary resolving setW for τ(R). Wewill prove that ∣W ∣ ≥ ∣F2∣−1.
Suppose otherwise, ∣W ∣ ≤ ∣F2∣ − 2. _en by Lemma 3.3,

∣W ∣ ≥ ∣F1∣(t − 1) + ∣F2∣ − 2t

for some t ≥ 2, which implies ∣W ∣ ≥ ∣F1∣ + ∣F2∣ − 4 and thus ∣F1∣ ≤ 2. We can
conclude that F1 = Z2 and ∣W ∣ = ∣F1∣ + ∣F2∣ − 4. _ere exist y1 /= y2 ∈ F2 such
that (x , y1), (x , y2) ∉ W for all x ∈ F1. If char(F2) = 2, then for any x ∈ F1 we
have d((x , y1),w) = d((x , y2),w) for all w ∈ W , which is a contradiction. Oth-
erwise if (x ,−y1) ∉ W for all x ∈ F1, then d((x ,−y1),w) = d((x , y1),w) for all
x ∈ X and w ∈ W , a contradiction. So, there exists an element x1 ∈ F1 such that
(x1 ,−y1) ∈ W . Similarly, we get x2 ∈ F1 such that (x2 ,−y2) ∈ W . _is also implies
that F2 is a ûeld of odd characteristic with at least 5 elements. By the proof of Lemma
3.3, ∣W ∣ = ∣F1∣+ ∣F2∣−4 implies that x1 and x2 are unique elements in F1 with this prop-
erty. If x1 = x2, then (x1 , y1), (x1 , y2) ∉ W , and thus d((x1 , y1),w) = d((x1 , y2),w)
for all w ∈ W , which is a contradiction. So, x1 /= x2. If there exists y3 ∈ F2 such that
y3 /= y1 , y2 and (x , y3) ∉ W for all x ∈ F1, then by the above there exists x3 ∈ F1
such that (x3 ,−y3) ∈ W , and since x3 = x1 or x3 = x2, this again leads to a contra-
diction. Now, choose an y0 ∈ F2 ∖ {y1 , y2 ,−y1 ,−y2}. _ere exists a unique x0 ∈ F1
such that (x0 ,−y0) ∈ W . If x0 = x1, then (x0 , y0) and (x1 , y1) are both connected
to (x0 ,−y0), (x1 ,−y1) ∈W , which are the only elements in W with the second com-
ponent equal to −y0 or −y1. _is implies that (x0 , y0) ∈ W , and we can reach the
same conclusion in the case where x0 = x2. Set x′0 = x0 + 1. _is implies that
(x′0 , y0), (x′0 ,−y0) ∉ W . We either have x′0 = x1 or x′0 = x2, and we can suppose
without loss of generality that x′0 = x1. However, both (x′0 ,−y0) and (x1 , y1) are con-
nected to (x0 , y0) and (x1 ,−y1), which are the only elements in W with the second
component equal to y0 or −y1. _is implies d((x′0 ,−y0),w) = d((x1 , y1),w) for all
w ∈W , which is a contradiction, so the theorem holds.
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Next,we study the case ∣F2∣ ≤ 2∣F1∣−2. Again,we startwith a few technical lemmas
and a deûnition.

Deûnition Let R = F1 × F2, where F1 , F2 are ûnite ûelds and let W ⊆ R. We say that
an element (x0 , y0) ∈ W such that and (x0 , y), (x , y0) ∉ W for all x ∈ F1 ∖ {x0}, y ∈
F2 ∖ {y0} is a unique resolving element for τ(R).

Lemma 3.6 Let R = F1×F2,where F1 , F2 are ûnite ûeldswith char(F1), char(F2) /= 2,
letW1 ⊆ (F1∖{−1, 0, 1})×(F2∖{−1, 0, 1}) andW = {(1, 0), (0, 1), (−1,−1)}∪W1 ⊆ R
be such sets that the following conditions aremet:
(i) for every x ∈ F1 there exists y′ ∈ F2 such that (x , y′) ∈W ;
(ii) for every y ∈ F2 there exists x′ ∈ F1 such that (x′ , y) ∈W ;
(iii) no element from W1 is a unique resolving element for τ(R);
(iv) for every x ∈ F1 , y1 , y2 ∈ F2 such that (x , y1), (x , y2) ∈ W we also have either

(−x ,−y1) ∈W or (−x ,−y2) ∈W ;
(v) for every y ∈ F2 , x1 , x2 ∈ F1 such that (x1 , y), (x2 , y) ∈ W we also have either

(−x1 ,−y) ∈W or (−x2 ,−y) ∈W .
_en W is a resolving set for R.

Proof Suppose there exist (a, b) /= (c, d) ∈ R ∖ W such that d((a, b),w) =
d((c, d),w) for all w ∈W .
First consider the case when a ∉ {−1, 0, 1} and b ∉ {−1, 0, 1}. Since (a, b) /= (c, d),

there exist either w1 = (−a, y1) /= w2 = (−a, y2) ∈ W or w′
1 = (x1 ,−b) /=

w′
2 = (x2 ,−b) ∈ W (otherwise there would be a unique element if R ∖ W con-

nected to the only two elements in W that have −a on the ûrst and −b on the sec-
ond component). Suppose without loss of generality that we have w1 and w2. _is
implies that d((c, d),w1) = d((c, d),w2) = 1, which gives us c = a. But by
(ii) there also exist u1 , u2 ∈ F1 such that (u1 ,−b), (u2 ,−d) ∈ W , and this yields
d((a, d), (u1 ,−b)) = d((a, b), (u1 ,−b)) = 1. _us, either b = d or u1 = −a. But we
also have d((a, b), (u2 ,−d)) = d((a, d), (u2 ,−d)) = 1, so either b = d or u2 = −a.
But b /= d now has a consequence that (−a,−b), (−a,−d) ∈W , and thus by (iv) either
(a, b) ∈W or (c, d) = (a, d) ∈W , a contradiction.

If a = 0, then (a, b) is connected to (0, 1), so d((c, d), (0, 1)) = 1, which implies
that c = 0 or d = −1. If c = 0, then d = b, since otherwise by (ii) the element (0, b)
would be connected to some (x ,−b) ∈ W and (0, d) would be connected to some
(x′ ,−d) ∈W , and thus x = x′ = 0 which is a contradiction since 0 appears only once
as the ûrst component of an element from W . If c /= 0, then d = −1. Now, if b = 0,
then (a, b) is connected to (1, 0), so c = −1, and thus (c, d) ∈ W , a contradiction.
If b = −1, then (a, b) is connected only to (0, 1), so c ∉ {−1, 0, 1} and thus (c, d) is
connected to some element in W1 and (a, b) is not, a contradiction. Since (a, b) ∉
W , the last remaining case is that b ∉ {−1, 0, 1}. _en (a, b) is connected to some
(x ,−b) ∈ W1, and by (iii) there exists either some x /= x′ ∈ F1 ∖ {−1, 0, 1} such that
(x′ ,−b) ∈W1 or some −b /= y ∈ F2 ∖ {−1, 0, 1} such that (x , y) ∈W1. But then c = −x
and either (c, d) = (−x ,−1) is connected to (x , y) while (a, b) = (0, b) is not, or
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(a, b) = (0, b) is connected to (x′ ,−b) while (c, d) = (−x ,−1) is not, which again
leads to a contradiction.

Similarly, we can check the cases a = 1 and a = −1, since 0, 1, and −1 all appear
exactly once at each component of an element from W .

We now prove the theoremon themetric dimension for the case of the ring F1×F2
with ∣F1∣ ≤ ∣F2∣ and ∣F2∣ ≤ 2∣F1∣ − 2, where both F1 and F2 are either ûelds of an odd
characteristic or both have characteristic equal to 2.

_eorem 3.7 Let R = F1 × F2, where F1 , F2 are ûnite ûelds with ∣F1∣ ≤ ∣F2∣. If ∣F2∣ ≤
2∣F1∣ − 2. _en

β(τ(R)) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∣F1∣ + ∣F2∣ − 2
2

, if char(F1) = char(F2) = 2,

2∣F1∣ − 2, if char(F1) = 2 and char(F2) /= 2,
2∣F1∣ + ∣F2∣ − 3

2
, if char(F1) /= 2 and char(F2) /= 2.

Proof Let us ûrst consider the case char(F1) /= 2 char(F2) /= 2. Denote

F′1 = F1 ∖ {0, 1,−1} = {x1 , x2 , . . . , x∣F1 ∣−3},
F′2 = F2 ∖ {0, 1,−1} = {y1 , y2 , . . . , y∣F2 ∣−3}.

Sort elements of F′1 in such a way that

x1 = −x∣F1 ∣−3 , x2 = −x∣F1 ∣−4 , . . . , x ∣F1 ∣−3
2

= −x ∣F1 ∣−3
2 +1

and the elements of F′2 in such a way that

y1 = −y∣F2 ∣−3 , y2 = −y∣F2 ∣−4 , . . . , y ∣F2 ∣−3
2

= −y ∣F2 ∣−3
2 +1 .

Now, deûne the following sets

W1 = {(1, 0), (0, 1), (−1,−1)} ,
W2 = {(x1 , y1), (x2 , y2), . . . , (x ∣F1 ∣−3

2
, y ∣F1 ∣−3

2
)} ,

W3 = −W2 = {(−x1 ,−y1), (−x2 ,−y2), . . . , (−x ∣F1 ∣−3
2
,−y ∣F1 ∣−3

2
)} .

Observe that since F2 is a ûeld of an odd characteristic, we have ∣F2∣ ≤ 2∣F1∣ − 3, so
∣F2∣ − ∣F1∣ ≤ ∣F1∣ − 3. If ∣F1∣ = ∣F2∣, then deûneW4 = ∅; otherwise, deûne

W4 = {(x1 , y ∣F1 ∣−1
2

) , (x2 , y ∣F1 ∣+1
2

) , . . . , (x∣F2 ∣−∣F1 ∣ , y∣F2 ∣− ∣F1 ∣+32
)} .

LetW ′ = (W2∪W3)∖{(x , y) ∈W2∪W3; there exists y′ ∈ F2 such that (x , y′) ∈W4}.
Observe that ∣W ′∣ = 2∣F1∣− ∣F2∣−3, soW ′ is a (possibly empty) setwith an even num-
ber of elements. Denote the elements ofW ′ = {(u1 , v1), (u2 , v2), . . . , (u∣W′∣ , v∣W′∣)}.
Deûne

W5 = {(u1 , v2), (u3 , v4), . . . , (u∣W′∣−1 , v∣W′∣)} .
By the construction, no element inW2 ∪W3 ∪W4 ∪W5 is a unique resolving element.
It is obvious thatW1 ,W2 ,W3 ,W4, andW5 are disjoint sets, and one can verify that the
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set W =W1 ∪W2 ∪W3 ∪W4 ∪W5 satisûes the conditions of Lemma 3.6 and is hence
a resolving set for τ(R). Because

∣W ∣ = 3 + ( ∣F1∣ − 3) + ( ∣F2∣ − ∣F1∣) + 2∣F1∣ − ∣F2∣ − 3
2

,

we get β(τ(R)) ≤ 2∣F1 ∣+∣F2 ∣−3
2 .

Suppose next that char(F1) = 2 and char(F2) /= 2. Denote

F1 ∖ {0} = {x0 , x1 , . . . , x∣F1 ∣−2} and F2 ∖ {0} = {y0 , y1 , . . . , y∣F2 ∣−2}.
Sort elements of F2∖{0} in such away that y2i = −y2i+1 for all i = 0, 1, . . . , ∣F2 ∣−3

2 . _en
deûne z2i = (x i , y2i mod (∣F2 ∣−1)) and z2i+1 = (x i , y2i+1 mod (∣F2 ∣−1)) for 0 ≤ i ≤ ∣F1∣−2.
Now, let W = {z0 , z1 , . . . , z2∣F1 ∣−3} be a set with 2∣F1∣ − 2 elements. Let us prove that
W is a resolving set for τ(R). Suppose there exist (a, b) /= (c, d) ∈ R ∖W such that
d((a, b),w) = d((c, d),w) for all w ∈ W . If a = x i for some i ∈ {0, 1, . . . , ∣F1∣ − 2},
then d((c, d), (x i , y2i)) = d((c, d), (x i , y2i+1)) = 1, implying that c = x i . If b = y2 j

for some j ∈ {0, 1, . . . , ∣F2 ∣−3
2 }, then d((c, d), (x j , y2 j+1)) = 1 as well, which together

with the fact that i /= j yields d = y2 j , a contradiction. Similarly, we treat the case
b = y2 j+1 for some i /= j ∈ {0, 1, . . . , ∣F2 ∣−3

2 }. If b = 0, then (a, b) is not connected to
any element from W , so d = 0 as well. Lastly, if a = 0, then (a, b) is connected to at
most one element fromW , which implies that c = 0 as well. Since (0, b) is connected
to (0,−b) ∈ W if and only if b /= 0 (and not connected to any element from W if
b = 0) it must follow that b = d, which again leads us to a contradiction.
Finally, suppose that char(F1) = char(F2) = 2. Since ∣F2∣ ≤ 2∣F1∣− 2, we have ∣F1∣ =

∣F2∣, and thus F1 = F2 by the uniqueness of ûnite ûelds. Denote F1 = {x1 , x2 , . . . , x∣F1 ∣}
and deûne

W1 = {(x1 , x1), (x2 , x2), . . . , (x∣F1 ∣−1 , x∣F1 ∣−1)} ,
W2 = {(x1 , x2), (x3 , x4), . . . , (x∣F1 ∣−1 , x∣F1 ∣)} .

Again, let W = W1 ∪W2 and suppose there exist (a, b) /= (c, d) ∈ R ∖W such that
d((a, b),w) = d((c, d),w) for all w ∈ W . If a = x i for some i ∈ {1, 3, . . . , ∣F1∣ − 1},
then d((a, b), (x i , x i)) = d((a, b), (x i , x i+1)) = 1, so c = x i , and since (a, b) ∉ W
we have b /= x i , x i+1. _us, 1 = d((a, b), (b, b)) = d((c, d), (b, b)), which implies
b = d. If a = x i for some i = 2, 4, . . . , ∣F1∣ − 2, then d((a, b), (x i , x i)) = 1. If d = x i ,
then d((c, d), (x i−1 , x i)) = 1, which is a contradiction, since b /= x i . _us, c = x i and
1 = d((a, b), (b, b)) = d((c, d), (b, b)) which implies b = d (since b /= x i). Since
we can swap (a, b) and (c, d), this only leaves us to check the case a = c = x∣F1 ∣. If
d = x∣F1 ∣ then d((c, d), (x∣F1 ∣−1 , x∣F1 ∣)) = 1 which implies b = x∣F1 ∣, a contradiction
since (a, b) /= (c, d). So, d /= x∣F1 ∣ and thus d((a, b), (d , d)) = d((c, d), (d , d)) = 1,
which again leads us to the contradicting fact that b = d. _is implies that W is a
resolving set for τ(R). Because

∣W ∣ = (∣F1∣ − 1) + ∣F1∣
2

= 3∣F1∣ − 2
2

= 2∣F1∣ + ∣F2∣ − 2
2

,

we get β(τ(R)) ≤ 2∣F1 ∣+∣F2 ∣−2
2 .
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We have reasons to believe that the metric dimensions are actually equal to the
ones stated in the cases of the above theorem. We therefore conjecture the following.

Conjecture Let R = F1 × F2, where F1 , F2 are ûnite ûelds with ∣F1∣ ≤ ∣F2∣. If ∣F2∣ ≤
2∣F1∣ − 2, then

β(τ(R)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∣F1∣ + ∣F2∣ − 2
2

, if char(F1) = char(F2) = 2,

2∣F1∣ − 2, if char(F1) = 2 and char(F2) /= 2,
2∣F1∣ + ∣F2∣ − 3

2
, if char(F1) /= 2 and char(F2) /= 2.

References

[1] S. Akbari, D. Kiani, F. Mahammadi, and S. Moradi,_e total graph and regular graph of a
commutative ring. J. Pure Appl. Algebra 213(2009), no. 12, 2224–2228.
http://dx.doi.org/10.1016/j.jpaa.2009.03.013

[2] J. Díaz, O. Pottonen,M. Maria, and E. J. van Leeuwen, On the complexity ofmetric dimension. In:
Algorithms–ESA 2012, Lecture Notes in Comput. Sci., 7501, Springer, Heidelberg, 2012,
pp. 419–430. http://dx.doi.org/10.1007/978-3-642-33090-2_37

[3] L. Epstein, A. Levin, and G. J. Woeginger,_e (weighted) metric dimension of graphs: hard and
easy cases. In: Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci.,
7551, Springer, Heidelberg, 2012, pp. 114–125. http://dx.doi.org/10.1007/978-3-642-34611-8_14

[4] F. Ali,M. Salman, and S.Huang, On the commuting graph of dihedral group. Comm. Algebra, to
appear.

[5] D. F. Anderson and A. Badawi,_e total graph of a commutative ring. J. Algebra 320(2008), no. 7,
2706–2719. http://dx.doi.org/10.1016/j.jalgebra.2008.06.028

[6] P. J. Cameron and J. H. Van Lint, Designs, graphs, codes and their links. London Mathematical
Society Student Texts, 22, Cambridge University Press, Cambridge, 1991.
http://dx.doi.org/10.1017/CBO9780511623714

[7] G. Chartrand, L. Eroh,M. A. Johnson, and O. R. Oellermann, Resolvability in graphs and the
metric dimension of a graph. Discrete Appl. Math. 105(2000), no. 1–3, 99–113.
http://dx.doi.org/10.1016/S0166-218X(00)00198-0

[8] D. Dolžan and P. Oblak,_e total graph of ûnite rings. Comm. Algebra 43(2015), no. 7,
2903–2911. http://dx.doi.org/10.1080/00927872.2014.907417

[9] N. Ganesan, Properties of rings with a ûnite number of zero divisors. Math. Ann. 161(1965),
241–246. http://dx.doi.org/10.1007/BF01359907

[10] F. Harary and R. A. Melter, On themetric dimension of a graph. Ars. Combinatoria 2(1976),
191–195.

[11] C. Hernando,M. Mora, I. Pelayo, C. Seara, and D. R. Wood, Extremal graph theory for metric
dimension and diameter. Electron. J. Combin. 17(2010), no. 1, Research Paper 30.

[12] S. Khuller, B. Raghavachari, and A. Rosenfeld, Localization in graphs. Technical report
CS-TR-3326, University ofMaryland at College Park, 1994.

[13] K. Koh, On properties of rings with a ûnite number of zero divisors. Math. Ann. 171(1967), 79–80.
http://dx.doi.org/10.1007/BF01433095

[14] H. R. Maimani, C. Wickham, and S. Yassemi, Rings whose total graphs have genus at most one.
Rocky Mountain J. Math 42(2012), no. 5, 1551–1560.
http://dx.doi.org/10.1216/RMJ-2012-42-5-1551

[15] A.Sebö and E. Tannier, On metric generators of graphs. Math. Oper. Res. 29(2004), no. 2,
383–393. http://dx.doi.org/10.1287/moor.1030.0070

[16] M. H. Shekarriz,M. H. Shirdareh Haghighi, and H. Sharif, On the total graph of a ûnite
commutative ring. Comm. Algebra 40(2012), no. 8, 2798–2807.
http://dx.doi.org/10.1080/00927872.2011.585680

https://doi.org/10.4153/CMB-2016-015-5 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jpaa.2009.03.013
http://dx.doi.org/10.1007/978-3-642-33090-2_37
http://dx.doi.org/10.1007/978-3-642-34611-8_14
http://dx.doi.org/10.1016/j.jalgebra.2008.06.028
http://dx.doi.org/10.1017/CBO9780511623714
http://dx.doi.org/10.1016/S0166-218X(00)00198-0
http://dx.doi.org/10.1080/00927872.2014.907417
http://dx.doi.org/10.1007/BF01359907
http://dx.doi.org/10.1007/BF01433095
http://dx.doi.org/10.1216/RMJ-2012-42-5-1551
http://dx.doi.org/10.1287/moor.1030.0070
http://dx.doi.org/10.1080/00927872.2011.585680
https://doi.org/10.4153/CMB-2016-015-5


_eMetric Dimension of the Total Graph of a Finite Commutative Ring 759

[17] P. J. Slater, Leaves of trees. In: Proceedings of the Sixth Southeastern Conference on
Combinatorics, Graph _eory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975),
Congressus Numerantium, 14, Utilitas Math.,Winnipeg,MB, 1975, pp. 549–559.

[18] T. Tamizh Chelvam and T. Asir, On the genus of the total graph of a commutative ring. Comm.
Algebra 41(2013), no. 1, 142–153. http://dx.doi.org/10.1080/00927872.2011.624147

Department ofMathematics, Faculty ofMathematics and Physics, University of Ljubljana, Jadranska 19,
SI-1000 Ljubljana, Slovenia
e-mail: david.dolzan@fmf.uni-lj.si

https://doi.org/10.4153/CMB-2016-015-5 Published online by Cambridge University Press

http://dx.doi.org/10.1080/00927872.2011.624147
mailto:david.dolzan@fmf.uni-lj.si
https://doi.org/10.4153/CMB-2016-015-5

